首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We conducted a manipulative field experiment to determine whether the leaping behaviour of wild juvenile sockeye salmon Oncorhynchus nerka dislodges ectoparasitic sea lice Caligus clemensi and Lepeophtheirus salmonis by comparing sea‐lice abundances between O. nerka juveniles prevented from leaping and juveniles allowed to leap at a natural frequency. Juvenile O. nerka allowed to leap had consistently fewer sea lice after the experiment than fish that were prevented from leaping. Combined with past research, these results imply potential costs due to parasitism and indicate that the leaping behaviour of juvenile O. nerka does, in fact, dislodge sea lice.  相似文献   

2.

Background

Pathogens are growing threats to wildlife. The rapid growth of marine salmon farms over the past two decades has increased host abundance for pathogenic sea lice in coastal waters, and wild juvenile salmon swimming past farms are frequently infected with lice. Here we report the first investigation of the potential role of salmon farms in transmitting sea lice to juvenile sockeye salmon (Oncorhynchus nerka).

Methodology/Principal Findings

We used genetic analyses to determine the origin of sockeye from Canada''s two most important salmon rivers, the Fraser and Skeena; Fraser sockeye migrate through a region with salmon farms, and Skeena sockeye do not. We compared lice levels between Fraser and Skeena juvenile sockeye, and within the salmon farm region we compared lice levels on wild fish either before or after migration past farms. We matched the latter data on wild juveniles with sea lice data concurrently gathered on farms. Fraser River sockeye migrating through a region with salmon farms hosted an order of magnitude more sea lice than Skeena River populations, where there are no farms. Lice abundances on juvenile sockeye in the salmon farm region were substantially higher downstream of farms than upstream of farms for the two common species of lice: Caligus clemensi and Lepeophtheirus salmonis, and changes in their proportions between two years matched changes on the fish farms. Mixed-effects models show that position relative to salmon farms best explained C. clemensi abundance on sockeye, while migration year combined with position relative to salmon farms and temperature was one of two top models to explain L. salmonis abundance.

Conclusions/Significance

This is the first study to demonstrate a potential role of salmon farms in sea lice transmission to juvenile sockeye salmon during their critical early marine migration. Moreover, it demonstrates a major migration corridor past farms for sockeye that originated in the Fraser River, a complex of populations that are the subject of conservation concern.  相似文献   

3.
Groups of mature (5+ year old) Arctic charr Salvelinus alpinus held in sea water were exposed for 34 days to either a high (mean ±s.e . 0·15 ± 0·01 sea lice Lepeophtheirus salmonis g?1 fish mass) (HI), medium (0·07 ± 0·00 sea lice g?1 fish mass) (MI) or no [control (C)] sea‐lice infection during early stages of gonad development (June to July). Infection with sea lice resulted in increased plasma cortisol concentrations and this was related to intensity of infection; females tended to have higher cortisol concentrations than males at high infection intensities (HI group: female c. 130 ng ml?1; male c. 80 ng ml?1). Plasma osmolality (C c. 330, MI c. 350 and HI c. 415 mOsm) and chloride concentrations (C c. 135, MI c. 155 and HI c. 190 mM) increased significantly with infection intensity, indicating osmoregulatory problems in infected fish. A strong positive relationship between plasma osmolality and cortisol concentration was recorded. Plasma sex‐steroid concentrations were influenced negatively by sea‐lice infection, particularly in the HI group, and were inversely related to plasma cortisol concentrations. The most heavily infected fish postponed the initiation of reproductive development until exposed to fresh water and timing of ovulation tended to be delayed in these fish. Growth rate and condition were negatively influenced by sea‐lice infection and growth rate was inversely related to plasma cortisol concentrations. Sea‐lice infection resulted in mortality among females in the HI group, and the proportion of maturing females was lower in the MI group (46%) than in the controls (85%). Egg production in the MI and HI groups was c. 50 and 30% of the C group. Egg size, embryonic survival and fry mass did not differ across groups. Sea lice influence reproductive development and egg production in S. alpinus, and consequently these parasites may influence populations via sublethal effects on broodfish, affecting growth and condition, and their reproductive output.  相似文献   

4.
Sea lice are common parasites of both farmed and wild salmon. Salmon farming constitutes an important economic market in North America, South America, and Northern Europe. Infections with sea lice can result in significant production losses. A compilation of genomic information on different genera of sea lice is an important resource for understanding their biology as well as for the study of population genetics and control strategies. We report on over 150,000 expressed sequence tags (ESTs) from five different species (Pacific Lepeophtheirus salmonis (49,672 new ESTs in addition to 14,994 previously reported ESTs), Atlantic L. salmonis (57,349 ESTs), Caligus clemensi (14,821 ESTs), Caligus rogercresseyi (32,135 ESTs), and Lernaeocera branchialis (16,441 ESTs)). For each species, ESTs were assembled into complete or partial genes and annotated by comparisons to known proteins in public databases. In addition, whole mitochondrial (mt) genome sequences of C. clemensi (13,440 bp) and C. rogercresseyi (13,468 bp) were determined and compared to L. salmonis. Both nuclear and mtDNA genes show very high levels of sequence divergence between these ectoparastic copepods suggesting that the different species of sea lice have been in existence for 37–113 million years and that parasitic association with salmonids is also quite ancient. Our ESTs and mtDNA data provide a novel resource for the study of sea louse biology, population genetics, and control strategies. This genomic information provides the material basis for the development of a 38K sea louse microarray that can be used in conjunction with our existing 44K salmon microarray to study host–parasite interactions at the molecular level. This report represents the largest genomic resource for any copepod species to date.  相似文献   

5.
Cleaning interactions have been described in a wide range of fish species and other taxa. We observed a novel cleaning behaviour during a study of the transmission dynamics of sea lice (Lepeophtheirus salmonis) between juvenile pink salmon (Oncorhynchus gorbuscha) and threespine sticklebacks (Gasterosteus aculeatus) in the Broughton Archipelago, British Columbia, Canada. Experiments showed that sticklebacks significantly reduced the number of sea lice on individual juvenile salmon. Adult female lice were preferentially consumed by sticklebacks, and gravid female lice also experienced egg string cropping. Overall, 76% of gravid female lice experienced either consumption, egg string cropping, or both by sticklebacks. This preference by sticklebacks for female parasites may stem from female lice being larger than males and the added nutritional value of egg strings on gravid females. Cleaning by sticklebacks can potentially have an impact on sea louse populations on wild juvenile salmon.  相似文献   

6.
The mucus protein profile of Atlantic salmon (Salmo salar) and changes due to infection with sea lice (Lepeophtheirus salmonis) were examined. Two-dimensional gel electrophoresis was performed on salmon skin mucus and comparisons between control and infected fish mucus were made. LC MS/MS identified intracellular proteins, calmodulin, actin, and hemopexin and plasma proteins, such as apolipoproteins, lectin, plasminogen and transferrin. Plasma proteins in the mucus may result from either direct expression by epidermal cells, leakage of plasma or via a secondary circulation system. Therefore, RT-PCR was used to measure mRNA of transferrin and lectin in Atlantic salmon skin. Transferrin expression was observed suggesting direct expression by the epidermis. Lectin expression was not detected suggesting another mechanism of entry into mucus, either leakage from plasma or secondary circulation. The lack of observable albumin on 2D gels, suggests that mucus lectin may arise from the secondary circulation route. Interestingly, β-actin was a significant component of Atlantic salmon mucus. Cleaved actin and transferrin fragments were observed and positively correlated with sea lice infection suggestive of proteolytic activity. Increased levels of cleaved transferrin during sea lice infection may activate the nitrous oxide response of salmon macrophages, as part of the fish's immune response to sea lice infection.  相似文献   

7.
The treatment of sea lice, Lepeophtheirus salmonis infestations on farmed Atlantic salmon, Salmo salar requires regular bathing of the fish in diachlorvos (DDVP), 2,2-dichlorovinyl dimethyl phosphate, with subsequent release to the marine environment of spent pesticide. The toxicity of a possible alternative compound, carbaryl, l-naphthyl N-methylcarbamate) to kill sea lice and Atlantic salmon was examined. Preliminary studies with carbaryl indicate the potential advantage of a reduced treatment dose was outweighed by the greater persistence of both the parent compound and of its toxic degradation product. Hence this carbamate insecticide is unlikely to be considered by regulatory authorities as an alternative treatment for sea lice infestations.  相似文献   

8.
Brown trout (Salmo trutta) display extensive plasticity in marine migratory behaviours, with marine migrations considered to be an adaptive strategy which enables sea trout to maximize growth and reproductive potential. However, marine migrations are not without associated costs, including threats posed by ever-increasing salmon lice (Lepeophtheirus salmonis) infestations. In the present study, we used passive integrated transponder technology to characterize variability in sea trout migration behaviour amongst three catchments situated in a region of intensive salmon farming in central Norway. Specifically, we investigate how lice infestation, out-migration date and body size alter sea trout return rate and marine residence duration during the first out-migration to sea from each catchment. Distinct catchment-specific differences in sea trout out-migration size and the number of cohorts were observed, but larger body size did not guarantee the successful return of migrating trout. The marine residence duration of individuals that successfully returned to freshwater was positively correlated with lice infestation risk, suggesting for these individuals the lethal infestation threshold had not been reached. Our results also suggest that sea trout populations from lotic-dominated catchments are potentially at greater risk from size-related threats to their survival encountered during their marine migrations than sea trout from lentic-dominated catchments. The variability in sea trout migratory behaviour amongst catchments observed here emphasizes the challenges fisheries managers face when deciding the best actions to take to protect the anadromous portion of brown trout populations.  相似文献   

9.
Physiological impact of sea lice on swimming performance of Atlantic salmon   总被引:6,自引:0,他引:6  
Atlantic salmon Salmo salar were infected with two levels of sea lice Lepeophtheirus salmonis (0·13 ± 0·02 and 0·02 ± 0·00 sea lice g−1). Once sea lice became adults, the ventral aorta of each fish was fitted with a Doppler cuff to measure cardiac output ( ̇ ), heart rate ( f H) and stroke volume ( V S) during swimming. Critical swimming speeds ( U crit) of fish with higher sea lice numbers [2·1 ± 0·1 BL (body lengths) s−1] were significantly lower ( P  < 0·05) than fish with lower numbers (2·4 ± 0·1 BL s−1) and controls (sham infected, 2·6 ± 0·1 BL s−1). After swimming, chloride levels in fish with higher sea lice numbers (184·4 ± 11·3 mmol l−1) increased significantly (54%) from levels at rest and were significantly higher than fish with fewer lice (142·0 ± 3·7 mmol l−1) or control fish (159·5 ± 3·5 mmol l−1). The f H of fish with more lice was 9% slower than the other two groups at U crit. This decrease resulted in ̇ not increasing from resting levels. Sublethal infection by sea lice compromised the overall fitness of Atlantic salmon. The level of sea lice infection used in the present study was lower than has previously been reported to be detrimental to wild Atlantic salmon.  相似文献   

10.
We studied the influences of food type, food quantity, water currents, starvation and light on growth and reproduction of the sea hareaplysia oculifera (Adams and Reeve, 1850) under laboratory conditions. Out of five species of algae served as food,Enteromorpha intestinalis promoted the fastest growth ofA. oculifera, Ulva spp. slower growth,Cladophora sp. allowed maintenance spp. slower growth,Cladophora sp. allowed maintenance of steady body mass, and the brown algaeColpomenia sp. andPadina pavonia were rejected by the sea hares. When sea hares were exposed to four levels of water currents, growth rates decreased as water currents increased. Sea hares fed on 50% ration grew slower than those fed on 100% ration (ad libitum). During 10 days of starvation sea hares lost weight, but when subsequently fed 100% ration they recovered and grew at a rate similar to those fed continuously with 100% ration. Under shade and under natural sunlight sea hares grew at the same rates. Whenever growth rates decreased, sea hares began to spawn at a smaller body size.A. oculifera demonstrated physiological plasticity that adapted them to varied and unpredictable environmental conditions. At different conditions of food availability they applied different tactics of resource allocation between growth and reproduction.  相似文献   

11.
Lice-infected sea trout populations were monitored using fish traps in the Romsdalsfjord (Norway). The reliability and efficiency of this capture technique, which allows estimation of lice infestation rates without killing the fish, was evaluated through a mark–recapture study. A total of 2447 sea trout smolts were captured, tagged and released over a three-year period. There was a considerable variation in capture rates (range: 0.4–17.7 fish per day) and sea lice numbers (number of lice per fish: 2.8–30.3; number of lice per gram body weight: 0.02–0.69) among localities, sampling times and years. Recapture rates of tagged fish with traps, which were low (2% or 0.11 fish per day), showed that the risk for pseudoreplication was minor, in terms of counting lice on the same fish several times. Most of the tagged sea trout (90%) were recaptured within the first two months after release, and no significant variations in lice numbers were found between tagging and recapture. The lack of differences in lice levels between tagging and recapture during the first week after tagging indicated that the method most likely would not significantly underestimate the lice infestations due to loss of lice during handling. Therefore, our results confirm that the use of fish traps is a suitable method for estimation of lice numbers on wild salmonids.  相似文献   

12.
Effects of artificial salmon lice infection and pharmaceutical salmon lice prophylaxis on survival and rate of progression of Atlantic salmon (n = 72) and brown trout post-smolts (n = 72) during their fjord migration, were studied by telemetry. The infected groups were artificially exposed to infective salmon lice larvae in the laboratory immediately before release in the inner part of the fjord to simulate a naturally high infection pressure. Groups of infected Atlantic salmon (n = 20) and brown trout (n = 12) were also retained in the hatchery to control the infection intensity and lice development during the study period. Neither salmon lice infection nor pharmaceutical prophylaxis had any effects on survival and rate of progression of fjord migrating Atlantic salmon post-smolts compared to control fish. Atlantic salmon spent on average only 151.2 h (maximum 207.3 h) in passing the 80 km fjord system and had, thus, entered the ocean when the more pathogenic pre-adult and adult lice stages developed. The brown trout, in comparison to Atlantic salmon, remained to a larger extent than Atlantic salmon in the inner part of the fjord system. No effect of salmon lice infection, or protection, was found in brown trout during the first weeks of their fjord migration. Brown trout will, to a larger extent than Atlantic salmon, stay in the fjord areas when salmon lice infections reach the more pathogenic pre-adult and adult stages. In contrast to Atlantic salmon, they will thereby possess the practical capability of returning to freshwater when encountering severe salmon lice attacks.  相似文献   

13.
A total of 230 anadromous Salmo trutta (brown trout) were sampled in five sheltered coastal fjords (or sea lochs) on the Isle of Skye, Scotland, U.K., in 2016 at varying distances from active Atlantic salmon Salmo salar farms. Statistical models were developed to investigate potential correlations between salmon lice Lepeophtheirus salmonis burdens on S. trutta hosts and their proximity to S. salar farm cages. Significant correlations were found between lice burdens and fish fork length and proximity to the nearest S. salar farm. The probability of the presence of L. salmonis on fish hosts increased with fish host size and with distance from the nearest S. salar farm, but total lice burdens were highest in fish sampled near S. salar farms and decreased with distance. The proportion of different life‐cycle stages of L. salmonis were also dependent on S. salar farm proximity, with higher juvenile lice numbers recorded at sites near S. salar farm cages. These results highlight the complexity of the relationship between S. trutta and L. salmonis infections on wild fish and emphasize the requirement of further research to quantify these effects to better inform conservation and management strategies, particularly in areas of active S. salar farm facilities.  相似文献   

14.
Fisheries catches worldwide have shown no increase over the last two decades, while aquaculture has been booming. To cover the demand for fish in the growing human population, continued high growth rates in aquaculture are needed. A potential constraint to such growth is infectious diseases, as disease transmission rates are expected to increase with increasing densities of farmed fish. Using an extensive dataset from all farms growing salmonids along the Norwegian coast, we document that densities of farmed salmonids surrounding individual farms have a strong effect on farm levels of parasitic sea lice and efforts to control sea lice infections. Furthermore, increased intervention efforts have been unsuccessful in controlling elevated infection levels in high salmonid density areas in 2009-2010. Our results emphasize host density effects of farmed salmonids on the population dynamics of sea lice and suggest that parasitic sea lice represent a potent negative feedback mechanism that may limit sustainable spatial densities of farmed salmonids.  相似文献   

15.
The behaviour of lumpfish, Cyclopterus lumpus L., in sea pens, with and without Atlantic salmon, Salmo salar L., present, was assessed by underwater camera technology. Behaviour was classified by recording the principal activity of individual fish for 30-s intervals. The majority of daylight time was spent actively foraging for food. Antagonistic behaviour between Atlantic salmon and lumpfish was not observed during the whole experimental period and no mortality was seen in either species. Cleaning behaviour, but at low frequency, was observed as lumpfish cleaned sea lice off Atlantic salmon. Significantly lower sea lice infection levels were seen on Atlantic salmon when reared together with lumpfish compared to the control group without lumpfish. Feeding behaviour can be classified as strongly opportunistic.  相似文献   

16.
The effect of two known rates of repeated blood loss on rainbow trout Oncorhynchus mykiss swimming performance was measured and blood‐feeding rates of sea lice Lepeophtheirus salmonis were calculated to predict the point at which blood ingestion causes anaemia in infected fish. Known quantities of blood were sampled from rainbow trout over a 5 day period followed by critical swimming performance ( U crit) testing. A predictive equation was developed using masses of blood‐feeding sea lice and host blood loss calculated for increasing levels of sea lice infection. Blood loss of 8% total blood volume caused a decrease in U crit for rainbow trout. Total blood volume losses of 3·2% reduced erythrocyte stores, but did not affect fish swimming performance. The predictive feeding rate model suggests that 15–25% of the tissue consumed by sea lice is blood. This consumption of blood at higher sub‐lethal infection levels (≥0·5 sea lice g−1) may cause anaemia and a further decrease in swimming performance. Anaemia would compound the osmotic balance problems due to infection and potentially precipitate the morbidity seen at lethal sea lice levels (0·75–1·0 lice g−1).  相似文献   

17.
A field experiment conducted in the River Lønningdalselven in spring 1992 supports the hypothesis that salmon lice, Lepeophtheirus salmonis, infestations may cause premature return of sea trout, Salmo trutta, juveniles, either to estuaries or to rivers. When lice infested (exposed) and uninfested (control) sea trout juveniles (post smolts) were released simultaneously into the sea, exposed fish returned to the estuarine area earlier compared with controls. Within the following two days, exposed sea trout migrated further into freshwater. At that time they were infested with a median of 62.5 lice, dominated by chalimus larvae and late juveniles. Exposed sea trout suffered from an osmoregulatory failure in sea water and this is considered one reason for infested fish returning to brackish water. While only a few control fish returned to the estuary on the day of release, some more returned to freshwater the following four days. During this time they had become heavily infested with copepodids, and carried a median of 150.0 lice. It is suggested that physiological stress and high infection pressure in the sea results in sea trout juveniles returning to estuaries and freshwater.  相似文献   

18.
Sea bass with approximate average weights of 5 and 20 g were treated against Ceratothoa oestroides infection with: (i) medicated pellets of diflubenzuron PC90 at a dosage of 3 mg kg?1 body weight (BW) per day for 14 days. Lice were counted at the beginning of treatment and 19 days after treatment. The drug cleared all lice in the treated group; in the control group, infection remained high 30 days after beginning the experiment. It was concluded that medicated pellets containing 3 mg kg?1 BW diflubenzuron effectively cleared pre‐adult and adult stages of the isopod parasite over a 14‐day period. No adverse effects were recorded in treated sea bass during the trials and no reinfection occurred 15 days after end of the treatment. (ii) Deltamethrin by means of bath treatments in infected sea bass kept in experimental tanks at 20°C. Before treatment, toxicity on healthy fish was preliminarily assessed by testing five fish from each size group at concentrations of 30, 10, 5, 3, 1, 0.1, 0.05 and 0.01 mg L?1 for 30 min. The therapeutic concentrations tested were: 10, 5, 3, 0.15, 0.1, and 0.05 μg L?1 and assessed at 1, 24 and 48 h. Best results were achieved with the 10 μg L?1 (0.01 mg L?1) dose, where prevalence was reduced from 100 to 0% over 24 h in both large and small fish. No parasite recovery was observed at 48 h. The dose of 5 μg L?1 reduced prevalence from 100 to 11.7% and to 0% for small and large fish, respectively. Finally, with the 3 μg L?1 dose, prevalence was reduced from 100 to 37.5% (small fish) and to 13.3% (large fish). Lower doses were ineffective on the parasites at either 24 or 48 h.  相似文献   

19.
Sea lice (Copepoda, Caligidae) are the most widely distributed marine pathogens in the salmon industry. Vaccination could be an environmentally friendly alternative for sea lice control; however, research on the development of such vaccines is still at an early stage of development. Recent results have suggested that subolesin/akirin/my32 are good candidate antigens for the control of arthropod infestations, including sea lice, but background knowledge about these genes in crustaceans is limited. Herein, we characterize the my32 gene/protein from two important sea lice species, Caligus rogercresseyi and Lepeophtheirus salmonis, based on cDNA sequence isolation, phylogenetic relationships, three dimensional structure prediction and expression analysis. The results show that these genes/proteins have the main characteristics of akirins from invertebrates. In addition, immunization with purified recombinant my32 from L. salmonis elicited a specific antibody response in mice and fish. These results provide an improvement to our current knowledge about my32 proteins and their potential use as vaccine candidates against sea lice in fish.  相似文献   

20.
Atlantic salmon salmo salar smolts of wild, hybrid and farmed parentage were individually tagged then reared in a sea cage for 8 months. The fish were sampled three times during this period. On all occasions, farmed Atlantic salmon displayed the highest abundance and density of sea lice Lepeophtheirus salmonis , whilst no significant differences were observed between hybrid and wild Atlantic salmon. Percentage variation between the lowest and highest infected groups was as high as 175 and 144% for L. salmonis abundance and density respectively (sample 2). The temporal stability of interindividual sea lice infection levels was investigated pair‐wise between samples using correlation (sample 1 v . 2, 1 v . 3 and 2 v . 3). When calculated using sea louse abundance, correlations ranged from r 2 = 0·11, P  < 0·01 to r 2 = 0·39, P  < 0·001, but, when the effects of fish size were controlled for by converting abundance to density, all correlations were <  r 2 = 0·1. Therefore, these data indicate that a fish's relative infection level in one sample was a weak predictor of its relative infection level in another sample. This suggests that identification of individual Atlantic salmon that display reduced susceptibility to sea lice, may be problematic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号