首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synopsis We studied the ontogenetic diet shift and prey electivity of an endangered cyprinodontid fish endemic to the Iberian Peninsula, the Spanish toothcarp (Aphanius iberus). The toothcarp’s diet was omnivorous, dominated by harpacticoid copepods (Mesochra lilljeborgi and Tisbe longicornis), copepod nauplii and detritus. Diet composition varied greatly among habitats, depending on prey availability. In a rarely inundated habitat (glasswort), there was more consumption of the isopod Protracheoniscus occidentalis and the harpacticoid copepod Mesochra lilljeborgi, while in algal mats another harpacticoid (Tisbe longicornis), chironomid dipterans and invertebrate eggs were more important in diet. Although a benthic feeding habitat has previously been suggested, in our study the diet was based rather on water column organisms for both glasswort and algal mat habitats. There was also an ontogenetic diet shift, with an increase of mean prey length with fish length, clearly linked to a microhabitat change. Smaller fish showed positive electivity and greater reliance on planktonic prey (e.g. copepod nauplii, the harpacticoid copepods Mesochra lilljeborgi and Tisbe longicornis, the rotifer Brachionus plicatilis, and ostracods), while larger fish elected and preyed on more benthic organisms (e.g. Canuella perplexa, Mesochra rapiens, and ephydrid dipterans).  相似文献   

2.
The vertical distribution of meiobenthic copepods was investigated within muddy sediments of a eutrophic lagoon (fish ponds of Arcachon Bay, France). The aim of the study was to determine if in muddy sediments, as previously established in sandy sediments, meiobenthic copepods migrate vertically according to the seasons or diel periods. Two experimental approaches were used, viz: a three-season comparison was made of the diel vertical distribution of the harpacticoid Canuella perplexa T. & A. Scott (1893) and secondly the depth distribution of a meiobenthic copepod assemblage was followed for a 24 h period, in shallow water subtidal locations. The harpacticoid C. perplexa vertically migrated through the top three centimeters of the sediment, showing diel and seasonal variations in depth distribution. The differential vertical distributions shown by the dominant meiobenthic populations suggest that emergence into the water column may mainly concern surface dwelling copepods. The physical and biological factors affecting seasonal and diel changes in the copepod assemblage of the fish ponds are discussed.  相似文献   

3.
The use of tidal pools during early ontogeny is likely to enhance growth, condition and survival chances of the transient marine fish larvae and juveniles that use them. However, the diet of such individuals within tidal pools is poorly known; this knowledge is important to understand why such high numbers of individuals use these environments in spring and summer on the Portuguese coast. Transient marine fishes were sampled monthly over a two‐year period in four tidal pools of a rocky reef on the west Portuguese coast. The diet composition in the tidal pools of the most abundant marine fish larvae/juveniles, Diplodus sargus and Atherina spp., were investigated. Stomach and gut contents of 483 individuals (354 D. sargus ranging in total length from 9 to 87 mm and 134 Atherina spp. ranging in total length from 10 to 31 mm) were analyzed and dietary indices estimated for the different developmental stages. The diet of D. sargus composed mainly harpacticoid copepods, chironomid larvae, ostracods, chironomid adults and amphipods; whereas the diet of Atherina spp. was mainly harpacticoid copepods, ostracods and gastropods. Along the ontogenetic development, the proportions and diversity of food items in the D. sargus diet varied. Importance of the harpacticoid copepods decreased with increasing fish size, while that of amphipods and isopods increased. Larvae and juvenile D. sargus and Atherina spp. found in rocky reef tidal pools are opportunistic consumers of a wide range of prey and thus take advantage of the high prey availability in these habitats.  相似文献   

4.
5.
1. The value of algal fatty acids (FA) as diet biomarkers for benthic harpacticoid copepods was investigated. A high proportion of 18:1ω9 and 18:2ω6 FA was observed in the lipid reserve fraction of copepods fed with cyanobacteria. In contrast, a high proportion of 16:1ω7 and ω3 FA (including eicosapentaenoic) was present in the lipid reserve fraction of copepods grown on diatoms. 2. Copepods that were grown on cyanobacteria showed reduced survival and took 26% more time to develop from the first copepodid stage to adult than copepods that were grown on diatoms. Copepods feeding on the cyanobacteria showed reduced FA content when compared with animals fed with diatoms. This reduction in FA content was more pronounced in the apolar lipid fraction (mainly reserve lipids) than in the polar (mainly structural) lipid fraction. 3. The FA profiles of algae were used to calculate a function discriminating between diatoms and cyanobacteria. This function was applied to the FA profiles in the reserve lipid fraction of copepods and correctly classified copepod diet. 16:1ω7, 18:2ω6 and 20:5ω3 were the most important FA in the discriminant function. The suitability of this chemometric method to infer copepod diet was further tested by using algal class FA data from literature to derive the discriminant functions. The correct classification of the diet when the functions were applied to FA composition of the copepod reserve lipids suggests that this method may be employed in trophic web studies. 18:3ω3, 18:1ω9 and 16:1ω7 were the most important FA in the functions discriminating diatoms, cyanobacteria and green algae. The identification and quantification of the whole suit of 16:1ω7, 18:1ω9, 18:2ω6, 18:3ω3 and 20:5ω3 in trophic web studies is therefore of paramount importance to infer diet origin of aquatic herbivores. 4. The FA profile of copepod polar lipids did not reflect that of the diet. The presence of long chain polyunsaturated FAs in the polar lipid fraction of copepods feeding on the cyanobacterium suggests that C18 FAs from the diet may be elongated and desaturated by the copepod. The ability to elongate and desaturated FAs may reduce the importance of some FAs as diet biomarkers while it may turn the copepods into valuable trophic intermediaries in transferring organic matter from microorganisms to higher trophic levels.  相似文献   

6.
J. Sarvala 《Hydrobiologia》1979,62(2):113-129
The harpacticoid copepod Canthocamptus staphylinus (Jurine) was shown to reproduce parthenogenetically in an oligotrophic Finnish lake. The population was univoltine with peaks of egg production in winter and early spring. Young from both peaks became adults in spring and aestivated as cysts. Laboratory experiments suggested that either high temperature (12 °C or more) or long days will inhibit egg production, but that both factors together are needed to induce encystment. Embryonic survival was low, on the average only 60%. The population was limited by low food levels in winter, and it is suggested that food shortage prevents the species from colonizing the profundal zone of oligotrophic lakes.  相似文献   

7.
Following the introduction of blueback herring (Alosa aestivalis), we examined herring food habits and the crustacean zooplankton community in Lake Theo, a 30-hectare reservoir located on a tributary of the Red River in north Texas. Prior to the introduction in spring, 1982, the reservoir contained an established fish community dominated by centrarchids. Blueback herring stomachs and zooplankton were sampled quarterly from summer, 1982 through winter, 1985. Cladocerans accounted for 89.4% of the zooplankton consumed by herring. Median lengths of cladocerans and copepods in the herring diet were significantly greater than those in the reservoir. No appreciable changes in lengths of cladocerans and copepods in the reservoir were observed after blueback herring introduction, but the zooplankton community shifted from cladoceran to copepod domination.  相似文献   

8.
The authors investigated the development of the harpacticoid copepod population in relation to the variations in organic matter and meteorology. Sediment sampling was performed over a 2-year period in the shallow waters (3 m deep) of Banyuls Bay (Western Mediterranean). Each year presents two distinct periods: winter to early spring, and from late spring until fall. During the first period of the annual cycle, the organic carbon and nitrogen cycles are fairly dissociated; the quantity of copepods appears to be dependent upon the climatic and physical conditions. During the second period, the climatic conditions are very similar from year to year, without heavy rains or strong storms, and the values observed both for the organic matter and the copepod population are also similar. The hypothesis is proposed that organic matter can be considered a limiting factor to population increase.  相似文献   

9.
海南岛西北沿岸海域浮游桡足类的分布及群落特征   总被引:4,自引:0,他引:4  
为了解昌江沿岸海域生态系统的现状, 探讨海域环境因素对浮游动物的生存环境造成的影响。本文根据2008年11月至2009年7月在海南西部昌江沿岸水域21个测站、4个季度月调查所获的浮游桡足类样品数据, 对该海域浮游桡足类群落结构、分布、季节变化及影响因素进行了分析。本调查共鉴定出桡足类44种, 隶属4目17科24属, 其中秋季25种, 冬季23种, 春季22种, 夏季23种。本次调查共发现优势种6种, 分别是微刺哲水蚤(Canthocalanus pauper)、亚强次真哲水蚤(Subeucalanus subcrassus)、锥形宽水蚤(Temora turbinata)、刺尾纺锤水蚤(Acartia spinicauda)、椭形长足水蚤(Calanopia elliptica)和精致真刺水蚤(Euchaeta concinna), 优势种以近岸暖水种居多。浮游桡足类丰度季节变化明显: 冬季最高, 达409 ind./m3; 秋季次之, 为144 ind./m3, 春季为55 ind./m3, 夏季最低仅为17 ind./m3。其丰度的平面分布显示: 秋、冬季节分别在海区中部和南部形成明显密集区, 春、夏季节则大致呈现由外海向近岸逐渐递减的趋势。浮游桡足类的多样性指数(H')表现为夏季>春季>秋季>冬季, 春、夏季的均匀度指数(J')明显高于秋、冬季。本调查反映出该海区的桡足类群落具有热带—亚热带区系特征, 种类组成季节更替明显, 桡足类种群受海域水温和硅藻的影响明显, 受盐度影响不明显。  相似文献   

10.
Heteropsyllus nunni Coull, a meiobenthic harpacticoid copepod is the marine crustacean to undergo a state of diapause within a cyst. A 12 month field study indicated H. nunni adults reached peak population densities in winter, with nauplii maturing in the spring, becoming adults by April or May.At the last stage of development, a mature but unmated adult, they begin to prepare for encystment diapause. The copepods remain within their cyst in a state of diapause for 3–4 months during the summer only. Studies on the effects of temperature and photoperiod suggested that these two environmental cues are not crucial for induction or termination of diapause. Low temperature delayed development and time to encystment, while high temperatures accelerated development, making the time to encystment shorter. There were males than females in the cysts in laboratory experiments. Upon excystment, the copepods mate, and females begin egg production within one week. Adults that have excysted and mated die after a few weeks of active reproductive effort. Nauplii go on to mature and begin the univoltine diapause/reproductive cycle.The copepods prepare for dormancy in two ways: they begin to produce and store two types of secretory products to be used in cyst construction; then they produce large quantities of lipid to be used as a nutrient supply throughout diapause. Histochemistry of the cyst-building material indicated the lower urosome is full of two chemically different products. Dorsally, there is a storage sac of proteinaceous material. The ventral sac of secretory product is a mucopolysaccharide. The copepod builds the spherical cysts in a matrix of small and large sand grains. The cysts fit tightly around the ventral portion of the animal in the its flexed position: however, there is a large space between the cyst and the sides of the copepod.Biochemical analysis of the cyst showed it is composed of an amino acid complex similar to collagenous material. Scanning electron microscopy revealed a complex of large cuticular pores located in the lower urosome and caudal rami. There are specific pores for secretion of the two cyst-building products.  相似文献   

11.
Koski  M 《Journal of plankton research》1999,21(8):1565-1573
The carbon (C) and nitrogen (N) content and the C:N ratio of two common calanoid copepods, Eurytemora affinis and Acartia bifilosa were measured during spring and summer at the SW coast of Finland, northern Baltic Sea. The C:N ratio of both copepod species was slow and stable (4-4.5), irrespective of sampling time, which implies N limitation at least during intermediate to high food concentrations in spring and early summer. In addition, experiments were conducted to reveal whether the diet of copepods affects their C and N content. Adding green algae Brachiomonas submarina in concentrations of 50-500 g C l-1 to <100-m-filtered sea water did not significantly increase copepod C or N content in 3 day experiments. However, the C and N contents of E.affinis eggs were 2 times higher in high food concentration, which may increase survival of eggs and nauplii.   相似文献   

12.
The seasonal variation in length of the most abundant copepod species in the lagoon of Venice were compared and the relative influence of temperature, chlorophyll concentration and salinity examined. Temperature seems to be the primary factor influencing copepod body length in the lagoon of Venice, but the different species vary markedly in their response. Calanoid copepods (Acartia clausi, A. tonsa, Paracalanus parvus and Centropages ponticus) showed a more definite trend of size variation with temperature than the cyclopoids (Oithona nana and O. similis) and the harpacticoid Euterpina acutifrons. The size of the poecilostomatoids Oncaea media and O. subtilis was not affected by temperature, and was almost constant over time. Differences in the metabolic rates, longevity and specialization of calanoid, cyclopoid and harpacticoid copepods could explain their different responses to temperature.  相似文献   

13.
Donald G. Webb 《Hydrobiologia》1990,206(2):155-162
The distribution of leaf dwelling harpacticoid copepods within seagrass (Zostera marina L.) shoots was investigated on four dates in 1986 and 1987. Copepods were found to be non-uniformly distributed on shoots, with higher abundances observed on older leaves. Patterns of abundance within shoots could not be explained by the surface area of individual leaves except on the sampling date with the highest copepod densities. It is suggested that harpacticoid copepod distributions on seagrass shoots are primarily determined by the pattern of epiphytic biomass. However, at high population densities, habitable surface area may be the limiting factor. Increased habitat complexity at high epiphyte loads does not seem to be the cause of the copepod distributions observed in this study. An accurate method for estimating seagrass copepod abundance per unit sediment area using intrashoot distributions is described and compared to existing methodology.  相似文献   

14.
Seasonal dynamics of cladoceran and copepod zooplankton were studied over a one‐year period in five permanent ponds of a cutaway peatland, situated in the Danube−Tisza Interfluve, Central Hungary. 17 cladoceran, 11 cyclopoid copepod and 6 harpacticoid copepod species were identified and most of them were typical of small lowland ponds. Nevertheless, some taxa like Cyclops insignis, Ceriodaphnia setosa and Macrocyclops distinctus are considered to be rare in Hungary. The microcrustacean assemblages exhibited apparent seasonal succession with typical seasonal species. There appears to be at least two main successional patterns in the five ponds. After general cyclopoid copepod dominance in winter (Cyclops strenuus and Cyclops insignis), at sites with higher proportion of open water and submerged vegetation, spring was characterized by the dominance of the large cladoceran Daphnia curvirostris, which declined during summer, when microcrustacean assemblages composed mainly of smaller, littoral cladocerans. At these sites, species richness and diversity reached their maximum in autumn. In the case of duckweed covered ponds, succession led to less diverse autumn assemblages with fewer species, dominated by Simocephalus exspinosus. Our results draw the attention to the importance of long‐term investigations and the often neglected winter sampling in the accurate evaluation of species richness (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The aim of this paper is to contribute to the knowledge on the feeding habits of larvae and juvenile Pleuragramma antarcticum in the western Ross Sea. In summer, the diet of P. antarcticum postlarvae (8–17 mm) was dominated by calanoid eggs (35.5%), Limacina (32.1%) and tintinnids (17.6%), while the principal food of juveniles consisted mainly of copepods (98.2%), with Oncaea curvata being the most abundant (85.1%) and the most frequently consumed prey. The food composition of P. antarcticum postlarvae (24–29 mm), collected in spring, suggest that they fed actively under the sea ice. Stephos longipes, Harpacticus furcifer and Paralabidocera antarctica sea ice copepods represent, in all their different developmental stages, the most abundant biomass food in Terra Nova Bay in this period. Our results therefore suggest that the diet of younger Pleuragramma specimens shifted in prey composition from the first summer to the following spring. This study draws attention to the key role of the copepod, P. antarctica, in the food web of Terra Nova Bay. This article belongs to a special topic: Five articles coordinated by L. Guglielmo and V. Saggiomo appear in this issue of Polar Biology and are a result of a workshop on Sea-ice communities in Terra Nova Bay (Ross Sea) held in August 2007 in Capo Calavà, Messina, Italy.  相似文献   

16.
A. Tolonen 《Hydrobiologia》1998,390(1-3):153-169
A bioenergetics model was used to estimate daily food consumption and growth of benthic whitefish Coregonus lavaretus (L.) of age groups 1+ to 10+, in oligotrophic Lake Kilpisjärvi, northern Finnish Lapland. Fish and zooplankton samples and water temperature data were collected twice per month from February to December 1993. Simulation results indicated wide seasonal variations in consumption and growth rates. Growth was in general slow; especially in age-group 6 the net increase in weight was slight. The fit of the model to the weight data was good, and the model was able to follow even rapid seasonal variations in the weight. There were clear changes in the diet during the year. In March, when the food intake was reduced, copepods, mainly adult calanoids, formed the bulk of the food consumed. The most intensive consumption period lasted from June to late September. Chironomid pupae and planktonic cladocerans were the major summer food items. The largest individuals fed mainly on molluscs during summer. Zooplankton survey and consumption estimates did not show directly that the population density of copepodids and adults of Eudiaptomus graciloides were affected by whitefish predation although their population density decreased in spring. Nauplii, showing the maximum population density in April, were not consumed. The role of copepod consumption in the timing of Diphyllobothrium ditremum plerocercoid transmission to whitefish was also discussed. The increased copepod consumption rate during winter results in high energy intake but also an increased risk of food transmitted parasite infection.  相似文献   

17.
Stomachs of 0-group ocean pout from Newfoundland all contained harpacticoid copepods, which comprised 82% of the diet. 0-group ocean pout were found hiding among coarsely branched algae.  相似文献   

18.
The small cyclopoid copepod Oithona is widely occurring in polar areas; however, knowledge of its biology and ecology is very limited. Here, we investigate the population dynamics, vertical distribution, and reproductive characteristics of Oithona spp. from late winter to summer, in a subarctic fjord of West Greenland. During winter–early spring, the abundance of Oithona spp. was low (1.8 × 103 ind. m?2) and the population was mainly composed of late copepodites and adults, whereas in summer, abundance peaked and younger stages dominated (1.1 × 106 ind. m?2). In general, all stages of Oithona spp. remained in the upper 100 m, with nauplii exhibiting a shallower distribution. Although no general seasonal migration was found, a deeper distribution of the adult females in winter was observed. The mean clutch size of Oithona spp. varied from 16 to 30 eggs per female, peaking in summer. Egg production rates (EPR) were low in winter–early spring (0.13 ± 0.03 eggs female?1 day?1) and reached maximum values in summer (1.6 ± 0.45 eggs female?1 day?1). EPR of Oithona spp. showed a significantly positive relationship with both temperature and protozooplankton biomass, and the development of the population seemed to be appreciably affected by temperature. Oithona spp. remained active throughout the study, stressing the key importance of these small copepods in high-latitude ecosystems, especially in periods when larger copepods are not present in the surface layer.  相似文献   

19.
20.
Summer-winter differences in copepod distribution around South Georgia   总被引:2,自引:0,他引:2  
Atkinson  Angus  Ward  Peter 《Hydrobiologia》1988,167(1):325-334
Zooplankton was sampled on a synoptic grid of stations centered on South Georgia during the austral summer of 1981/82 and winter 1983. Within the top 1000 m layer at oceanic stations, copepods averaged 48% of the total biomass in summer and winter, but outnumbered all other taxa combined by a factor of 10. In winter the mean zooplankton biomass within the top 1000 m was 68% of its summer level. Copepod biomass was 77% of its summer level. During both surveys, the large and abundant Calanoides acutus and Rhincalanus gigas dominated the copepod biomass and, with several other species, showed a marked downwards seasonal migration out of the top 250 m layer in winter. Antarctic epipelagic species predominated around the island during summer but tended to be replaced by sub-Antarctic and cosmopolitan species during the winter. Factors likely to influence our estimates of overall copepods abundance and changes in species composition include seasonality of reproduction, net mesh selection and differences in water mass distribution. The observed trends are attributed mainly to variation in the position of the Polar Front which lay north of the island during the summer survey yet lay across the survey area in winter. This resulted in a greater influence of sub-Antarctic water around South Georgia in winter and the displacement of Antarctic species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号