首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The cholesterol catabolic pathway occurs in most mycolic acid‐containing actinobacteria, such as Rhodococcus jostii RHA1, and is critical for Mycobacterium tuberculosis (Mtb) during infection. FadD3 is one of four predicted acyl‐CoA synthetases potentially involved in cholesterol catabolism. A ΔfadD3 mutant of RHA1 grew on cholesterol to half the yield of wild‐type and accumulated 3aα‐H‐4α(3′‐propanoate)‐7aβ‐methylhexahydro‐1,5‐indanedione (HIP), consistent with the catabolism of half the steroid molecule. This phenotype was rescued by fadD3 of Mtb. Moreover, RHA1 but not ΔfadD3 grew on HIP. Purified FadD3Mtb catalysed the ATP‐dependent CoA thioesterification of HIP and its hydroxylated analogues, 5α‐OH HIP and 1β‐OH HIP. The apparent specificity constant (kcat/Km) of FadD3Mtb for HIP was 7.3 ± 0.3 × 105 M?1 s?1, 165 times higher than for 5α‐OH HIP, while the apparent Km for CoASH was 110 ± 10 μM. In contrast to enzymes involved in the catabolism of rings A and B, FadD3Mtb did not detectably transform a metabolite with a partially degraded C17 side‐chain. Overall, these results indicate that FadD3 is a HIP‐CoA synthetase that initiates catabolism of steroid rings C and D after side‐chain degradation is complete. These findings are consistent with the actinobacterial kstR2 regulon encoding ring C/D degradation enzymes.  相似文献   

3.
The aerobic degradation of cholesterol, testosterone, androsterone, progesterone, and further steroid compounds as sole carbon source has been observed in the newly isolated bacterial Gram-positive strain Chol-4. The 16S rRNA gene sequence shares the greatest similarity with members of the genus Rhodococcus, with the closest shared nucleotide identities of 98–99% with Rhodococcus ruber (DSM 43338T) and Rhodococcus aetherivorans (DSM 44752T). Phylogenetic analysis of Rhodococcus 16S rRNA gene sequences consistently places strain Chol-4 in a clade shared with those both type strains within the Rhodococcus rhodochrous subclade. The results of DNA–DNA hybridization against its two phylogenetically closest neighbors as well as the results of morphological, physiological, and biochemical tests allowed genotypic and phenotypic differentiation of strain Chol-4 from Rhodococcus ruber (DSM 43338T) on the species level and from the other validly described Rhodococcus species on the genus level. Strain Chol-4 therefore merits recognition as a novel strain of the species Rhodococcus ruber and demonstrates for the first time the capability of this species to utilize a great variety of steroid compounds as growth substrates never shown for other species of this genus so far. The genome of strain Chol-4 harbors at least one gene cluster that may be responsible for the degradation of steroid compounds. This gene cluster was identified in a cloned 5458 bp BamHI–EcoRV DNA fragment and compared to similar genes from other Gram-positive and Gram-negative bacteria described so far.  相似文献   

4.
Manganese (II) and manganese‐oxidizing bacteria were used as an efficient biological system for the degradation of the xenoestrogen 17α‐ethinylestradiol (EE2) at trace concentrations. Mn2+‐derived higher oxidation states of Mn (Mn3+, Mn4+) by Mn2+‐oxidizing bacteria mediate the oxidative cleavage of the polycyclic target compound EE2. The presence of manganese (II) was found to be essential for the degradation of EE2 by Leptothrix discophora, Pseudomonas putida MB1, P. putida MB6 and P. putida MB29. Mn2+‐dependent degradation of EE2 was found to be a slow process, which requires multi‐fold excess of Mn2+ and occurs in the late stationary phase of growth, implying a chemical process taking place. EE2‐derived degradation products were shown to no longer exhibit undesirable estrogenic activity.  相似文献   

5.
The C‐19 steroids 4‐androstene‐3,17‐dione (AD), 1,4‐androstadiene‐3,17‐dione (ADD) or 9α‐hydroxy‐4‐androstene‐3,17‐dione (9OH‐AD), which have been postulated as intermediates of the cholesterol catabolic pathway in Mycobacterium smegmatis, cannot be used as sole carbon and energy sources by this bacterium. Only the ΔkstR mutant which constitutively expresses the genes repressed by the KstR regulator can metabolize AD and ADD with severe difficulties but still cannot metabolize 9OH‐AD, suggesting that these compounds are not true intermediates but side products of the cholesterol pathway. However, we have found that some M. smegmatis spontaneous mutants mapped in the PadR‐like regulator (MSMEG_2868) can efficiently metabolize all C‐19 steroids. We have demonstrated that the PadR mutants allow the expression of a gene cluster named C‐19+ (MSMEG_2851 to MSMEG_2901) encoding steroid degrading enzymes, that are not expressed under standard culture conditions. The C‐19+ cluster has apparently evolved independently from the upper cholesterol kstR‐regulon, but both clusters converge on the lower cholesterol kstR2‐regulon responsible for the metabolism of C and D steroid rings. Homologous C‐19+ clusters have been found only in other actinobacteria that metabolize steroids, but remarkably it is absent in Mycobacterium tuberculosis.  相似文献   

6.
7.
Aim: The goal of this study was to compare the degradation of hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine (RDX) by three Rhodococcus strains under anaerobic, microaerophilic (<0·04 mg l?1 dissolved oxygen) and aerobic (dissolved oxygen (DO) maintained at 8 mg l?1) conditions. Methods and Results: Three Rhodococcus strains were incubated with no, low and ambient concentrations of oxygen in minimal media with succinate as the carbon source and RDX as the sole nitrogen source. RDX and RDX metabolite concentrations were measured over time. Under microaerophilic conditions, the bacteria degraded RDX, albeit about 60‐fold slower than under fully aerobic conditions. Only the breakdown product, 4‐nitro‐2,4‐diazabutanal (NDAB) accumulated to measurable concentrations under microaerophilic conditions. RDX degraded quickly under both aerated and static aerobic conditions (DO allowed to drop below 1 mg l?1) with the accumulation of both NDAB and methylenedinitramine (MEDINA). No RDX degradation was observed under strict anaerobic conditions. Conclusions: The Rhodococcus strains did not degrade RDX under strict anaerobic conditions, while slow degradation was observed under microaerophilic conditions. The RDX metabolite NDAB was detected under both microaerophilic and aerobic conditions, while MEDINA was detected only under aerobic conditions. Impact and Significance of the Study: This work confirmed the production of MEDINA under aerobic conditions, which has not been previously associated with aerobic RDX degradation by these organisms. More importantly, it demonstrated that aerobic rhodococci are able to degrade RDX under a broader range of oxygen concentrations than previously reported.  相似文献   

8.
Activation of precursor 25‐hydroxyvitamin D3 (25D) to hormonal 1,25‐dihydroxyvitamin D3 (1,25D) is a pivotal step in vitamin D physiology, catalysed by the enzyme 25‐hydroxyvitamin D‐1α‐hydroxylase (1α‐hydroxylase). To establish new models for assessing the physiological importance of the 1α‐hydroxylase‐25D‐axis, we used Danio rerio (zebrafish) to characterize expression and biological activity of the gene for 1α‐hydroxylase (cyp27b1). Treatment of day 5 zebrafish larvae with inactive 25D (5–150 nM) or active 1,25D (0.1–10 nM) induced dose responsive expression (15–95‐fold) of the vitamin D‐target gene cyp24a1 relative to larvae treated with vehicle, suggesting the presence of Cyp27b1 activity. A full‐length zebrafish cyp27b1 cDNA was then generated using RACE and RT‐PCR methods. Sequencing of the resulting clone revealed an open reading frame encoding a protein of 505 amino acids with 54% identity to human CYP27B1. Transfection of a cyp27b1 expression vector into HKC‐8, a human kidney proximal tubular epithelial cell line, enhanced intracrine metabolism of 25D to 1,25D resulting in greater than twofold induction of CYP24A1 mRNA expression and a 25‐fold increase in 1,25D production compared to empty vector. These data indicate that we have cloned a functional zebrafish CYP27B1, representing a phylogenetically distant branch from mammals of this key enzyme in vitamin D metabolism. Further analysis of cyp27b1 expression and activity in zebrafish may provide new perspectives on the biological importance of 25D metabolism. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Arsenite‐tolerant bacteria were isolated from an organic farm of Navsari Agricultural University (NAU), Gujarat, India (Latitude: 20°55′39.04″N; Longitude: 72°54′6.34″E). One of the isolates, NAU‐1 (aerobic, Gram‐positive, non‐motile, coccobacilli), was hyper‐tolerant to arsenite (AsIII, 23 mM) and arsenate (AsV, 180 mM). 16S rRNA gene of NAU‐1 was 99% similar to the 16S rRNA genes of Rhodococcus (Accession No. HQ659188). Assays confirmed the presence of membrane bound arsenite oxidase and cytoplasmic arsenate reductase in NAU‐1. Genes for arsenite transporters (arsB and ACR3(1)) and arsenite oxidase gene (aoxB) were confirmed by PCR. Arsenite oxidation and arsenite efflux genes help the bacteria to tolerate arsenite. Specific activities of antioxidant enzymes (catalase, ascorbate peroxidase, superoxide dismutase and glutathione S‐transferase) increased in dose‐dependent manner with arsenite, whereas glutathione reductase activity decreased with increase in AsIII concentration. Metabolic studies revealed that Rhodococcus NAU‐1 produces excess of gluconic and succinic acids, and also activities of glucose dehydrogenase, phosphoenol pyruvate carboxylase and isocitrate lyase were increased, to cope with the inhibited activities of glucose‐6‐phosphate dehydrogenase, pyruvate dehydrogenase and α‐ketoglutarate dehydrogenase enzymes respectively, in the presence of AsIII. Enzyme assays revealed the increase in direct oxidative and glyoxylate pathway in Rhodococcus NAU‐1 in the presence of AsIII.  相似文献   

10.
An Fe(II)/α‐ketoglutarate‐dependent dioxygenase, SadA, was obtained from Burkholderia ambifaria AMMD and heterologously expressed in Escherichia coli. Purified recombinant SadA had catalytic activity towards several N‐substituted l‐amino acids, which was especially strong with N‐succinyl l‐leucine. With the NMR and LC‐MS analysis, SadA converted N‐succinyl l‐leucine into N‐succinyl l‐threo‐β‐hydroxyleucine with >99% diastereoselectivity. SadA is the first enzyme catalysing β‐hydroxylation of aliphatic amino acid‐related substances and a potent biocatalyst for the preparation of optically active β‐hydroxy amino acids.  相似文献   

11.
7α‐Hydroxysteroid dehydrogenase (7α‐HSDH) is an NAD(P)H‐dependent oxidoreductase belonging to the short‐chain dehydrogenases/reductases. In vitro, 7α‐HSDH is involved in the efficient biotransformation of taurochenodeoxycholic acid (TCDCA) to tauroursodeoxycholic acid (TUDCA). In this study, a gene encoding novel 7α‐HSDH (named as St‐2‐1) from fecal samples of black bear was cloned and heterologously expressed in Escherichia coli. The protein has subunits of 28.3 kDa and a native size of 56.6 kDa, which suggested a homodimer. We studied the relevant properties of the enzyme, including the optimum pH, optimum temperature, thermal stability, activators, and inhibitors. Interestingly, the data showed that St‐2‐1 differs from the 7α‐HSDHs reported in the literature, as it functions under acidic conditions. The enzyme displayed its optimal activity at pH 5.5 (TCDCA). The acidophilic nature of 7α‐HSDH expands its application environment and the natural enzyme bank of HSDHs, providing a promising candidate enzyme for the biosynthesis of TUDCA or other related chemical entities.  相似文献   

12.
A series of novel α‐(diphenylphosphoryl)‐ and α‐(diphenylphosphorothioyl)cycloalkanone oximes have been synthesized in search for novel bioactive molecules. Their structures were characterized by various spectroscopic methods including IR, NMR (1H, 31P, 13C), mass spectrometry and single crystal X‐ray diffraction. The newly synthesized phosphorus‐containing oximes were screened for their in vitro antimicrobial activity against Gram‐positive bacteria (Staphylococcus aureus and Bacillus subtilis), Gram‐negative bacteria (Escherichia coli and Salmonella typhimurium) and fungal strains (Candida albicans and Candida glabrata). The biological assays showed that all the studied compounds exhibited high antibacterial and antifungal activities at only 0.1–2.1 μg/mL. In silico molecular docking studies in FabH enzyme active site were performed in order to predict the possible interaction modes and binding energies of the drug candidates at the molecular level.  相似文献   

13.
The genomes of Listeria spp. encode all but one of 25 enzymes required for the biosynthesis of adenosylcobalamin (AdoCbl; coenzyme B12). Notably, all Listeria genomes lack CobT, the nicotinamide mononucleotide:5,6‐dimethylbenzimidazole (DMB) phosphoribosyltransferase (EC 2.4.2.21) enzyme that synthesizes the unique α‐linked nucleotide N1‐(5‐phospho‐α‐d ‐ribosyl)‐DMB (α‐ribazole‐5′‐P, α‐RP), a precursor of AdoCbl. We have uncovered a new pathway for the synthesis of α‐RP in Listeria innocua that circumvents the lack of CobT. The cblT and cblS genes (locus tags lin1153 and lin1110) of L. innocua encode an α‐ribazole (α‐R) transporter and an α‐R kinase respectively. Results from in vivo experiments indicate that L. innocua depends on CblT and CblS activities to salvage exogenous α‐R, allowing conversion of the incomplete corrinoid cobinamide (Cbi) into AdoCbl. Expression of the L. innocua cblT and cblS genes restored AdoCbl synthesis from Cbi and α‐R in a Salmonella enterica cobT strain. LinCblT transported α‐R across the cell membrane, but not α‐RP or DMB. UV‐visible spectroscopy and mass spectrometry data identified α‐RP as the product of the ATP‐dependent α‐R kinase activity of LinCblS. Bioinformatics analyses suggest that α‐R salvaging occurs in important Gram‐positive human pathogens.  相似文献   

14.
Hydroxysteroid dehydrogenases are of great interest as biocatalysts for transformations involving steroid substrates. They feature a high degree of stereo‐ and regio‐selectivity, acting on a defined atom with a specific configuration of the steroid nucleus. The crystal structure of 7β‐hydroxysteroid dehydrogenase from Collinsella aerofaciens reveals a loop gating active‐site accessibility, the bases of the specificity for NADP+, and the general architecture of the steroid binding site. Comparison with 7α‐hydroxysteroid dehydrogenase provides a rationale for the opposite stereoselectivity. The presence of a C‐terminal extension reshapes the substrate site of the β‐selective enzyme, possibly leading to an inverted orientation of the bound substrate. Proteins 2016; 84:859–865. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
A single chiral cyclic α,α‐disubstituted amino acid, (3S,4S)‐1‐amino‐(3,4‐dimethoxy)cyclopentanecarboxylic acid [(S,S)‐Ac5cdOM], was placed at the N‐terminal or C‐terminal positions of achiral α‐aminoisobutyric acid (Aib) peptide segments. The IR and 1H NMR spectra indicated that the dominant conformations of two peptides Cbz‐[(S,S)‐Ac5cdOM]‐(Aib)4‐OEt ( 1) and Cbz‐(Aib)4‐[(S,S)‐Ac5cdOM]‐OMe (2) in solution were helical structures. X‐ray crystallographic analysis of 1 and 2 revealed that a left‐handed (M) 310‐helical structure was present in 1 and that a right‐handed (P) 310‐helical structure was present in 2 in their crystalline states. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
N‐[1‐(4‐(4‐fluorophenyl)‐2,6‐dioxocyclohexylidene)ethyl] (Fde) protected amino acids have been prepared and applied in solid‐phase peptide synthesis monitored by gel‐phase 19F NMR spectroscopy. The Fde protective group could be cleaved with 2% hydrazine or 5% hydroxylamine solution in DMF as determined with gel‐phase 19F NMR spectroscopy. The dipeptide Ac‐L ‐Val‐L ‐Val‐NH2 12 was constructed using Fde‐L ‐Val‐OH and no noticeable racemization took place during the amino acid coupling with N,N′‐diisopropylcarbodiimide and 1‐hydroxy‐7‐azabenzotriazole or Fde deblocking. To extend the scope of Fde protection, the hydrophobic nonapeptide LLLLTVLTV from the signal sequence of mucin MUC1 was successfully prepared using Fde‐L ‐Leu‐OH at diagnostic positions. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
About 70% of human breast cancers express and are dependent for growth on estrogen receptor α (ERα), and therefore are sensitive to antiestrogen therapies. However, progression to an advanced, more aggressive phenotype is associated with acquisition of resistance to antiestrogens and/or invasive potential. In this study, we highlight the role of the serine/threonine‐protein kinase D1 (PKD1) in ERα‐positive breast cancers. Growth of ERα‐positive MCF‐7 and MDA‐MB‐415 human breast cancer cells was assayed in adherent or anchorage‐independent conditions in cells overexpressing or depleted for PKD1. PKD1 induces cell growth through both an ERα‐dependent manner, by increasing ERα expression and cell sensitivity to 17β‐estradiol, and an ERα‐independent manner, by reducing cell dependence to estrogens and conferring partial resistance to antiestrogen ICI 182,780. PKD1 knockdown in MDA‐MB‐415 cells strongly reduced estrogen‐dependent and independent invasion. Quantification of PKD1 mRNA levels in 38 cancerous and non‐cancerous breast cell lines and in 152 ERα‐positive breast tumours from patients treated with adjuvant tamoxifen showed an association between PKD1 and ERα expression in 76.3% (29/38) of the breast cell lines tested and a strong correlation between PKD1 expression and invasiveness (P < 0.0001). In tamoxifen‐treated patients, tumours with high PKD1 mRNA levels (n = 77, 50.66%) were significantly associated with less metastasis‐free survival than tumours with low PKD1 mRNA expression (n = 75, 49.34%; P = 0.031). Moreover, PKD1 mRNA levels are strongly positively associated with EGFR and vimentin levels (P < 0.0000001). Thus, our study defines PKD1 as a novel attractive prognostic factor and a potential therapeutic target in breast cancer.  相似文献   

18.
The importance of dipeptides both in medicinal and pharmacological fields is well documented and many efforts have been made to find simple and efficient methods for their synthesis. For this reason, we have investigated the synthesis of α‐N‐protected dipeptide acids by reacting the easily accessible mixed anhydride of α‐N‐protected amino acids with free amino acids under different reaction conditions. The combination of TBA‐OH and DMSO has been found to be the best to overcome the low solubility of amino acids in organic solvents. Under these experimental conditions, the homogeneous phase condensation reaction occurs rapidly and without detectable epimerization. The present method is also applicable to side‐chain unprotected Tyr, Trp, Glu, and Asp but not Lys. This latter residue is able to engage two molecules of mixed anhydride giving the corresponding isotripeptide. Moreover, the applicability of this protocol for the synthesis of tri‐ and tetrapeptides has been tested. This approach reduces the need for protecting groups, is cost effective, scalable, and yields dipeptide acids that can be used as building blocks in the synthesis of larger peptides. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
Because of its low levels in late pregnancy, the relationship of progesterone to pregnancy maintenance in Equidae is not obvious. This study investigated the levels of progesterone (4‐pregnane‐3,20‐dione; P4) and 5α‐dihydroprogesterone (5α‐DHP) during pregnancy in zebras in relation to reproductive state. Blood samples from female zebras (Equus burchelli, E. zebra hartmannae, E. grevyi) were taken at Dvur Kralove Zoo. Progesterone and 5α‐DHP were separated by high‐performance liquid chromatography techniques and detected by cross‐reacting antibodies. Identification of progestins was achieved by comparing the identity of peaks of the samples with a standard. In E. z. hartmannae progesterone, values reached 50 ng/mL at the beginning of pregnancy and dropped to levels below 1 ng/mL during the second half of pregnancy. In contrast, 5α‐DHP increased up to 123 and 183 ng/mL during late pregnancy in E. z. hartmannae and E. burchelli, respectively. In E. grevyi, 5α‐DHP levels of 368 ng/mL were obtained during pregnancy, whereas progesterone values were similar in pregnant and non‐pregnant individuals. These marked differences in the course of progesterone and 5α‐DHP levels point to the importance of 5α‐DHP for pregnancy maintenance in zebras. Zoo Biol 18:325–333, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

20.
The 4‐methoxybenzyloxymethyl (MBom) group was introduced at the Nπ‐position of the histidine (His) residue by using a regioselective procedure, and its utility was examined under standard conditions used for the conventional and the microwave (MW)‐assisted solid phase peptide synthesis (SPPS) with 9‐fluorenylmethyoxycarbonyl (Fmoc) chemistry. The Nπ‐MBom group fulfilling the requirements for the Fmoc strategy was found to prevent side‐chain‐induced racemization during incorporation of the His residue even in the case of MW‐assisted SPPS performed at a high temperature. In particular, the MBom group proved to be a suitable protecting group for the convergent synthesis because it remains attached to the imidazole ring during detachment of the protected His‐containing peptide segments from acid‐sensitive linkers by treatment with a weak acid such as 1% trifluoroacetic acid in dichloromethane. We also demonstrated the facile synthesis of Fmoc‐His(π‐MBom)‐OH with the aid of purification procedure by crystallization to effectively remove the undesired τ‐isomer without resorting to silica gel column chromatography. This means that the present synthetic procedure can be used for large‐scale production without any obstacles. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号