首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
End-binding 1 (EB1) proteins are evolutionarily conserved components of microtubule (MT) plus-end tracking protein that regulate MT dynamics. Giardia lamblia, with two nuclei and cytoskeletal structures, requires accurate MT distribution for division. In this study, we show that a single EB1 homolog gene of G. lamblia regulates MT dynamics in mitosis. The haemagglutinin-tagged G. lamblia EB1 (GlEB1) localizes to the nuclear envelopes and median bodies, and is transiently present in mitotic spindles of dividing cells. Knockdown of GlEB1 expression using the morpholinos-based anti-EB1 oligonucleotides, resulted in a significant defect in mitosis of Giardia trophozoites. The MT-binding assays using recombinant GlEB1 (rGlEB1) proteins demonstrated that rGlEB1102–238, but not rGlEB11–184, maintains an MT-binding ability comparable with that of the full length protein, rGlEB11–238. Size exclusion chromatography showed that rGlEB1 is present as a dimer formed by its C-terminal domain and a disulfide bond. In vitro-mutagenesis of GlEB1 indicated that an intermolecular disulfide bond is made between cysteine #13 of the two monomers. Complementation assay using the BIM1 knockout mutant yeast, the yeast homolog of mammalian EB1, indicated that expression of the C13S mutant GlEB1 protein cannot rescue the mitotic defect of the BIM1 mutant yeast. These results suggest that dimerization of GlEB1 via the 13th cysteine residues plays a role during mitosis in Giardia.  相似文献   

2.
Aims: In this study, we determined the ability of a promising alternative UV technology – a polychromatic emission from a medium‐pressure UV (MP UV) technology – to inhibit the reactivation of UV‐irradiated Giardia lamblia cysts. Methods and Results: A UV‐collimated beam apparatus was used to expose shallow suspensions of purified G. lamblia cysts in PBS (pH 7·2) or filtered drinking water to a low dose (1 mJ cm?2) of MP UV irradiation. After UV irradiation, samples were exposed to two repair conditions (light or dark) and two temperature conditions (25°C or 37°C for 2–4 h). The inactivation of G. lamblia cysts by MP UV was very extensive, and c. 3 log10 inactivation was achieved with a dose of 1 mJ cm?2. Meanwhile, there was no apparent reactivation (neither in vivo nor in vitro) of UV‐irradiated G. lamblia under the conditions tested. Conclusion: The results of this study indicated that, unlike the traditional low‐pressure (LP) UV technology, an alternative UV technology (MP UV) could inhibit the reactivation of UV‐irradiated G. lamblia cysts even when the cysts were exposed to low UV doses. Significance and Impact of the Study: It appears that alternative UV technology has some advantages over the traditional LP UV technology in drinking water disinfection because of their high level of inactivation against G. lamblia cysts and also effective inhibition of reactivation in UV‐irradiated G. lamblia cysts.  相似文献   

3.
The unicellular protozoa Giardia lamblia is a food‐ and waterborne parasite that causes giardiasis. This illness is manifested as acute and self‐limited diarrhea and can evolve to long‐term complications. Successful establishment of infection by Giardia trophozoites requires adhesion to host cells and colonization of the small intestine, where parasites multiply by mitotic division. The tight binding of trophozoites to host cells occurs by means of the ventral adhesive disc, a spiral array of microtubules and associated proteins such as giardins. In this work we show that knock down of the Small Ubiquitin‐like MOdifier (SUMO) results in less adhesive trophzoites, decreased cell proliferation and deep morphological alterations, including at the ventral disc. Consistent with the reduced proliferation, SUMO knocked‐down trophozoites were arrested in G1 and in S phases of the cell cycle. Mass spectrometry analysis of anti‐SUMO immunoprecipitates was performed to identify SUMO substrates possibly involved in these events. Among the identified SUMOylation targets, α‐tubulin was further validated by Western blot and confirmed to be a SUMO target in Giardia trophozoites.  相似文献   

4.
Giardia lamblia parasitism accounts for the majority of cases of parasitic diarrheal disease, making this flagellated eukaryote the most successful intestinal parasite worldwide. This organism has undergone secondary reduction/elimination of entire organelle systems such as mitochondria and Golgi. However, trophozoite to cyst differentiation (encystation) requires neogenesis of Golgi‐like secretory organelles named encystation‐specific vesicles (ESVs), which traffic, modify and partition cyst wall proteins produced exclusively during encystation. In this work we ask whether neogenesis of Golgi‐related ESVs during G. lamblia differentiation, similarly to Golgi biogenesis in more complex eukaryotes, requires the maintenance of distinct COPII‐associated endoplasmic reticulum (ER) subdomains in the form of ER exit sites (ERES) and whether ERES are also present in non‐differentiating trophozoites. To address this question, we identified conserved COPII components in G. lamblia cells and determined their localization, quantity and dynamics at distinct ERES domains in vegetative and differentiating trophozoites. Analogous to ERES and Golgi biogenesis, these domains were closely associated to early stages ofnewly generated ESV. Ectopic expression of non‐functional Sar1 GTPase variants caused ERES collapse and, consequently, ESV ablation, leading to impaired parasite differentiation. Thus, our data show how ERES domains remain conserved in G. lamblia despite elimination of steady‐state Golgi. Furthermore, the fundamental eukaryotic principle of ERES to Golgi/Golgi‐like compartment correspondence holds true in differentiating Giardia presenting streamlined machinery for secretory organelle biogenesis and protein trafficking. However, in the Golgi‐less trophozoites ERES exist as stable ER subdomains, likely as the sole sorting centres for secretory traffic.  相似文献   

5.

Background  

Giardia are a group of widespread intestinal protozoan parasites in a number of vertebrates. Much evidence from G. lamblia indicated they might be the most primitive extant eukaryotes. When and how such a group of the earliest branching unicellular eukaryotes developed the ability to successfully parasitize the latest branching higher eukaryotes (vertebrates) is an intriguing question. Gene duplication has long been thought to be the most common mechanism in the production of primary resources for the origin of evolutionary novelties. In order to parse the evolutionary trajectory of Giardia parasitic lifestyle, here we carried out a genome-wide analysis about gene duplication patterns in G. lamblia.  相似文献   

6.
Giardia lamblia is a protozoan pathogen with distinct cytoskeletal structures, including median bodies and eight flagella. In this study, we examined components comprising G. lamblia flagella. Crude flagellar extracts were prepared from G. lamblia trophozoites, and analyzed by two-dimensional (2-D) gel electrophoresis. The 19 protein spots were analyzed by MALDI–TOF mass spectrometry, identifying ten metabolic enzymes, six distinct giardins, Giardia trophozoite antigen 1, translational initiation factor eIF-4A, and an extracellular signal-regulated kinase 2. Among the identified proteins, we studied α-11 giardin which belongs to a group of cytoskeletal proteins specific to Giardia. Western blot analysis and real-time PCR indicated that expression of α-11 giardin is not significantly increased during encystation of G. lamblia. Immunofluorescence assays using anti-α-11 giardin antibodies revealed that α-11 giardin protein mainly localized to the plasma membranes and basal bodies of the anterior flagella of G. lamblia trophozoites, suggesting that α-11 giardin is a genuine component of the G. lamblia cytoskeleton.  相似文献   

7.

Background  

Compared with many protists, Giardia lamblia has a simple life cycle alternating between cyst and trophozoite. Most research on the molecular biology of Giardia parasites has focused on trophozoites and the processes of excystation and encystation, whereas cysts have attracted less interest. The striking morphological differences between the dormant cyst and the rapidly dividing and motile trophozoite implies profound changes in the metabolism as the parasite encysts in the host's intestine and excysts upon ingestion by a new host.  相似文献   

8.
Giardia lamblia is a major cause of diarrhoeal disease worldwide. Since it has no known toxin, the ability of trophozoites to colonise the human small intestine is required for its pathogenesis. Mitosis in this protozoan parasite is a unique challenge because its two equivalent nuclei and complex cytoskeleton must be duplicated and segregated accurately. Giardial mitosis is a complex and rapid event that is poorly understood at the cellular and molecular levels. Higher eukaryotes have one to three members of the highly conserved Ser/Thr aurora kinase (AK) family that regulate key aspects of mitosis and cytokinesis. Giardia has a single AK orthologue (gAK) with 61% similarity to human AK A. In addition to the conserved active site residues, activation loop and destruction-box motifs characteristic of AKs, gAK contains a unique insert near the active site region. We epitope-tagged gAK at its C-terminus and expressed it under its own promoter. During interphase, gAK localises exclusively to the nuclei, but is not phosphorylated as shown by lack of staining with an antibody specific to phosphorylated AK A (pAK). In contrast, during mitosis pAK localises to the basal bodies/centrosomes and co-localises with tubulin to the spindle. During specific stages of mitosis, giardial pAK also localised dynamically to cytoskeletal structures unique to Giardia: the paraflagellar dense rods of the anterior flagella and the median body, whose functions are unknown, as well as to the parent attachment disc. Two AK inhibitors significantly decreased giardial growth and increased the numbers of cells arrested in cytokinesis. These inhibitors appeared to increase microtubule nucleation and cell-ploidy. Our data show that gAK is phosphorylated in mitosis and suggest that it plays an important role in the Giardia cell cycle. The pleiotropic localisation of AK suggests that it may co-ordinate the reorganisation and segregation of tubulin-containing structures in mitosis. We believe this is the first report of a signalling protein regulating cell division in Giardia.  相似文献   

9.
In humans, mRNA polyadenylation involves the participation of about 20 factors in four main complexes that recognize specific RNA sequences. Notably, CFIm25, CPSF73, and PAP have essential roles for poly(A) site selection, mRNA cleavage, and adenosine residues polymerization. Besides the relevance of polyadenylation for gene expression, information is scarce in intestinal protozoan parasites that threaten human health. To better understand polyadenylation in Entamoeba histolytica, Giardia lamblia, and Cryptosporidium parvum, which represent leading causes of diarrhea worldwide, genomes were screened for orthologs of human factors. Results showed that Entamoeba histolytica and C. parvum have 16 and 12 proteins out of the 19 human proteins used as queries, respectively, while G. lamblia seems to have the smallest polyadenylation machinery with only six factors. Remarkably, CPSF30, CPSF73, CstF77, PABP2, and PAP, which were found in all parasites, could represent the core polyadenylation machinery. Multiple genes were detected for several proteins in Entamoeba, while gene redundancy is lower in Giardia and Cryptosporidium. Congruently with their relevance in the polyadenylation process, CPSF73 and PAP are present in all parasites, and CFIm25 is only missing in Giardia. They conserve the functional domains and predicted folding of human proteins, suggesting they may have the same roles in polyadenylation.  相似文献   

10.
Giardia lamblia is a protozoan parasite with many characteristics common among eukaryotic cells, but lacking other features found in most eukaryotes. Cardiolipin is a phospholipid located exclusively in energy transducing membranes and it was identified in mitochondria, bacteria, hydrogenosomes and chloroplasts. In eukaryotes, cardiolipin is the only lipid that is synthesized in the mitochondria. Biochemical procedures (TLC, HPLC) and fluorescent tools (NAO) were applied in order to search for cardiolipin in G. lamblia. In addition, BLAST searches were used to find homologs of enzymes that participate in the cardiolipin synthesis. Cardiolipin synthase was searched in the Giardia genome, using Saccharomyces cerevisiae and Mycoplasma penetrans sequences as bait. However, a good match to G. lamblia related proteins was not found. Here we show that mitosomes of G. lamblia apparently do not contain cardiolipin, which raises the discussion for its endosymbiotic origin and for the previous proposal that Giardia mitosomes are modified mitochondria.  相似文献   

11.
Attachment to the intestinal epithelium is critical to the lifestyle of the ubiquitous parasite Giardia lamblia. The ventrolateral flange is a sheet-like membrane protrusion at the interface between parasites and attached surfaces. This structure has been implicated in attachment, but its role has been poorly defined. Here, we identified a novel actin associated protein with putative WH2-like actin binding domains we named Flangin. Flangin complexes with Giardia actin (GlActin) and is enriched in the ventrolateral flange making it a valuable marker for studying the flanges’ role in Giardia biology. Live imaging revealed that the flange grows to around 1 μm in width after cytokinesis, then remains uniform in size during interphase, grows in mitosis, and is resorbed during cytokinesis. A flangin truncation mutant stabilizes the flange and blocks cytokinesis, indicating that flange disassembly is necessary for rapid myosin-independent cytokinesis in Giardia. Rho family GTPases are important regulators of membrane protrusions and GlRac, the sole Rho family GTPase in Giardia, was localized to the flange. Knockdown of Flangin, GlActin, and GlRac result in flange formation defects. This indicates a conserved role for GlRac and GlActin in forming membrane protrusions, despite the absence of canonical actin binding proteins that link Rho GTPase signaling to lamellipodia formation. Flangin-depleted parasites had reduced surface contact and when challenged with fluid shear force in flow chambers they had a reduced ability to remain attached, confirming a role for the flange in attachment. This secondary attachment mechanism complements the microtubule based adhesive ventral disc, a feature that may be particularly important during mitosis when the parental ventral disc disassembles in preparation for cytokinesis. This work supports the emerging view that Giardia’s unconventional actin cytoskeleton has an important role in supporting parasite attachment.  相似文献   

12.
Aims: This study describes an approach for genotyping Giardia cysts obtained from wastewater treatment plants (WTPs) in Spain using real‐time PCR (qPCR) in combination with immunomagnetic beads. Methods and Results: A 50‐cycle amplification of a 74‐bp fragment of the Giardia beta‐giardin gene was adopted from a previous qPCR method. Additionally, two locked nucleic acid (LNA) probes were designed (LNA P434 P1 for assemblage A and LNA P434 H3 for assemblage B). All 16 wastewater samples analysed were positive with the immunofluorescence assay (IFA). Assemblage A was detected in all WTP samples using primer–LNA probe P434 P1 set. Giardia duodenalis identification was confirmed by PCR–RFLP analysis and sequencing of the β‐giardin gene in the water samples found positive by IFA and qPCR. Among the 16 assemblage A isolates that were sequenced, two subtypes were identified; 11 corresponded to the A2 subgenotype, whereas three corresponded to the subgenotype A3. A mixture of subgenotypes was found in the remaining two isolates. Conclusions: The newly developed qPCR assays were able to discern G. duodenalis assemblages A and B in wastewater. Significance and Impact of the Study: The real‐time PCR assays provided a rapid method for detection and one‐step genotyping of G. duodenalis from wastewater samples, and its application would contribute to understanding the distribution and abundance of G. duodenalis assemblages A and B in wastewater.  相似文献   

13.
Nitric oxide (NO) has been shown to inhibit Giardia lamblia in vitro and in vivo. This study sought to determine if Giardia infection induces arginase 1 (ARG1) expression in host macrophages to reduce NO production. Stimulations of RAW 264.7 macrophage-like cells with Giardia extract induced arginase activity. Real-time PCR and immunohistochemistry showed increased ARG1 and nitric oxide synthase 2 (NOS2) expression in mouse intestine following infection. Flow cytometry demonstrated increased numbers of macrophages positive for both ARG1 and NOS2 in lamina propria following infection, but there was no evidence of increased expression of ARG1 in these cells.  相似文献   

14.
Fecal samples were taken from wild ducks on the lower Rio Grande River around Las Cruces, N. Mex., from September 2000 to January 2001. Giardia cysts and Cryptosporidium oocysts were purified from 69 samples by sucrose enrichment followed by cesium chloride (CsCl) gradient centrifugation and were viewed via fluorescent-antibody (FA) staining. For some samples, recovered cysts and oocysts were further screened via PCR to determine the presence of Giardia lamblia and Crytosporidium parvum. The results of this study indicate that 49% of the ducks were carriers of Cryptosporidium, and the Cryptosporidium oocyst concentrations ranged from 0 to 2,182 oocysts per g of feces (mean ± standard deviation, 47.53 ± 270.3 oocysts per g); also, 28% of the ducks were positive for Giardia, and the Giardia cyst concentrations ranged from 0 to 29,293 cysts per g of feces (mean ± standard deviation, 436 ± 3,525.4 cysts per g). Of the 69 samples, only 14 had (oo)cyst concentrations that were above the PCR detection limit. Samples did test positive for Cryptosporidium sp. However, C. parvum and G. lamblia were not detected in any of the 14 samples tested by PCR. Ducks on their southern migration through southern New Mexico were positive for Cryptosporidium and Giardia as determined by FA staining, but C. parvum and G. lamblia were not detected.  相似文献   

15.
Giardia lamblia is a common cause of both acute and chronic diarrheal disease in humans worldwide. It has been shown that mast cells, IL-6 and TNF-α are substantially involved in the early control of G. lamblia infection in mice. However, no studies have yet been reported concerning the interaction between mast cell and Giardia, as well as the mast cells mediators generated in response to Giardia infection. In this study we demonstrated the direct activation of mast cells by G. lamblia live trophozoites or trophozoite-derived antigens followed by an increase in tryptase expression and a significant release of the preformed mediator histamine. In addition, parasite derived antigens increased TNF-α and de novo synthesized cytokine IL-6, at the mRNA and protein level. These results strongly suggest that mast cells might be an important source not only of IL-6 but also of TNF-α during Giardia infection, playing an important role in the outcome of the infection.  相似文献   

16.
The humoral immune response plays an important role in the clearance of Giardia lamblia. However, our knowledge about the specific antigens of G. lamblia that induce a protective immune response is limited. The purpose of this study was to identify and characterise the immunogenic proteins of G. lamblia in a mouse model. We generated monoclonal antibodies (moAbs) specific to G. lamblia (1B10, 2C9.D11, 3C10.E5, 3D10, 5G8.B5, 5F4, 4C7, 3C5 and 3C6) by fusing splenocytes derived from infected mice. Most of these moAbs recognised a band of ± 71 kDa (5G8 protein) and this protein was also recognised by serum from the infected mice. We found that the moAbs recognised conformational epitopes of the 5G8 protein and that this antigen is expressed on the cell surface and inside trophozoites. Additionally, antibodies specific to the 5G8 protein induced strong agglutination (> 70-90%) of trophozoites. We have thus identified a highly immunogenic antigen of G. lamblia that is recognised by the immune system of infected mice. In summary, this study describes the identification and partial characterisation of an immunogenic protein of G. lamblia. Additionally, we generated a panel of moAbs specific for this protein that will be useful for the biochemical and immunological characterisation of this immunologically interesting Giardia molecule.  相似文献   

17.
Giardia lamblia is a unicellular, early branching eukaryote causing giardiasis, one of the most common human enteric diseases. Giardia, a microaerophilic protozoan parasite has to build up mechanisms to protect themselves against oxidative stress within the human gut (oxygen concentration 60 μM) to establish its pathogenesis. G. lamblia is devoid of the conventional mechanisms of the oxidative stress management system, including superoxide dismutase, catalase, peroxidase, and glutathione cycling, which are present in most eukaryotes. NADH oxidase is a major component of the electron transport chain of G. lamblia, which in concurrence with disulfide reductase, protects oxygen-labile proteins such as pyruvate: ferredoxin oxidoreductase against oxidative stress by sustaining a reduced intracellular environment. It also contains the arginine dihydrolase pathway, which occurs in a number of anaerobic prokaryotes, includes substrate level phosphorylation and adequately active to make a major contribution to ATP production.  相似文献   

18.
Giardia lamblia, a protozoan causing diarrheal outbreaks, is one of the main pathogens monitored in developed countries. Immunoscreening of G. lamblia expression library using the monoclonal antibodies (mAb) against G. lamblia, identified a subset of antigenic proteins in this protozoan, which are proteins belonging to GHSP (Giardia head-stalk protein), GHSP115, GHSP138, and GHSP180. In order to map the epitope region of GHSP115, the corresponding open reading frame was dissected into three parts and expressed as recombinant proteins with histidine tags. Western blot analysis of these recombinant proteins with mAbs reacting with GHSP115 indicated that one-third of the C-terminus of GHSP115 showed immunoreactivity with the mAb. Intracellular location of GHSP115 was examined both in trophozoites and encysting cells of G. lamblia by an immunofluorescence assay, indicating that location of GHSP115 varies during encystation. These results suggest that GHSP115 is an abundant and antigenic protein, which is differentially localized during life cycle of G. lamblia.  相似文献   

19.
20.
ABSTRACT. Cysts of Giardia microti, isolated from feces and intestinal contents of Microtus ochrogaster, were examined by light and electron microscopy. These cysts differed morphologically from cysts of other G. duodenalis morphological types in that these cysts often contained two apparently differentiated trophozoites with mature ventral discs. Cysts more closely resembling those reported for G. lamblia and G. muris were in greater abundance in preparations made from intestinal contents and were interpreted as immature cysts. “Multiple fission” cysts, reported in G. muris and G. microti by earlier workers, were not observed; however, endosymbiotic bacteria were found in the cysts of G. microti and may have been responsible for reports of multiple fission in the cysts of Giardia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号