首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Key biological characteristics of the harlequin fish Othos dentex, a representative of a monospecific genus of the Anthiinae (Serranidae), were determined from samples collected around reefs on the south coast of Western Australia. The females of this relatively long‐lived species (maximum recorded age in this study = 37 years) attained only a slightly greater maximum total length and age than males and neither the length nor the age‐frequency distributions showed a conspicuous sex‐based bimodality. Furthermore, gonads from a wide size and age range of O. dentex were shown by histology, at several locations along their length, to always comprise exclusively either ovarian or testicular tissues. Thus, O. dentex is a gonochorist, a sexual pattern only previously recorded definitively for one other anthiine serranid, i.e. Epinephelides armatus, which also occurs in south‐western Australia. Similar to E. armatus, O. dentex possesses ‘solid’ testes with a central sperm duct, thereby differing in structure from those typically found in serranids, in which there is a central membrane‐bound ‘ovarian’ lumen and peripherally located sperm sinuses. The gonadal characteristics and sexual pattern of these two gonochoristic anthiines are not consistent with a recent proposal for the trends exhibited by the evolution of gonochorism and protogyny within the Serranidae. Othos dentex has indeterminate fecundity and a protracted spawning period (7 months) and, on the basis of underwater observations and a low gonado‐somatic index (IG) for males, is a pair spawner, which is unusual for a gonochorist of a serranid or member of a related family. While the large spots on the lower half of the body of O. dentex are shown quantitatively to be similarly yellow in juveniles and adult females, they then become blue in males at maturity and this intensifies during the spawning period, when they presumably play an important role in agonistic interactions among males and courtship with females. The attainment of maturity and rapid growth by O. dentex early in life may reflect selection pressures to reduce predation mortality during that period. Total mortality in the population is moderately low during later life, implying that the current fishing pressure on O. dentex is relatively light.  相似文献   

2.
Among group‐living spiders, subsocial representatives in the family of crab spiders (Thomisidae) are a special case, as they build protective communal leaf nests instead of extensive communal capture webs. It could thus be inferred that antipredator benefits (e.g., enhanced protection in larger nests) rather than foraging‐related advantages (e.g., capture of more and larger prey) promote sociality in this family. Nonetheless, subsocial crab spiders do share prey, and if this behaviour does not reflect mere food scramble but has a cooperative character, crab spiders may offer insights into the evolution of social foraging applicable to many other cooperative predators that hunt without traps. Here, we performed a comparative laboratory feeding experiment on three of the four subsocial crab spider species—Australomisidia ergandros, Australomisidia socialis and Xysticus bimaculatus—to determine if crab spiders derive advantages from foraging in groups. In particular, we tested artificially composed groups of five sibling spiderlings vs. single siblings in terms of prey capture success and prey size preference. Across species, groups had higher prey capture success (measured in terms of capture rates and capture latency) and were more likely to attack large, sharable prey—dynamics leading to reduced food competition among group members in favour of living and foraging in groups. Within groups, we further compared prey extraction efficiency among the three applied social foraging tactics: producing, scrounging and feeding alone. In A. ergandros, individuals were exceptionally efficient when using the non‐cooperative scrounger tactic, which entails feeding on the prey provided by others. Thus, our multispecies comparison confirms foraging advantages in maintaining a cooperative lifestyle for crab spiders, but also demonstrates the relevance of research into exploitation of cooperative foraging in this family.  相似文献   

3.
The relative abundance and size of prey fish in the stomachs of the predator Acestrorhynchus pantaneiro were compared with those recorded in the field to estimate prey selection. Fish samples were taken monthly in the Manso Reservoir (State of Mato Grosso, Brazil) immediately after the impoundment, from March 2000 to February 2001 (period I) and from March 2003 to February 2004 (period II). In period I, the small relative dominance of the prey in the environment seemed to have lead to random foraging. In period II, however, when the forage fish Moenkhausia dichroura was dominant in the environment, the predator shifted its diet, foraging mainly on this prey. Species with short relative body depth were positively selected. The prey size classes between 30 and 49 mm, and 50 and 69 mm standard length ( L S) were the most abundant in the environment. Small prey were predominantly selected by A. pantaneiro . Even when a given prey or prey size was predominant in the environment, A. pantaneiro was a selective predator and maintained its preferences associated to prey type and L S, although it consumed the most abundant resource.  相似文献   

4.
The feeding habits of the horse mackerel, Trachurus trachurus, from the central Adriatic Sea were investigated with respect to fish size and season. Stomach contents of 1200 specimens 12.9–37.6 cm total length (TL) taken at monthly intervals (January–December 1995) were analyzed. Of the total number of stomachs examined, 597 were empty (49.7%). This percentage varied significantly with season; the maximum number of empty stomachs was observed during January (80%) and February (82%) and a minimum number observed during July (15%) and August (19%). A total of 30 different prey species belonging to five major groups: Crustacea (Euphausiacea, Mysidacea, Decapoda), Cephalopoda, and Teleostei was identified in the stomach contents. Euphausiids were the most important ingested prey in all seasons as well as in small‐ and medium‐size classes (<28 cm TL). Two species of euphausiids, Nyctiphanes couchii (%IRI = 36.0) and Euphausia krohni (%IRI = 12.9), were the most frequent prey. The proportion of teleosts in stomach contents increased with the increasing size class of horse mackerel and was 15.5% IRI in >30 cm TL individuals. The mean weight of stomach contents increased significantly for fish larger than 24.1 cm TL, while the mean number of prey items significantly declined in the large‐size classes.  相似文献   

5.
6.
Billfishes from the Brazilian oceanic northeastern region feed on a large food spectrum composed mainly of epipelagic species of fish and cephalopods, with occasional occurrences of mesopelagic organisms and crustaceans. The oceanic pomfret, Brama brama, and the squid, Ornithoteuthis antillarum, were the main prey items in the diet of the four species, occurring in at least 50% of the stomachs containing food. There was no correlation between body length of prey and predator, or between mass of stomach content and body mass in the individuals from 100 to 330cm fork length. The feeding of the four species was characterized by constant ingestion of small quantities of food, and constant presence of food in the stomachs, with a predominance of epipelagic organisms of small sizes with an average of 8.0cm. The reduced stomach size forces the predators to feed constantly on several meals during the day, and consequently provide constant energy for migration.  相似文献   

7.
The feeding habits of Okamejei kenojei were studied using 592 specimens collected in the coastal waters of Taean, Korea from April 2008 to March 2009. O. kenojei is a bottom‐feeding carnivore that consumes mainly shrimp, fishes, and crabs. Its diet also includes small quantities of amphipods, mysids, cephalopods, euphausiids, copepods, isopods, and polychaetes. The total length (TL) of individuals in this study ranged from 8.2 to 49.0 cm. Cluster analysis based on %IRI (index of relative importance) identified three size classes. Group A (< 20 cm TL) ate primarily caridean shrimp and amphipods; group B (20–30 cm TL) ate exclusively shrimp; and group C (> 30 cm TL) ate penaeoidean shrimp, fishes, and crabs. O. kenojei showed ontogenetic changes in feeding habits. Although shrimps were the primary food consumed by all size groups, the proportion of shrimp in the total diet decreased and the consumption of fishes and crabs gradually increased with the body size of O. kenojei. Size of the prey organisms also increased. Smaller individuals fed mainly on small prey, such as amphipods, mysids, and small shrimp, whereas larger individuals preferred larger prey, such as larger shrimp, fishes, and crabs. The size‐related diet breadth and the percentage of empty stomachs were significant; the diet breadth gradually increased with body size, whereas the percentage of empty stomachs decreased. Seasonal changes in the O. kenojei diet were not significant, but shrimp constituted 97.3% of the summer diet by %IRI. Seasonal changes in diet breadth and the percentage of empty stomachs were not significant.  相似文献   

8.
The recent invasion of a naticid predator (Laguncula pulchella) and associated changes in the death assemblages of bivalve prey (Ruditapes philippinarum) provide a baseline for interpreting predator–prey interactions in the fossil record. This article presents quantitative data on size‐frequency distributions (SFDs) of living and death assemblages, prey size selectivity and drillhole site selectivity from the Tona Coast, northern Japan. Before the appearance of the predator, the SFD of the death assemblage exhibited a right‐skewed platykurtic distribution, and there were very few predatory drillholes. Once the predator appeared, frequencies of predatory drillholes increased, particularly in the smallest size class (2–10 mm shell length). Furthermore, juvenile peaks in the SFDs of death assemblages sharpened, and thus, SFDs exhibited strongly right‐skewed leptokurtic distributions. These changes suggest that intense naticid predation precluded juvenile clams from growing to adulthood, and thus, many dead shells of juvenile clams were introduced into the sediment. The changes in SFDs may also indicate intensification of predation pressure in the fossil record. No temporal shifts in prey size selectivity and drillhole site selectivity were noted, despite substantial changes in the demographics of Ruditapes philippinarum. This suggests that lack of specific size classes of preferred prey species is unlikely to be a primary factor accounting for size mismatches between predator and prey, because, in such situations, naticid predators probably attack other prey species. Therefore, such a factor is unlikely to primarily explain the less stereotypical predatory behaviour (i.e. low prey size selectivity and low drillhole site selectivity), which has been frequently recognized in fossil assemblages. Such less stereotypical predatory behaviour in fossil assemblages is likely to be explained by other factors, such as the existence of multiple predator taxa and lack of specific size classes of all available prey.  相似文献   

9.
10.
Knowledge of prey sizes consumed by a predator aids in the estimation of predation impact. Young-of-the-year bluefish, Pomatomus saltatrix, attack their prey tail-first and often bite their prey in half; this poses a unique problem in determining prey sizes from stomach content analysis. We developed a series of linear regressions to estimate original prey lengths from measurements of eye diameter and caudal peduncle depth for striped bass, Morone saxatilis, bay anchovy, Anchoa mitchilli, American shad, Alosa sapidissima, blueback herring, Alosa aestivalis, Atlantic silverside, Menidia menidia, and white perch, Morone americana. We then used these regressions to estimate original prey sizes from pieces of prey found in stomachs of bluefish collected in the Hudson River estuary from 1990–1993. Lengths of prey that were swallowed whole were compared to estimated lengths of prey that were consumed in pieces. Lengths of prey that were consumed in pieces were larger than prey that were consumed whole. We determined the prey length/predator length ratio at which bluefish began shifting from swallowing their prey whole to partial consumption. Shifting occurred at a ratio of approximately 0.35 irrespective of prey species, suggesting that prey length plays an important role in predator foraging decisions and may contribute to gape limitations. Shifts in foraging mode effectively reduce gape limitation and allow bluefish to consume larger prey sizes which may increase their effect on prey populations.  相似文献   

11.
Sexual differences in the diet of the great cormorant, Phalacrocorax carbo sinensis, were studied in four Greek wintering areas, the Amvrakikos Gulf, the Axios and Evros Deltas and the Messolonghi Lagoon, through the analysis of stomach contents. Great cormorants are birds sexually dimorphic in size, with males being generally larger than females. Although similar prey species were found in the stomachs of both sexes in all the studied areas, significant differences were observed with respect to the proportion of species taken. Male birds ate higher proportions of large fish species such as grey mullets, European sea bass, Dicentrarchus labrax, and Prussian carp, Carassius gibelio, while female birds took higher proportions of smaller species such as big-scale sand smelt, Atherina boyeri, and black goby, Gobius niger. As a consequence, male great cormorants were found to feed on significantly larger prey than did females by means of fish standard length and body mass. There was no significant difference between the sexes in the mass of food found in stomachs.  相似文献   

12.
Seabirds use several methods to transport food to their chicks; most species carry food in their stomachs or crops, but some terns and auks carry prey in their bills. Terns usually only carry one prey item at a time, limiting the rate at which they can provision their chicks, and restricting their effective foraging range. However, some terns do occasionally carry multiple prey, which should offer a selective advantage, but there are very few studies investigating the factors influencing the occurrence of multi-prey loading. We investigated the occurrence of multi-prey loads in provisioning Greater Crested Terns (Swift Tern) Thalasseus bergii bergii breeding on Robben Island, South Africa. Of 24 173 loads photographed, 1.3% comprised multiple prey items. Up to 11 fish were carried at once, but most multi-prey loads contained two Anchovies Engraulis encrasicolus, the most common prey item for this population of terns. Mixed species prey were recorded for the first time in a tern. Multi-prey loads occurred more frequently during mid- and late-provisioning, presumably because large chicks can cope with multiple prey, and have higher energetic requirements than small chicks. Mean standard length of Anchovies in multi-prey prey loads was less than Anchovies in single loads, possibly suggesting terns compensate for smaller prey sizes by bringing multiple prey back to their chick. The orientation of multiple Anchovies in a tern’s bill tended to be the same, suggesting that they were captured from polarised fish schools. At least some multi-prey loads were caught in a single dive.  相似文献   

13.
Most skinks are opportunistic predators, taking available prey from the environment as it is encountered. Variation in their diet composition is thought to reflect differences in prey abundance in the environment. We studied diet composition and prey selection in a community of three sympatric skink species (genus Carlia) in northern Australia by comparing contents of skink stomachs with arthropod prey available in their habitat. Carlia were entirely carnivorous and fed on a range of arthropod prey. We found high overlap in diet and prey size among the three species and between the wet and dry seasons, but found that skinks generally focused their foraging efforts on prey types and prey sizes that were not abundant in the habitat. Spiders (Aranea), orthopterans, blattarians, isopods and termites (Isoptera) were important prey of skinks, but these arthropods were rarely trapped in the environment. Skinks also frequently consumed large‐bodied prey, despite the higher relative abundance of small prey in the environment. Skinks were more selective in their foraging and diet than previously assumed. Selection of prey by consumers is a fundamental ecological process, important to consumers for maintaining energy requirements to grow and reproduce, but equally important to the community dynamics of the prey consumed.  相似文献   

14.
Walleye pollock (Theragra chalcogramma) otoliths (n= 2,706) recovered from stomachs, small intestines, and colons of 43 northern fur seals (Callorhinus ursinus) were evaluated for size and wear by location in the digestive tract. Pollock fork length was regressed on otolith length after correction for erosion, and age was estimated from the calculated body size. Age‐1+ pollock otoliths (≥6.3‐mm length) were concentrated in stomachs while age‐0 otoliths (≤6.2‐mm length) were concentrated in colons. Less than 10% of otoliths were found in the small intestines. Pollock age decreased with progression along seal gastrointestinal tracts. Otolith quality increased along gastrointestinal tracts in numbers ≥20, which was typical of age‐0 otoliths recovered from colons. Otolith distribution by age and quality along gastrointestinal tracts suggests that small (≤12 cm) schooling prey are consumed in large volume and passed as a bolus rapidly through the digestive tract before significant erosion of bony remains occurs; while larger prey are eaten in smaller volume and subjected to otolith erosion due to longer retention in the stomach. Our results illustrate the importance of multiple sampling strategies to comprehensively represent prey size in pinniped diet.  相似文献   

15.
To gain a better understanding of the trophic ecology of Pacific blue marlin Makaira nigricans off eastern Taiwan, nitrogen and carbon stable isotopes (δ15N and δ13C) and Bayesian mixing models were used to explore trophic dynamics and potential ontogenetic feeding shifts across M. nigricans of different size classes. Makaira nigricans samples from east of Taiwan (n = 213) and Palau (n = 37), as well as their prey (n = 70), were collected during 2012 and 2013. Results indicated increases in δ15N with size, with values of larger size classes (> 200 cm eye-to-fork length; LEF) significantly higher than those < 200 cm LEF. Values of δ13C were negatively correlated with size. Makaira nigricans > 200 cm LEF had the highest estimated trophic position (4.44) and also exhibited ontogenetic changes in trophic position. Large M. nigricans fed more on dolphinfish Coryphaena hippurus and hairtail Trichiurus lepturus, while smaller M. nigricans consumed smaller forage fish (e.g., moonfish Mene maculata) and cephalopods. These changes may relate to greater swimming speeds and vertical habitat use in larger M. nigricans, allowing capture and consumption of larger prey items at higher trophic positions. The high trophic level of M. nigricans east of Taiwan confirms its important role as an apex predator in marine food webs and how ecological role changes with size.  相似文献   

16.
Optimal foraging theory suggests that avian parents should prefer the most energetically efficient (largest) prey items when delivering food to offspring at a central place. However, during periods of high demand, selectivity of prey may decline, leading to the delivery of smaller and/or less nutritious items. We compared foraging trade‐offs between great tits (Parus major) which had a wider feeding niche than blue tits (Cyanistes caeruleus). We also compared the foraging efficiency of cross‐fostered young, which had learned the spatial foraging niche and prey size of the foreign species, to that of control conspecifics. Mean delivery rates did not differ between control and cross‐fostered parents of either species but as delivery rates increased, prey size declined for both species and both treatment groups. However, across the range of increasing delivery rates, parents were able to increase the total biomass of prey delivered. Cross‐fostering did not alter the proportion of different prey taxa in the diet, but cross‐fostered birds shifted the size of the prey taken to that of their foster species. Consistent with their broader feeding niche, great tits, but not blue tits, incorporated more unpalatable items (flies) as delivery rates increased. Although great tits foraged less efficiently in the blue tit niche, paradoxically, blue tits seem to deliver more prey biomass when foraging in the great tit niche.  相似文献   

17.
Synopsis Bagrids in Bahr Shebeen Nilotic canal depend mainly on fish, insects and shrimp as well as fish embryos for food and their stomachs included runoff materials (e.g. plant foliage, glass, black crystals, coloured gravel). B. bayad maximised its efficiency of catching prey catfish by face to face attack to avoid damage by the prey's pectoral and dorsal spines. In the size classes of 10 to 30 cm standard length, B. bayad and B. docmac show diet overlap and interact with each other especially with respect to tilapias as prey. After this length, B. docmac, aided by its relatively larger mouth, shifted to larger size of tilapias to coexist with B. bayad.  相似文献   

18.
Studies of food relations are important to our understanding of ecology at the individual, population and community levels. Detailed documentation of the diet of large‐bodied, widespread snakes allows us to assess size‐dependent and geographical variation in feeding preferences of gape‐limited predators. Furthermore, with knowledge of the food habits of sympatric taxa we can explore possible causes of interspecific differences in trophic niches. The feeding ecology of the North American gopher snake, Pituophis catenifer, was studied based on the stomach contents of more than 2600 preserved and free‐ranging specimens, and published and unpublished dietary records. Of 1066 items, mammals (797, 74.8%), birds (86, 8.1%), bird eggs (127, 11.9%), and lizards (35, 3.3%) were the most frequently eaten prey. Gopher snakes fed upon subterranean, nocturnal and diurnal prey. The serpents are primarily diurnal, but can also be active at night. Therefore, gopher snakes captured their victims by actively searching underground tunnel systems, retreat places and perching sites during the day, or by pursuing them or seizing them while they rested at night. Gopher snakes of all sizes preyed on mammals, but only individuals larger than 40 and 42 cm in snout–vent length took bird eggs and birds, respectively, possibly due to gape constraints in smaller serpents. Specimens that ate lizards were smaller than those that consumed mammals or birds. Gopher snakes raided nests regularly, as evidenced by the high frequency of nestling mammals and birds and avian eggs eaten. Most (332) P. catenifer contained single prey, but 95 animals contained 2–35 items. Of the 321 items for which direction of ingestion was determined, 284 (88.5%) were swallowed head‐first, 35 (10.9%) were ingested tail‐first, and two (0.6%) were taken sideways. Heavier gopher snakes took heavier prey, but heavier serpents ingested prey with smaller mass relative to snake mass, evidence that the lower limit of prey mass did not increase with snake mass. Specimens from the California Province and Arid Deserts (i.e. Mojave, Sonoran and Chihuahuan Deserts) took the largest proportion of lizards, whereas individuals from the Great Basin Desert consumed a higher percentage of mammals than serpents from other areas, and P. catenifer from the Great Plains ate a greater proportion of bird eggs. Differences in prey availability among biogeographical regions and unusual circumstances of particular gopher snake populations may account for these patterns. Gopher snakes have proportionally longer heads than broadly sympatric Rhinocheilus lecontei (long‐nosed snake), Charina bottae (rubber boa) and Lampropeltis zonata (California mountain kingsnake), which perhaps explains why, contrary to the case in P. catenifer, the smaller size classes of those three species do not eat mammals. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society, 2002, 77 , 165–183.  相似文献   

19.
Generalist predators are capable of selective foraging, but are predicted to feed in close proportion to prey availability to maximize energetic intake especially when overall prey availability is low. By extension, they are also expected to feed in a more frequency‐dependent manner during winter compared to the more favourable foraging conditions during spring, summer and fall seasons. For 18 months, we observed the foraging patterns of forest‐dwelling wolf spiders from the genus Schizocosa (Araneae: Lycosidae) using PCR‐based gut‐content analysis and simultaneously monitored the activity densities of two common prey: springtails (Collembola) and flies (Diptera). Rates of prey detection within spider guts relative to rates of prey collected in traps were estimated using Roualdes’ cst model and compared using various linear contrasts to make inferences pertaining to seasonal prey selectivity. Results indicated spiders foraged selectively over the course of the study, contrary to predictions derived from optimal foraging theory. Even during winter, with overall low prey densities, the relative rates of predation compared to available prey differed significantly over time and by prey group. Moreover, these spiders appeared to diversify their diets; the least abundant prey group was consistently overrepresented in the diet within a given season. We suggest that foraging in generalist predators is not necessarily restricted to frequency dependency during winter. In fact, foraging motives other than energy maximization, such as a more nutrient‐focused strategy, may also be optimal for generalist predators during prey‐scarce winters.  相似文献   

20.
Although Arnoglossus laterna (Walbaum, 1792) is a common benthic fish in Portugal, several aspects of its feeding ecology remain incomplete. In this study, diet was examined and the food consumption estimated on inshore waters in the central coast of Portugal. The diet of the scaldfish included mainly mysids, amphipods and polychaetes, while the decapod Philocheras bispinosus Hailstone was the most frequent prey. Variation in the diet according to fish size (two size‐classes), sex and spawning/non‐spawning seasons was examined. Significant differences in diet composition were found between seasons, whereby the most frequently consumed prey in the non‐spawning season were crustaceans, while polychaetes and nemerteneans comprised most of its diet in the spawning season. The average value of the vacuity index was very similar between seasons (24.7% non‐spawning season and 25.0% spawning season). Diet overlap between size‐classes and sexes was high, but low between the two seasons. Food consumption of A. laterna was estimated based on diet characterization and evacuation rate. The estimate of the daily food consumption was 1.15 mg dry weight for the non‐spawning season and 1.67 mg dry weight for the spawning season. Significant differences in consumption rates were found between size‐classes and sexes. Larger individuals showed a higher consumption rate than smaller individuals. Females consumed more food than males in the non‐spawning season, while in the spawning season males consumed more than females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号