首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
The swimming performance of juvenile shortnose sturgeon (~16 cm TL, ~20 g), Acipenser brevirostrum, was quantified with regards to temperature (5 to 25°C) using both increased (Ucrit) and fixed velocity (endurance) tests in a laboratory setting. Sturgeons were found to show reduced Ucrit values at 5 and 10°C (25.99 and 28.86 cm s?1 respectively), with performance beginning to plateau at 15°C through 25°C (33.99 cm s?1). For the endurance protocol, fish were tested at speeds of 35, 40 and 45 cm s?1 at 5, 15 and 25°C. Performance within a single speed was similar at all temperatures, indicating the usage of anaerobic metabolism to fuel locomotion at these higher velocities. Overall, shortnose sturgeon demonstrated high tolerance towards a wide range of temperatures but showed few differences between performance levels at colder or warmer water conditions.  相似文献   

2.
The swimming performance of longnose dace Rhinichthys cataractae, the most widely distributed minnow (Cyprinidae) in North America, was assessed in relation to potential passage barriers. The study estimated passage success, maximum ascent distances and maximum sprint speed in an open‐channel flume over a range of water velocities and temperatures (10·7, 15·3 and 19·3° C). Rhinichthys cataractae had high passage success (95%) in a 9·2 m flume section at mean test velocities of 39 and 64 cm s–1, but success rate dropped to 66% at 78 cm s–1. Only 20% of fish were able to ascend a 2·7 m section with a mean velocity of 122 cm s–1. Rhinichthys cataractae actively selected low‐velocity pathways located along the bottom and corners of the flume at all test velocities and adopted position‐holding behaviour at higher water velocities. Mean volitional sprint speed was 174 cm s–1 when fish volitionally sprinted in areas of high water velocities. Swimming performance generally increased with water temperature and fish length. Based on these results, fishways with mean velocities <64 cm s–1 should allow passage of most R. cataractae. Water velocities >100 cm s–1 within structures should be limited to short distance (<1 m) and structures with velocities ≥158 cm s–1 would probably represent movement barriers. Study results highlighted the advantages of evaluating a multitude of swimming performance metrics in an open‐channel flume, which can simulate the hydraulic features of fishways and allow for behavioural observations that can facilitate the design of effective passage structures.  相似文献   

3.
Changes in the critical swimming speed (Ucrit, cm s?1) with ontogeny of 2·5–12·5 month‐old juvenile anadromous Chinese sturgeon Acipenser sinesis were measured in a modified Blazka‐type swimming tunnel. The absolute Ucrit increased with length, mass and age; the relative Ucrit (body lengths, s?1), however, decreased. Juvenile A. sinesis did not display a parr–smolt transformation at the length or age threshold to tolerate full‐strength seawater.  相似文献   

4.
Effects of two fin‐ray sampling methods on swimming performance, growth and survival were evaluated for hatchery‐reared sub‐adult white sturgeon Acipenser transmontanus. Fish were subjected to either a notch removal treatment in which a small section was removed from an anterior marginal pectoral‐fin ray, or a full removal treatment in which an entire marginal pectoral‐fin ray was removed. Control fish did not have fin rays removed, but they were subjected to a sham operation. A modified 3230 l Brett‐type swim tunnel was used to evaluate 10 min critical station‐holding speeds (SCSH) of A. transmontanus, immediately after the fin ray biopsies were obtained with each method. Survival and growth were evaluated over a 6 month period for a separate group of fish subjected to the same biopsy methods. Mean ± s.e . 10 min SCSH were 108·0 ± 2·3, 110·0 ± 2·6 and 115·0 ± 3·5 cm s?1 for the notch removal group, full removal group and control group, respectively, and were not significantly different among treatments. Behavioural characteristics including tail‐beat frequency and time spent hunkering were also not significantly different among treatment groups swimming at the same speeds. There were no mortalities and relative growth was similar among treatment groups. Average biopsy time for the notch removal method was lower and the wounds appeared to heal more quickly compared with the full removal method.  相似文献   

5.
Tested was the hypothesis that juvenile Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) would exhibit no response in short‐term survival or swimming performance when exposed to varying concentrations of suspended sediment simulating dredge plumes in waterways where this species may be impacted by dredging operations. Sediment collected from Savannah Harbor, South Carolina, USA was used to simulate a worst‐case scenario. Juvenile sturgeon were contained for a 3‐day period in flow‐through aquaria, with limited opportunity for movement, in sediment of varying concentrations (100, 250 and 500 mg L?1 total suspended solids [TSS]) mimicking prolonged exposure to suspended sediment plumes near an operating dredge. Of the 90 fish exposed, 86 (96%) survived the test. Of the four fish that died, one was exposed to 250 TSS and three to 500 TSS. Swimming performance results indicated that nearly all fish were positively rheotactic. Critical swim speeds (Ucrits) were moderate, whether measured as absolute values (21–31 cm s?1) or as relative values (1.4–2.1 body lengths s?1), with no significant differences among treatments (F < 0.83, P ≥ 0.4874). Behavior was dominated by contact‐based locomotion and station‐holding. Absence of substantial or significant immediate effects on survival and swimming performance suggest that impacts of sediment plumes in nature, where fish have freedom of movement and the power to escape rapidly, are minimal.  相似文献   

6.
Swimming abilities of wild‐caught sand‐smelt Atherina presbyter larvae were assessed as critical swimming speed (Ucrit) throughout ontogeny. The mean Ucrit increased with size, ranging from 3·6 to 18·7 cm s?1, over the size range of 6·6–21·0 mm LT. This indicates that at hatching A. presbyter larvae, far from being passive floaters, are already capable of active behaviours, which may influence their dispersal patterns.  相似文献   

7.
While many coral reef fishes utilise substratum refuges, the direct influence of water flow and swimming ability on such refuging patterns is yet to be established. This study examined the swimming ability and refuging behaviour of a labrid (Halichoeres margaritaceus) and a pomacentrid (Pomacentrus chrysurus) that inhabit high flow, wave-swept coral reef flats. Field observations of refuging patterns were combined with experimental evaluations in a flow tank using a replica of a substratum hole frequently used by these species. Under a range of flow speeds commonly found on the reef flat (0–60 cm s−1), flow within the substratum refuge was reduced to speeds of 0–12 cm s−1, representing a 75–100% flow reduction. Swimming ability of each species was then tested at 60 cm s−1 with and without access to this flow refuge. Both species were able to maintain activity within the 60 cm s−1 flow for considerably longer when provided with a refuge, with increases from approximately 39 min to 36 h for H. margaritaceus and 8 min to 88 h for P. chrysurus. Despite H. margaritaceus having the strongest swimming ability without access to a refuge, P. chrysurus was able to maintain swimming activity more than twice as long as H. margaritaceus when provided with a refuge. These increases in activity are probably due to energetic savings, with this type of refuge providing an estimated 95% energy saving over swimming directly into a unidirectional flow of 60 cm s−1. These results highlight the major advantages provided by refuging behaviour and emphasise the importance of habitat refuges in shaping patterns of habitat use in reef fishes.  相似文献   

8.
Swimming performance was assessed in juvenile pink salmon Oncorhynchus gorbuscha (body mass <5·0 g) using five different protocols: four constant acceleration tests each with a different acceleration profile (rates of 0·005, 0·011, 0·021 and 0·053 cm s?2) and a repeated ramped‐critical swimming speed test. Regardless of the swim protocol, the final swimming speeds did not differ significantly (P > 0·05) among swim tests and ranged from 4·54 to 5·20 body lengths s?1. This result supports the hypothesis that at an early life stage, O. gorbuscha display the same fatigue speeds independent of the swimming test utilized. Whole body and plasma [Na+] and [Cl?] measured at the conclusion of these tests were significantly elevated when compared with control values (P < 0·05) and appear to be predominantly associated with dehydration rather than net ion gain. Given this finding for a small salmonid, estimates of swim performance can be accurately measured with acceleration tests lasting <10 min, allowing a more rapid processing than is possible with a longer critical swim speed test.  相似文献   

9.
Darters represent a substantial radiation of freshwater fishes that live in close association with the substrate in North American streams and rivers. A key feature of any darter species is therefore its ability to stay in place or to “hold station” in flowing water. Here, we quantify the station‐holding performance of two morphologically divergent darter species, the fantail darter Etheostoma flabellare and the Missouri saddled darter Etheostoma tetrazonum. We also characterize the primary kinematic responses of the two species when holding station in flow speeds ranging from 4 to 56 cm s?1 in a flow tank on either plexiglas or small rock substrate. We then present a series of hypotheses about the potential hydrodynamic and functional consequences of the observed postural changes and the links among morphology, posture, and station‐holding performance. On both substrates, E. tetrazonum was able to hold station at higher flow speeds than E. flabellare. On rocks, E. tetrazonum slipped at an average speed of 55.7 cm s?1 whereas E. flabellare slipped at 40.2 cm s?1. On plexiglas, E. tetrazonum slipped at an average speed of 24.7 cm s?1 whereas E. flabellare slipped at 23.1 cm s?1. We measured body and fin positions of the two species from individual frames of high‐speed video while holding station on rocks and plexiglas. We found that on both substrates, the two species generally exhibited similar kinematic responses to increasing flow: the head was lowered and angled downward, the back became more arched, and the median and caudal fin rays contracted as water flow speed increased. The ventral halves of the pectoral fins were also expanded and the dorsal halves contracted. These changes in posture and fin position likely increase negative lift forces thereby increasing substrate contact forces and reducing the probability of downstream slip. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Critical (<30 min) and prolonged (>60 min) swimming speeds in laboratory chambers were determined for larvae of six species of Australian freshwater fishes: trout cod Maccullochella macquariensis, Murray cod Maccullochella peelii, golden perch Macquaria ambigua, silver perch Bidyanus bidyanus, carp gudgeon Hypseleotris spp. and Murray River rainbowfish Melanotaenia fluviatilis. Developmental stage (preflexion, flexion, postflexion and metalarva) better explained swimming ability than did length, size or age (days after hatch). Critical speed increased with larval development, and metalarvae were the fastest swimmers for all species. Maccullochella macquariensis larvae had the highest critical [maximum absolute 46·4 cm s?1 and 44·6 relative body lengths (LB) s?1] and prolonged (maximum 15·4 cm s?1, 15·6 LB s?1) swimming speeds and B. bidyanus larvae the lowest critical (minimum 0·1 cm s?1, 0·3 LB s?1) and prolonged swimming speeds (minimum 1·1 cm s?1, 1·0 LB s?1). Prolonged swimming trials determined that the larvae of some species could not swim for 60 min at any speed, whereas the larvae of the best swimming species, M. macquariensis, could swim for 60 min at 44% of the critical speed. The swimming performance of species with precocial life‐history strategies, with well‐developed larvae at hatch, was comparatively better and potentially had greater ability to influence their dispersal by actively swimming than species with altricial life‐history strategies, with poorly developed larvae at hatch.  相似文献   

11.
Little is known about the behaviour patterns and swimming speed strategies of anadromous upriver migrating fish. We used electromyogram telemetry to estimate instantaneous swimming speeds for individual sockeye (Oncorhynchus nerka) and pink salmon (O. gorbuscha) during their spawning migrations through reaches which spanned a gradient in river hydraulic features in the Fraser River, British Columbia. Our main objectives were to describe patterns of individual-specific swim speeds and behaviours, identify swimming speed strategies and contrast these between sexes, species and reaches. Although mean swimming speeds did not differ between pink salmon (2.21 BL s–1) and sockeye salmon (1.60 BL s–1), sockeye salmon were over twice as variable (mean CV; 54.78) in swimming speeds as pink salmon (mean CV; 22.54). Using laboratory-derived criteria, we classified swimming speeds as sustained (<2.5 BL s–1), prolonged (2.5–3.2 BL s–1), or burst (>3.2 BL s–1). We found no differences between sexes or species in the proportion of total time swimming in these categories – sustained (0.76), prolonged (0.18), burst (0.06); numbers are based on species and sexes combined. Reaches with relatively complex hydraulics and fast surface currents had migrants with relatively high levels of swimming speed variation (e.g., high swimming speed CV, reduced proportions of sustained speeds, elevated proportions of burst speeds, and high rates of bursts) and high frequency of river crossings. We speculate that complex current patterns generated by river constrictions created confusing migration cues, which impeded a salmon's ability to locate appropriate pathways.  相似文献   

12.
Oxygen consumption rates were measured in a school of 56 horse mackerel Trachurus trachurus while at rest and while swimming at steady sustained speeds. Resting values of 38.76 and 42.10mg O2 kg?1 h?1 were measured in a sealed cylindrical tank (535 l) while observing that the fish school remained neutrally buoyant and inactive with only gentle pectoral fin movements and no swimming motion. The same school was trained to swim with projected light patterns within a 10-m diameter annular doughnut respirometer. The oxygen consumption increased from the resting level through 51 mg O2 kg?1 h?1 at the slowest swimming speeds of 0.29 m s?1 (0.95 L s?1) to around 259 mg O2 kg?1 h?1 at the higher measured swimming speed of 0.87 m s?1 (2.82 L s?1). The data fitted a curve where oxygen consumption rose in proportion to velocity to the power of 2.56 with the intercept at the resting level. The maximum sustained speed (80 min) of 1.12 m s?1 (3.63 Ls?1) was not achieved within the respirometer but corresponded to an estimated oxygen consumption of 458.33 mg O2 kg?1 h?1 giving a scope for aerobic activity of 419.02 mg O2 kg?1 h?1. At a speed of 0.87 m s?1, there was a lower bound on the aerobic efficiency of at least 38% and at 1.12 m s?1, the highest aerobic speed, of 40%. Sustained speeds swum in a curved path as here should be increased by 5% for a straight path giving a maximum sustained 80 min speed of 1.18 m s?1.  相似文献   

13.
Water temperature and flow velocity directly affect the fish swimming capacity, and thus, both variables influence the fish passage through river barriers. Nonetheless, their effects are usually disregarded in fishway engineering and management. This study aims to evaluate the volitional swimming capacity of the northern straight-mouth nase (Pseudochondrostoma duriense), considering the possible effects of water temperature, flow velocity and body size. For this, the maximum distance, swim speed and fatigue time (FT) were studied in an outdoor open-channel flume in the Duero River (Burgos, Spain) against three nominal velocities (1.5, 2.5 and 3 m s−1) and temperatures (5.5, 13.5 and 18.5°C), also including the changes between swimming modes (prolonged and sprint). Results showed that a nase of 20.8 cm mean fork length can develop a median swim speed that exceeds 20.7 BL s−1 (4.31 m s−1) during a median time of 3.4 s in sprint mode, or 12.2 BL s−1 (2.55 m s−1) for 23.7 s in prolonged mode under the warmest scenario. During prolonged swimming mode, fish were able to reach further distances in warmer water conditions for all situations, due to a greater swimming speed and FT, whereas during sprint mode, warmer conditions increased the swim speed maintaining the FT. In conclusion, the studied temperature range and flow velocity range influence fish swimming performance, endurance and distance travelled, although with some differences depending on the swimming mode. The provided information goes a step forward in the definition of real fish swimming capacities, and in turn, will contribute to establish clear passage criteria for thermo-velocity barriers, allowing the calculation of the proportion of fish able to pass a barrier under different working scenarios, as well designing of the optimized solutions to improve the fish passage through river barriers.  相似文献   

14.
Prolonged swimming performances of two as yet unnamed species of three‐spined stickleback, Gasterosteus spp., were compared. The two fishes (not yet formally described, referred to here as benthic and limnetic) inhabit different niches within Paxton Lake, Texada Island, British Columbia, Canada, and are recent, morphologically distinct species. Limnetics had longer endurance during prolonged swimming than did benthics. The mean regression of the log10 of fatigue time (Ft, s) on swimming speed (U, standard length, LS s?1) for limnetics (log10Ft = 7·03 ? 0·46U) had a similar slope, but a significantly higher intercept than that for benthics (log10Ft = 5·55 ? 0·43U). Adult benthics were larger, heavier and deeper‐bodied fish than limnetics. Limnetics, however, had a significantly greater pectoral fin edge:base ratio (mean ± s .e .: limnetics, 4·58 ± 0·43; benthics, 3·63 ± 0·27). In addition, limnetics had significantly lower drag coefficients (CD) than benthics (limnetics, log10CD = ?0·49log10Re + 0·66; benthics, log10CD = ?0·26log10Re ? 0·30) where Re is the Reynolds number [(LSU?1), where U and ν are swimming velocity and the kinematic viscosity of the water, respectively]. Compared to their ancestral form, the anadromous three‐spined stickleback Gasterosteus aculeatus L., limnetics and benthics had significantly longer and shorter endurance times, respectively. In addition, both these fishes had significantly higher fast‐start velocities than their ancestral form. Selection due to differential resource use may have lead to divergence of body form, and, therefore, of steady swimming performance. Therefore predation may be the selective force for the similar high escape performance in these two fishes.  相似文献   

15.
This study focused on the acute physiological responses to saltwater exposure in juvenile shortnose sturgeon Acipenser brevirostrum. In two separate laboratory experiments, 2 year‐old A. brevirostrum were exposed to either full (32) or half‐strength (16) seawater for up to 24 h. First, oxygen consumption rates were used to estimate the metabolic costs over 24 h. Secondly, blood and muscle samples were analysed at 6, 12 and 24 h for water loss, various measures of osmoregulatory status (plasma osmolality and ions) and other standard haematological variables. Juveniles exposed to full‐strength seawater showed significant decreases in oxygen consumption rates during the 24 h exposure. Furthermore, seawater‐exposed fish had significantly increased plasma osmolality, ions (Na+ and Cl?) and a 17% decrease in total wet mass over the 24 h exposure period. To a lesser extent, increases in osmolality, ions and mass loss were observed in fish exposed to half‐strength seawater but no changes to oxygen consumption. Cortisol was also significantly increased in fish exposed to full‐strength seawater. While plasma protein was elevated following 24 h in full‐strength seawater, haemoglobin, haematocrit and plasma glucose levels did not change with increased salinity. These results imply an inability of juvenile A. brevirostrum to regulate water and ions in full‐strength seawater within 24 h. Nonetheless, no mortality occurred in any exposure, suggesting that juvenile A. brevirostrum can tolerate short periods in saline environments.  相似文献   

16.
R.W. Blake    J. Li    K.H.S. Chan 《Journal of fish biology》2009,75(3):591-617
Four goldfish Carassius auratus morphotypes of similar length (50 mm): common (streamlined, full complement of paired and median fins, bifurcated caudal fin), comet (‘common like’ but with a long, deeply forked caudal fin), fantail (short, deep body with twinned caudal and anal fins) and eggfish (similar to the fantail but lacking a dorsal fin) were compared. Drag, steady swimming kinematics, energetics, fast‐start performance, stability in yaw and roll and propulsive muscle ultrastructural characteristics were measured. A performance ‘pairing’ (common and comet; fantail and eggfish) was a recurrent theme for most performance variables. Fantail and eggfish drag were higher (requiring more thrust at any given velocity) than those for the more streamlined common and comet. This was reflected in kinematics; tailbeat frequency and stride length at any given velocity for the common and comet were lower and higher, respectively, than that of the fantail and eggfish. Common and comet fatigue times were not significantly different from those of their ancestor, crucian carp Carassius carassius, and higher than the fantail and eggfish. The cost of transport of the common and comet (c. 0· 6 mg O2 kg?1 m?1) was accurately predicted by the mass scaling relationship for fish, but values for the fantail and eggfish (c. 1· 3 mg O2 kg?1 m?1) were not. Rolling and yawing motions in eggfish (dorsal fin absent) during steady swimming were associated with significant energy losses. Eggfish maximum fast‐start acceleration (c. 5 m s?2) was poor due to the absence of inertial and lifting contributions to thrust from the dorsal fin and energy wasting rolling motions. Common and comet fast‐start performance (average velocity c. 0· 45 m s?1, maximum velocity c. 1· 2 m s?1, average acceleration c. 7· 5 m s?2, maximum acceleration c. 35 m s?2) was similar to that of other locomotor generalists (e.g. rainbow trout Oncorhynchus mykiss). Artificially selected fishes can contribute to the understanding of form and movement in fishes and complement studies of the role of locomotor adaptations in natural systems.  相似文献   

17.
The influence of surgical implantation of an acoustic transmitter on the swimming performance, growth and survival of juvenile sockeye salmon Oncorhynchus nerka and Chinook salmon Oncorhynchus tshawytscha was examined. The transmitter had a mass of 0·7 g in air while sockeye salmon had a mass of 7·0–16·0 g and Chinook salmon had a mass of 6·7–23·1 g (a transmitter burden of 4·5–10·3% for sockeye salmon and 3·1–10·7% for Chinook salmon). Mean critical swimming speeds (Ucrit) for Chinook salmon ranged from 47·5 to 51·2 cm s?1 [4·34–4·69 body lengths (fork length, LF) s?1] and did not differ among tagged, untagged and sham‐tagged groups. Tagged sockeye salmon, however, did have lower Ucrit than control or sham fish. The mean Ucrit for tagged sockeye salmon was 46·1 cm s?1 (4·1 LF s?1), which was c. 5% less than the mean Ucrit for control and sham fish (both groups were 48·6 cm s?1 or 4·3 LF s?1). A laboratory evaluation determined that there was no difference in LF or mass among treatments (control, sham or tag) either at the start or at the end of the test period, suggesting that implantation did not negatively influence the growth of either species. None of the sockeye salmon held under laboratory conditions died from the influence of surgical implantation of transmitters. In contrast, this study found that the 21 day survival differed between tagged and control groups of Chinook salmon, although this result may have been confounded by the poor health of Chinook salmon treatment groups.  相似文献   

18.
In streams tributary to the North Pacific, anadromous sockeye salmon and non-anadromous kokanee, Oncorhynchus nerka (Walbaum), occasionally spawn sympatrically and male kokanee may act as 'sneaks’to spawn with the larger female sockeye. Despite this interbreeding, sockeye and kokanee exhibit persistent biochemical genetic differences at several enzyme loci. Genetic differences between forms may be maintained by selection against‘hybrids’due to the different life histories of sockeye and kokanee; sockeye make extensive smolt, oceanic, and spawning migrations while kokanee reside permanently in fresh water. We tested the sustained swimming abilities of juvenile sockeye, kokanee, and sockeye (female) × kokanee (male) hybrids to see if hybrids were inferior to sockeye in a trait that is probably under stronger selection in an anadromous life history. Sockeye had significantly greater mean critical swimming velocities (Ucrit) than kokanee of the same size raised under identical conditions (8.3 v. 7.3 body lengths s?1 respectively). When tested 1 month later the mean Ucrit of sockeye was only marginally greater than that for sockeye × kokanee hybrids (both c. 6.6 body lengths s?1). Sockeye swimming performance was also less variable than that of either kokanee or hybrids. Sockeye tended to have slimmer bodies and longer caudal regions than kokanee or sockeye × kokanee hybrids of the same size. Sockeye also had significantly more vertebrae than kokanee and hybrids, while hybrids had more vertebrae than kokanee. These morphological differences may have contributed to the differences in swimming performance. We concluded: (i) that juvenile sockeye and kokanee have diverged with respect to sustained swimming performance and that reduced performance by kokanee may be due to relaxed selection for sustained swimming performance associated with their non-anadromous life history, (ii) that sockeye × kokanee hybrids appear to have modestly lower swimming capabilities than pure sockeye, and (iii) if the variability in swimming performance is associated with differences in survival in nature, then such differences may promote divergence between sympatric sockeye and kokanee.  相似文献   

19.
Behavioural and ecological observations were made on young, reared Platax orbicularis in Opunohu Bay, Moorea, French Polynesia, during their transition from the pelagic, dispersive stage to the reef‐orientated demersal stage. Seventy‐two young P. orbicularis (17–75 mm standard length, LS) were released in the pelagic zone and 20 (40–70 mm LS) adjacent to the reefs. Swimming speed was slow (mean 5·2 cm s?1) and independent of size. An ontogenetic descent was observed: the smallest P. orbicularis swam at the surface, medium‐sized P. orbicularis swam in midwater (mean 5–13 m) and the largest P. orbicularis swam to the bottom, where many lay on their sides. Platax orbicularis swam southerly on average, away from the ocean and into the bay. Smaller P. orbicularis were more likely to swim directionally than larger individuals. Young P. orbicularis released near reef edges swam at similar, but more variable speeds (mean 6·6 cm s?1). About half of those released near reefs swam away, but fewer swam away from an inshore fringing reef than from a patch reef near the bay mouth. Many P. orbicularis swam up the slope onto the reef top, but the little settlement observed was near the reef base. Average, near‐reef swimming direction was also southerly. Some reef residents, in particular the triggerfish Balistapus undulatus, harassed young P. orbicularis.  相似文献   

20.
Critical swimming speeds (mean ± s . e .) for juvenile shortnose sturgeon Acipenser brevirostrum were 34·4 cm s−1± 1·7 (2·18 ± 0·09 body lengths, BL s−1). Swimming challenges at 10, 20 and 30 cm s−1 revealed that juvenile A. brevirostrum are relatively poor swimmers, and that the fish did not significantly modify their swimming behaviour, although they spent more time substratum skimming ( i.e. contact with flume floor) at 30 cm s−1 relative to 10 cm s−1. When present, these behavioural responses are probably related to morphological features, such as flattened rostrum, large pectoral fins, flattened body shape and heterocercal tail, and may be important to reduce the costs of swimming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号