首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The human genes encoding α1-antitrypsin (α1AT, gene symbol PI), corticosteroid-binding globulin (CBG), α1-antichymotrypsin (AACT), and protein C inhibitor (PCI) are related by descent, and they all map to human chromosome 14q32.1. This serine protease inhibitor (serpin) gene cluster also contains an antitrypsin-related sequence (ATR, gene symbol PIL), but the precise molecular organization of this region has not been defined. In this report we describe the generation and characterization of an 370-kb cosmid contig that includes all five serpin genes. Moreover, a newly described serpin, kallistatin (KAL, gene symbol PI4), was also mapped within the region. Gene order within this interval is cen–CBG–ATR–α1AT–KAL–PCI–AACT–tel. The genes occupy 320 kb of genomic DNA, and they are organized into two discrete subclusters of three genes each that are separated by 170 kb. The distal subcluster includes KAL, PCI, and AACT; it occupies 63 kb of DNA, and all three genes are transcribed in a proximal-to-distal orientation. Within the subcluster, there is 12 kb of intergenic DNA between KAL and PCI and 19 kb between PCI and AACT. The proximal subcluster includes α1AT, ATR, and CBG; it occupies 90 kb of genomic DNA, with 12 kb of DNA between α1AT and ATR and 40 kb between ATR and CBG. These genes are all transcribed in a distal-to-proximal orientation. This represents the first detailed physical map of the serpin gene cluster on 14q32.1.  相似文献   

3.
Cancer evolves through the accumulation of mutations, but the order in which mutations occur is poorly understood. Inference of a temporal ordering on the level of genes is challenging because clinically and histologically identical tumors often have few mutated genes in common. This heterogeneity may at least in part be due to mutations in different genes having similar phenotypic effects by acting in the same functional pathway. We estimate the constraints on the order in which alterations accumulate during cancer progression from cross-sectional mutation data using a probabilistic graphical model termed Hidden Conjunctive Bayesian Network (H-CBN). The possible orders are analyzed on the level of genes and, after mapping genes to functional pathways, also on the pathway level. We find stronger evidence for pathway order constraints than for gene order constraints, indicating that temporal ordering results from selective pressure acting at the pathway level. The accumulation of changes in core pathways differs among cancer types, yet a common feature is that progression appears to begin with mutations in genes that regulate apoptosis pathways and to conclude with mutations in genes involved in invasion pathways. H-CBN models provide a quantitative and intuitive model of tumorigenesis showing that the genetic events can be linked to the phenotypic progression on the level of pathways.  相似文献   

4.
In the past decade, research into cardiovascular diseases, such as atherosclerosis and restenosis, has been focused on the identification of genetic factors that determine disease risk besides clinical risk factors. Many genes in lipid metabolism, vascular homeostasis, haemostasis and inflammation have been found to be related to coronary artery disease1 and the multifactorial nature of the disease suggests a role for many other, yet uninvestigated genes. Previous research from our department has demonstrated the importance of genetics in restenosis after a percutaneous coronary intervention (PCI). Polymorphisms in several inflammatory genes, such as TNFα, eotaxin, CD14, GM-CSF, IL-10, caspase-1, but also noninflammatory genes, such as LPL, stromelysin-1 and the β adrenergic receptor have been found to be associated with the risk of restenosis.2-5 It has become clear, however, that part of the gene-environmental interactions relevant for complex diseases is regulated by epigenetic mechanisms such as histone acetylation and DNA methylation.  相似文献   

5.
6.
The distal serpin subcluster contains genes encoding alpha1-antichymotrypsin (ACT), protein C inhibitor (PCI), kallistatin (KAL) and the KAL-like protein, which are expressed in hepatocytes, but only the act gene is expressed in astrocytes. We show here that the tissue-specific expression of these genes associates with astrocyte- and hepatocyte-specific chromatin structures. In hepatocytes, we identified 12 Dnase I-hypersensitive sites (DHSs) that were distributed throughout the entire subcluster, with the promoters of expressed genes accessible to restriction enzyme digestion. In astrocytes, only six DHSs were located exclusively in the 5' flanking region of the act gene, with its promoter also accessible to restriction enzyme digestion. The acetylation of histone H3 and H4 was found throughout the subcluster in both cell types but this acetylation did not correlate with the expression pattern of these serpin genes. Analysis of histone modifications at the promoters of the act and pci genes revealed that methylation of histone H3 on lysine 4 correlated with their expression pattern in both cell types. In addition, inhibition of methyltransferase activity resulted in suppression of ACT and PCI mRNA expression. We propose that lysine 4 methylation of histone H3 correlates with the tissue-specific expression pattern of these serpin genes.  相似文献   

7.
Currently the shikimate pathway is reported as a metabolic feature of prokaryotes, ascomycete fungi, apicomplexans, and plants. The plant shikimate pathway enzymes have similarities to prokaryote homologues and are largely active in chloroplasts, suggesting ancestry from the plastid progenitor genome. Toxoplasma gondii, which also possesses an alga-derived plastid organelle, encodes a shikimate pathway with similarities to ascomycete genes, including a five-enzyme pentafunctional arom. These data suggests that the shikimate pathway and the pentafunctional arom either had an ancient origin in the eukaryotes or was conveyed by eukaryote-to-eukaryote horizontal gene transfer (HGT). We expand sampling and analyses of the shikimate pathway genes to include the oomycetes, ciliates, diatoms, basidiomycetes, zygomycetes, and the green and red algae. Sequencing of cDNA from Tetrahymena thermophila confirmed the presence of a pentafused arom, as in fungi and T. gondii. Phylogenies and taxon distribution suggest that the arom gene fusion event may be an ancient eukaryotic innovation. Conversely, the Plantae lineage (represented here by both Viridaeplantae and the red algae) acquired different prokaryotic genes for all seven steps of the shikimate pathway. Two of the phylogenies suggest a derivation of the Plantae genes from the cyanobacterial plastid progenitor genome, but if the full Plantae pathway was originally of cyanobacterial origin, then the five other shikimate pathway genes were obtained from a minimum of two other eubacterial genomes. Thus, the phylogenies demonstrate both separate HGTs and shared derived HGTs within the Plantae clade either by primary HGT transfer or secondarily via the plastid progenitor genome. The shared derived characters support the holophyly of the Plantae lineage and a single ancestral primary plastid endosymbiosis. Our analyses also pinpoints a minimum of 50 gene/domain loss events, demonstrating that loss and replacement events have been an important process in eukaryote genome evolution.  相似文献   

8.
9.
Protein C inhibitor (PCI), also known as plasminogen activator inhibitor 3, inhibits a variety of serine proteases by forming sodium dodecyl sulfate-stable 1:1 complexes. In purified systems PCI is only a weak inhibitor of urokinase. Nevertheless, complexes between PCI and urokinase are found in appreciable amounts in native human urine. Since PCI activity is stimulated by heparin and other glycosaminoglycans, we investigated the presence of stimulating glycosaminoglycans on cells lining the urinary tract. We chose the epithelial kidney tumor cell line TCL-598 as a model and isolated metabolically labeled glycosaminoglycans. TCL-598 incorporated [35S] sulfate into high Mr components (Mr greater than 200,000 and approximately 75,000) as judged from sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography of cell extracts; the Mr greater than 200,000 component bound specifically to PCI-Sepharose 4B and was eluted either with heparin (5 mg/ml) or with NaCl (2.0 M). Treatment of this PCI-binding material with chondroitinase ABC, but not with chondritinase AC or heparitinase, abolished binding to PCI-Sepharose, confirming the glycosaminoglycan nature of this material and suggesting the involvement of dermatan sulfate in binding. These glycosaminoglycans eluted from PCI-Sepharose stimulated urokinase inhibition by PCI in a dose-dependent way and enhanced complex formation of 125I-urokinase and PCI as did in control experiments dermatan sulfate from porcine skin and from bovine mucosa. Our results suggest that PCI activity might be regulated also in vivo by the presence or absence of stimulating glycosaminoglycans; dermatan sulfate-containing glycosaminoglycans associated with kidney cells might be responsible for stimulation of the urokinase inhibitory activity of PCI in the urinary tract; the type of glucosaminoclycans might furthermore regulate enzyme specificity of PCI.  相似文献   

10.
BACKGROUND: Both animals and plants respond rapidly to pathogens by inducing the expression of defense-related genes. Whether such an inducible system of innate immunity is present in the model nematode Caenorhabditis elegans is currently an open question. Among conserved signaling pathways important for innate immunity, the Toll pathway is the best characterized. In Drosophila, this pathway also has an essential developmental role. C. elegans possesses structural homologs of components of this pathway, and this observation raises the possibility that a Toll pathway might also function in nematodes to trigger defense mechanisms or to control development. RESULTS: We have generated and characterized deletion mutants for four genes supposed to function in a nematode Toll signaling pathway. These genes are tol-1, trf-1, pik-1, and ikb-1 and are homologous to the Drosophila melanogaster Toll, dTraf, pelle, and cactus genes, respectively. Of these four genes, only tol-1 is required for nematode development. None of them are important for the resistance of C. elegans to a number of pathogens. On the other hand, C. elegans is capable of distinguishing different bacterial species and has a tendency to avoid certain pathogens, including Serratia marcescens. The tol-1 mutants are defective in their avoidance of pathogenic S. marcescens, although other chemosensory behaviors are wild type. CONCLUSIONS: In C. elegans, tol-1 is important for development and pathogen recognition, as is Toll in Drosophila, but remarkably for the latter r?le, it functions in the context of a behavioral mechanism that keeps worms away from potential danger.  相似文献   

11.
Neisseria gonorrhoeae (Gc) pili undergo antigenic variation when the amino acid sequence of the pilin protein is changed, aiding in immune avoidance and altering pilus expression. Pilin antigenic variation occurs by RecA-dependent unidirectional transfer of DNA sequences from a silent pilin locus to the expressed pilin gene through high-frequency recombination events that occur at limited regions of homology. We show that the Gc recQ and recO genes are essential for pilin antigenic and phase variation and DNA repair but are not involved in natural DNA transformation. This suggests that a RecF-like pathway of recombination exists in Gc. In addition, mutations in the Gc recB, recC or recD genes revealed that a Gc RecBCD pathway also exists and is involved in DNA transformation and DNA repair but not in pilin antigenic variation.  相似文献   

12.
13.
The A and B mating type pathways in Coprinus cinereus monokaryons can be activated by transformation with cloned genes from strains of compatible mating types. The presence of heterologous A mating-type genes (Aon) induces production of submerged chlamydospores, hyphal knots and sclerotia in cultures kept in the dark. Upon illumination of transformants of certain strains (218), fruiting body primordia may develop that arrest before karyogamy. Furthermore, formation of aerial spores (oidia) is repressed by the action of A mating type genes in the dark, but light overrides this repression. Heterologous B mating type genes enhance the effects of the A genes on developmental processes, and partially repress the negative action of light on A-mediated regulation of development. Most notably, A-induced fruiting occurs more efficiently and earlier when the B mating type pathway is also active (Bon). However, activation of the B pathway alone is not sufficient to induce fruiting. Unlike A-activated transformants, A+ B-activated transformants of monokaryon 218 form mature fruiting bodies. Therefore, the B genes control fruiting body maturation at the stage of karyogamy. Basidia within the fruiting bodies that were analysed contained four spores in a typical post-meiotic arrangement. In the absence of an activated A mating type pathway, B mating type genes cause deformation and hyperbranching of vegetative hyphae, a reduction in aerial mycelium, and invasion of the agar substrate - a phenotype resembling the "flat" phenotype known from B-activated Schizophyllum commune strains. B-activated transformants usually show enhanced production of chlamydospores and hyphal knots, but maturation of sclerotia is variably efficient. Activation of the B mating type pathway in monokaryons blocked acceptance of nuclei, but not activation of the A mating type pathway.  相似文献   

14.
15.
The shikimate pathway, including seven enzymatic steps for production of chorismate via shikimate from phosphoenolpyruvate and erythrose-4-phosphate, is common in various organisms for the biosynthesis of not only aromatic amino acids but also most biogenic benzene derivatives. 3-Amino-4-hydroxybenzoic acid (3,4-AHBA) is a benzene derivative serving as a precursor for several secondary metabolites produced by Streptomyces, including grixazone produced by Streptomyces griseus. Our study on the biosynthesis pathway of grixazone led to identification of the biosynthesis pathway of 3,4-AHBA from two primary metabolites. Two genes, griI and griH, within the grixazone biosynthesis gene cluster were found to be responsible for the biosynthesis of 3,4-AHBA; the two genes conferred the in vivo production of 3,4-AHBA even on Escherichia coli. In vitro analysis showed that GriI catalyzed aldol condensation between two primary metabolites, l-aspartate-4-semialdehyde and dihydroxyacetone phosphate, to form a 7-carbon product, 2-amino-4,5-dihydroxy-6-one-heptanoic acid-7-phosphate, which was subsequently converted to 3,4-AHBA by GriH. The latter reaction required Mn(2+) ion but not any cofactors involved in reduction or oxidation. This pathway is independent of the shikimate pathway, representing a novel, simple enzyme system responsible for the synthesis of a benzene ring from the C(3) and C(4) primary metabolites.  相似文献   

16.
17.

Background

Protein C inhibitor (PCI) is a plasma serine protease inhibitor (serpin) that regulates several serine proteases in coagulation including thrombin and activated protein C. However, the physiological role of PCI remains under investigation. The cysteine protease, cathepsin L, has a role in many physiological processes including cardiovascular diseases, blood vessel remodeling, and cancer.

Methods and results

We found that PCI inhibits cathepsin L with an inhibition rate (k2) of 3.0 × 105 M1 s1. Whereas, the PCI P1 mutant (R354A) inhibits cathepsin L at rates similar to wild-type PCI, mutating the P2 residue results in a slight decrease in the rate of inhibition. We then assessed the effect of PCI and cathepsin L on the migration of human breast cancer (MDA-MB-231) cells. Cathepsin L was expressed in both the cell lysates and conditioned media of MDA-MB-231 cells. Wound-induced and transwell migration of MDA-MB-231 cells was inhibited by exogenously administered wtPCI and PCI P1 but not PCI P14 mutant. In addition, migration of MDA-MB-231 cells expressing wtPCI was significantly decreased compared to non-expressing MDA-MB-231 cells or MDA-MB-231 cells expressing the PCI P14 mutant. Downregulation of cathepsin L by either a specific cathepsin L inhibitor or siRNA technology also resulted in a decrease in the migration of MDA-MB-231 cells.

Conclusions

Overall, our data show that PCI regulates tumor cell migration partly by inhibiting cathepsin L.

General significance

Consequently, inhibiting cathepsin L by serpins like PCI may be a new pathway of regulating hemostasis, cardiovascular and metastatic diseases.  相似文献   

18.
Perennial plants monitor seasonal changes through changes in environmental conditions such as the quantity and quality of light and genes in the photoperiodic pathway are known to be involved in controlling these processes. Here, we examine 25 of genes from the photoperiod pathway in Populus tremula (Salicaceae) for signatures of adaptive evolution. Overall, levels of synonymous polymorphism in the 25 genes are lower than at control loci selected randomly from the genome. This appears primarily to be caused by lower levels of synonymous polymorphism in genes associated with the circadian clock. Natural selection appears to play an important role in shaping protein evolution at several of the genes in the photoperiod pathways, which is highlighted by the fact that approximately 40% of the genes from the photoperiod pathway have estimates of selection on nonsynonymous polymorphisms that are significantly different from zero. A surprising observation we make is that circadian clock-associated genes appear to be over-represented among the genes showing elevated rates of protein evolution; seven genes are evolving under positive selection and all but one of these genes are involved in the circadian clock of Populus.  相似文献   

19.
The regulation of phosphatidylcholine degradation as a function of the route of phosphatidylcholine (PC) synthesis and changing environmental conditions has been investigated in the yeast Saccharomyces cerevisiae. In the wild-type strains studied, deacylation of phosphatidylcholine to glycerophosphocholine is induced when choline is supplied to the culture medium and, also, when the culture temperature is raised from 30 to 37 degrees C. In strains bearing mutations in any of the genes encoding enzymes of the CDP-choline pathway for phosphatidylcholine biosynthesis (CKI1, choline kinase; CPT1, 1, 2-diacylglycerol choline phosphotransferase; PCT1, CTP:phosphocholine cytidylyltransferase), no induction of phosphatidylcholine turnover and glycerophosphocholine production is seen in response to choline availability or elevated temperature. In contrast, the induction of phosphatidylcholine deacylation does occur in a strain bearing mutations in genes encoding enzymes of the methylation pathway for phosphatidylcholine biosynthesis (i.e. CHO2/PEM1 and OPI3/PEM2). Whereas the synthesis of PC via CDP-choline is accelerated when shifted from 30 to 37 degrees C, synthesis of PC via the methylation pathway is largely unaffected by the temperature shift. These results suggest that the deacylation of PC to GroPC requires an active CDP-choline pathway for PC biosynthesis but not an active methylation pathway. Furthermore, the data indicate that the synthesis and turnover of CDP-choline-derived PC, but not methylation pathway-derived PC, are accelerated by the stress of elevated temperature.  相似文献   

20.
Recent studies have shown evidence for the coevolution of functionally-related genes. This coevolution is a result of constraints to maintain functional relationships between interacting proteins. The studies have focused on the correlation in gene tree branch lengths of proteins that are directly interacting with each other. We here hypothesize that the correlation in branch lengths is not limited only to proteins that directly interact, but also to proteins that operate within the same pathway. Using generalized linear models as a basis of identifying correlation, we attempted to predict the gene ontology (GO) terms of a gene based on its gene tree branch lengths. We applied our method to a dataset consisting of proteins from ten prokaryotic species. We found that the degree of accuracy to which we could predict the function of the proteins from their gene tree varied substantially with different GO terms. In particular, our model could accurately predict genes involved in translation and certain ribosomal activities with the area of the receiver-operator curve of up to 92%. Further analysis showed that the similarity between the trees of genes labeled with similar GO terms was not limited to genes that physically interacted, but also extended to genes functioning within the same pathway. We discuss the relevance of our findings as it relates to the use of phylogenetic methods in comparative genomics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号