首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Marine amebae of the genus Paramoeba (Amoebozoa, Dactylopodida) normally contain a eukaryotic endosymbiont known as Perkinsela‐like organism (PLO). This is one of the characters to distinguish the genera Neoparamoeba and Paramoeba from other Dactylopodida. It is known that the PLO may be lost, but PLO‐free strains of paramoebians were never available for molecular studies. Recently, we have described the first species of the genus Paramoeba which has no parasome—Paramoeba aparasomata. In this study, we present a mitochondrial genome of this species, compare it with that of Neoparamoeba pemaquidensis, and analyze the evolutionary dynamics of gene sequences and gene order rearrangements between these species. The mitochondrial genome of P. aparasomata is 46,254 bp long and contains a set of 31 protein‐coding genes, 19 tRNAs, two rRNA genes, and 7 open reading frames. Our results suggest that these two mitochondrial genomes within the genus Paramoeba have rather similar organization and gene order, base composition, codon usage, the composition and structure of noncoding, and overlapping regions.  相似文献   

2.
A high diversity of pleurostomatid ciliates has been discovered in the last decade, and their systematics needs to be improved in the light of new findings concerning their morphology and molecular phylogeny. In this work, a new genus, Protolitonotus gen. n., and two new species, Protolitonotus magnus sp. n. and Protolitonotus longus sp. n., were studied. Furthermore, 19 novel nucleotide sequences of SSU rDNA, LSU rDNA and ITS1‐5.8S‐ITS2 were collected to determine the phylogenetic relationships and systematic positions of the pleurostomatid ciliates in this study. Based on both molecular and morphological data, the results demonstrated that: (i) as disclosed by the sequence analysis of SSU rDNA, LSU rDNA and ITS1‐5.8S‐ITS2, Protolitonotus gen. n. is sister to all other pleurostomatids and thus represents an independent lineage and a separate family, Protolitonotidae fam. n., which is defined by the presence of a semi‐suture formed by the right somatic kineties near the dorsal margin of the body; (ii) the families Litonotidae and Kentrophyllidae are both monophyletic based on both SSU rDNA and LSU rDNA sequences, whereas Amphileptidae are non‐monophyletic in trees inferred from SSU rDNA sequences; and (iii) the genera Loxophyllum and Kentrophyllum are both monophyletic, whereas Litonotus is non‐monophyletic based on SSU rDNA analyses. ITS1‐5.8S‐ITS2 sequence data were used for the phylogenetic analyses of pleurostomatids for the first time; however, species relationships were less well resolved than in the SSU rDNA and LSU rDNA trees. In addition, a major revision to the classification of the order Pleurostomatida is suggested and a key to its families and genera is provided.  相似文献   

3.
4.
Psyllids are plant sap-feeding insects that harbor prokaryotic endosymbionts in specialized cells within the body cavity. Four-kilobase DNA fragments containing 16S and 23S ribosomal DNA (rDNA) were amplified from the primary (P) endosymbiont of 32 species of psyllids representing three psyllid families and eight subfamilies. In addition, 0.54-kb fragments of the psyllid nuclear gene wingless were also amplified from 26 species. Phylogenetic trees derived from 16S-23S rDNA and from the host wingless gene are very similar, and tests of compatibility of the data sets show no significant conflict between host and endosymbiont phylogenies. This result is consistent with a single infection of a shared psyllid ancestor and subsequent cospeciation of the host and the endosymbiont. In addition, the phylogenies based on DNA sequences generally agreed with psyllid taxonomy based on morphology. The 3′ end of the 16S rDNA of the P endosymbionts differs from that of other members of the domain Bacteria in the lack of a sequence complementary to the mRNA ribosome binding site. The rate of sequence change in the 16S-23S rDNA of the psyllid P endosymbiont was considerably higher than that of other bacteria, including other fast-evolving insect endosymbionts. The lineage consisting of the P endosymbionts of psyllids was given the designation Candidatus Carsonella (gen. nov.) with a single species, Candidatus Carsonella ruddii (sp. nov.).  相似文献   

5.
The Aeolosomatidae and the Parergodrilidae are meiofaunal Annelida showing different combinations of clitellate‐like and non‐clitellate character states. Their phylogenetic positions and their systematic status within the Annelida are still in debate. Here we attempt to infer their systematic position using 18S rDNA sequences of the aeolosomatid Aeolosoma sp. and the parergodrilid Stygocapitella subterranea and several other meiofaunal taxa such as the Dinophilidae, Polygordiidae and Saccocirridae. The data matrix was complemented by sequences from several annelid, arthropod and molluscan species. After evaluation of the phylogenetic signal the data set was analysed with maximum‐parsimony, distance and maximum‐likelihood algorithms. Sequences from selected arthropods or molluscs were chosen for outgroup comparison. The resolution of the resulting phylogenies is discussed in comparison to previous studies. The results do not unequivocally support a sister‐group relationship of Aeolosoma sp. and the Clitellata. Instead, depending on the algorithms applied, Aeolosoma clusters in various clades within the polychaetes, for instance, together with eunicidan species, the Dinophilidae, Harmothoë impar or Nereis limbata. The position of Aeolosoma sp. thus cannot be resolved on the basis of the data available. S. subterranea always falls close to a cluster comprising Scoloplos armiger, Questa paucibranchiata and Magelona mirabilis, all of which were resolved as not closely related to both Aeolosoma sp. and the Clitellata. Therefore, convergent evolution of clitellate‐like characters in S. subterranea and hence in the Parergodrilidae is suggested by our phylogenetic analysis. Moreover, the Clitellata form a monophyletic clade within the paraphyletic polychaetes.  相似文献   

6.
In an effort to broaden our understanding of the biodiversity and distribution of gregarines infecting crustaceans, this study describes two new species of gregarines, Thiriotia hyperdolphinae n. sp. and Cephaloidophora oradareae n. sp., parasitizing a deep sea amphipod (Oradarea sp.). Amphipods were collected using the ROV Hyper‐Dolphin at a depth of 855 m while on a cruise in Sagami Bay, Japan. Gregarine trophozoites and gamonts were isolated from the gut of the amphipod and studied with light and scanning electron microscopy, and phylogenetic analysis of 18S rDNA. Thiriotia hyperdolphinae n. sp. was distinguished from existing species based on morphology, phylogenetic position, as well as host niche and geographic locality. Cephaloidophora oradareae n. sp. distinguished itself from existing Cephaloidophora, based on a difference in host (Oradarea sp.), geographic location, and to a certain extent morphology. We established this latter new species with the understanding that a more comprehensive examination of diversity at the molecular level is necessary within Cephaloidophora. Results from the 18S rDNA molecular phylogeny showed that T. hyperdolphinae n. sp. was positioned within a clade consisting of Thiriotia spp., while C. oradareae n. sp. grouped within the Cephaloidophoridae. Still, supplemental genetic information from gregarines infecting crustaceans will be needed to better understand relationships within this group of apicomplexans.  相似文献   

7.
We redescribe Cyrtostrombidium longisomum Lynn & Gilron, 1993, the type species of the genus Cyrtostrombidium, and describe the new species Cyrtostrombidium paralongisomum n. sp. using live observation, protargol staining and molecular data. The morphological characters of these two species are clearly distinct, i.e., dikinetid numbers in the girdle and ventral kineties; however, it is difficult to separate them by 18S rDNA sequences because they differ by only 8 bp, indicating that 18S rDNA sequences are insufficient for separating different species in the genus Cyrtostrombidium. We not only observed the position of the oral primordium in the genus Cyrtostrombidium but also observed a possibly homoplasious trait, a dorsal split in the girdle kinety, in (1) Apostrombidium, (2) Varistrombidium, and (3) Cyrtostrombidium/Williophrya. This partially supports the hypothesis of somatic ciliary pattern evolution recently put forth by Agatha and Strüder‐Kypke.  相似文献   

8.
Two brackish water amoebae have been isolated and studied from the benthic biotopes of the Chupa Inlet (Kandalaksha Bay, northwestern Russia). Both strains can be identified as new species of the genus Paramoeba (Amoebozoa, Dactylopodida, Paramoebidae) based on light microscopical characters, structure of microscales on the cell surface and molecular evidence based on the analyses of two genes, nuclear SSU rRNA and mitochondrial cytochrome c oxidase subunit 1 (COI). Paramoeba aparasomata n. sp. is of particular interest because this amoeba is permanently lacking a symbiotic Perkinsela-like organism (PLO) present in other species of Paramoeba and Neoparamoeba. The results obtained show that scaly dactylopodial amoebae lacking PLO are not necessarily members of Korotnevella. In particular, we suggest that Korotnevella nivo Smirnov, 1997, with microscales very similar to those of Paramoeba eilhardi and the species studied here in structure, may be in fact a member of Paramoeba. Molecular data on K. nivo have to be obtained and analysed to test this hypothesis. Based on our new results we emend the diagnosis of the genus Paramoeba to make it more fit to the current phylogenetic conception.  相似文献   

9.
Acanthamoebae are increasingly being recognized as hosts for obligate bacterial endosymbionts, most of which are presently uncharacterized. In this study, the phylogeny of three Gram-negative, rod-shaped endosymbionts and their Acanthamoeba host cells was analysed by the rRNA approach. Comparative analyses of 16S rDNA sequences retrieved from amoebic cell lysates revealed that the endosymbionts of Acanthamoeba polyphaga HN-3, Acanthamoeba sp. UWC9 and Acanthamoeba sp. UWE39 are related to the Paramecium caudatum endosymbionts Caedibacter caryophilus, Holospora elegans a n d Holospora obtusa . With overall 16S rRNA sequence similarities to their closest relative, C. caryophilus , of between 87% and 93%, these endosymbionts represent three distinct new species. In situ hybridization with fluorescently labelled endosymbiont-specific 16S rRNA-targeted probes demonstrated that the retrieved 16S rDNA sequences originated from the endosymbionts and confirmed their intracellular localization. We propose to classify provisionally the endosymbiont of Acanthamoeba polyphaga HN-3 as ' Candidatus Caedibacter acanthamoebae', the endosymbiont of Acanthamoeba sp. strain UWC9 as ' Candidatus Paracaedibacter acanthamoebae' and the endosymbiont of Acanthamoeba sp. strain UWE39 as ' Candidatus Paracaedibacter symbiosus'. The phylogeny of the Acanthamoeba host cells was analysed by comparative sequence analyses of their 18S rRNA. Although Acanthamoeba polyphaga HN-3 clearly groups together with most of the known Acanthamoeba isolates (18S rRNA sequence type 4), Acanthamoeba sp. UWC9 and UWE39 exhibit < 92% 18S rRNA sequence similarity to each other and to other Acanthamoeba isolates. Therefore, we propose two new sequence types (T13 and T14) within the genus Acanthamoeba containing, respectively, Acanthamoeba sp. UWC9 and Acanthamoeba sp. UWE39.  相似文献   

10.
Bacterial endosymbionts have been detected in some groups of plant‐parasitic nematodes, but few cases have been reported compared to other groups in the phylum Nematoda, such as animal‐parasitic or free‐living nematodes. This study was performed on a wide variety of plant‐parasitic nematode families and species from different host plants and nematode populations. A total of 124 nematode populations (previously identified morphologically and molecularly) were screened for the presence of potential bacterial endosymbionts using the partial 16S rRNA gene and fluorescence in situ hybridization (FISH) and confocal microscopy. Potential bacterial endosymbionts were only detected in nematode species belonging to the genus Xiphinema and specifically in the X. americanum group. Fifty‐seven partial 16S rRNA sequences were obtained from bacterial endosymbionts in this study. One group of sequences was closely related to the genus ‘Candidatus Xiphinematobacter’ (19 bacterial endosymbiont sequences were associated with seven nematode host species, including two that have already been described and three unknown bacterial endosymbionts). The second bacterial endosymbiont group (38 bacterial endosymbiont sequences associated with six nematode species) was related to the family Burkholderiaceae, which includes fungal and soil–plant bacterial endosymbionts. These endosymbionts were reported for the first time in the phylum Nematoda. Our findings suggest that there is a highly specific symbiotic relationship between nematode host and bacterial endosymbionts. Overall, these results were corroborated by a phylogeny of nematode host and bacterial endosymbionts that suggested that there was a high degree of phylogenetic congruence and long‐term evolutionary persistence between hosts and endosymbionts.  相似文献   

11.
The genus Coelastrella was established by Chodat (Bull. Soc. Bot. Geneve, 13 [1922] 66), and was characterized as being unicellular or in few‐celled aggregations with many longitudinal ribs on the cell wall. Many species of this genus showed strong ability to accumulate carotenoids and oils, so they have recently attracted much attention from researchers due to its potential applicability in the energy and food industries. In this study, a total of 23 strains of Coelastrella were sampled from China, and three new species and two new varieties were described: C. thermophila sp. nov., C. yingshanensis sp. nov., C. tenuitheca sp. nov., C. thermophila var. globulina var. nov., C. rubescens var. oocystiformis var. nov. Besides 18S rDNA and ITS2 sequences, we have newly sequenced the tufA gene marker for this taxon. Phylogenetic analysis combined with morphological studies revealed four morphotypes within the Coelastrella sensu lato clade, which contained the morphotype of original Coelastrella, original Scotiellopsis, Asterarcys, and morphotype of C. vacuolata and C. tenuitheca sp. nov. The relationships between morphological differences and phylogenic diversity based on different markers were discussed. Our results support that 18S rDNA was too conserved to be used a species‐specific or even a genus‐specific marker in this clade. The topology of tufA gene‐based phylogenetic tree had a better match with the morphological findings.  相似文献   

12.
The genus Peridinium Ehrenb. comprises a group of highly diversified dinoflagellates. Their morphological taxonomy has been established over the last century. Here, we examined relationships within the genus Peridinium, including Peridinium bipes F. Stein sensu lato, based on a molecular phylogeny derived from nuclear rDNA sequences. Extensive rDNA analyses of nine selected Peridinium species showed that intraspecies genetic variation was considerably low, but interspecies genetic divergence was high (>1.5% dissimilarity in the nearly complete 18S sequence; >4.4% in the 28S rDNA D1/D2). The 18S and 28S rDNA Bayesian tree topologies showed that Peridinium species grouped according to their taxonomic positions and certain morphological characters (e.g., epithecal plate formula). Of these groups, the quinquecorne group (plate formula of 3′, 2a, 7″) diverged first, followed by the umbonatum group (4′, 2a, 7″) and polonicum group (4′, 1a, 7″). Peridinium species with a plate formula of 4′, 3a, 7″ diverged last. Thus, 18S and 28S rDNA D1/D2 sequences are informative about relationships among Peridinium species. Statistical analyses revealed that the 28S rDNA D1/D2 region had a significantly higher genetic divergence than the 18S rDNA region, suggesting that the former as DNA markers may be more suitable for sequence‐based delimitation of Peridinium. The rDNA sequences had sufficient discriminative power to separate P. bipes f. occultaum (Er. Lindem.) M. Lefèvre and P. bipes f. globosum Er. Lindem. into two distinct species, even though these taxa are morphologically only marginally discriminated by spines on antapical plates and the shape of red bodies during the generation of cysts. Our results suggest that 28S rDNA can be used for all Peridinium species to make species‐level taxonomic distinctions, allowing improved taxonomic classification of Peridinium.  相似文献   

13.
The genus Cales (Hymenoptera: Aphelinidae) includes 13 species worldwide, of which 10 form a highly morphologically uniform species complex with a native range in the Neotropical region. We recognize ten species previously attributed to a single Neotropical species, Cales noacki Howard, which in the strict sense is a species broadly disseminated to control woolly whitefly. A neotype is designated for C. noacki, and it is redescribed based on specimens molecularly determined to be conspecific with the neotype. Newly described species include: C. bicolor Mottern, n.sp ., C. breviclava Mottern, n.sp ., C. brevisensillum Mottern n.sp ., C. curvigladius Mottern, n.sp ., C. longiseta Mottern, n.sp ., C. multisensillum Mottern n.sp ., C. noyesi Mottern, n.sp ., C. parvigladius Mottern, n.sp . and C. rosei Mottern, n.sp . Species are delimited based on a combination of morphological and molecular data (28S‐D2 rDNA and COI). Additional specimens are included in the phylogenetic analyses and although these likely represent several new species, we lack sufficient specimen sampling to describe them at this time. Cales are highly morphologically conserved and character‐poor, resulting in several cryptic species. A molecular phylogeny of the known Neotropical species based on 28S‐D25 rDNA and a 390‐bp segment of COI is included, and identification keys to males and females are provided. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:7FEB0479‐9B2E‐48E8‐8603‐4B7C2759D4EC .  相似文献   

14.
Isolates of the genera Monoraphidium Kom.‐Legn., Ankistrodesmus Corda and Raphidocelis Hindák emend. Marvan et al. were cultured from two areas in Minnesota and North Dakota, USA. These isolates were identified to species level (when possible), using light microscopy and standard monographs and then characterized by 18S rDNA sequence analysis. Phylogenetic analyses indicated that in some cases, 18S rDNA sequences from these isolates were very similar, but not identical to the sequences of other isolates of the same morphospecies from different parts of the world. However, some isolates that were identified as the same species actually belong to different lineages within the Selenastraceae, whereas other isolates with identical or nearly identical 18S rDNA sequences possessed rather different morphologies. Overall, our data suggest that the application of a broad morphospecies concept to the Selenastraceae has resulted in an underestimation of the species diversity of this family and probably erroneous conclusions about the distribution of species.  相似文献   

15.
We previously reported the occurrence of genetically‐diverse symbiotic dinoflagellates (zooxanthellae) within and between 7 giant clam species (Tridacnidae) from the Philippines based on the algal isolates' allozyme and random amplified polymorphic DNA (RAPD) patterns. We also reported that these isolates all belong to clade A of the Symbiodinium phylogeny with identical 18S rDNA sequences. Here we extend the genetic characterization of Symbiodinium isolates from giant clams and propose that they are conspecific. We used the combined DNA sequences of the internal transcribed spacer (ITS)1, 5.8S rDNA, and ITS2 regions (rDNA‐ITS region) because the ITS1 and ITS2 regions evolve faster than 18S rDNA and have been shown to be useful in distinguishing strains of other dinoflagellates. DGGE of the most variable segment of the rDNA‐ITS region, ITS1, from clonal representatives of clades A, B, and C showed minimal intragenomic variation. The rDNA‐ITS region shows similar phylogenetic relationships between Symbiodinium isolates from symbiotic bivalves and some cnidarians as does 18S rDNA, and that there are not many different clade A species or strains among cultured zooxanthellae (CZ) from giant clams. The CZ from giant clams had virtually identical sequences, with only a single nucleotide difference in the ITS2 region separating two groups of isolates. These data suggest that there is one CZ species and perhaps two CZ strains, each CZ strain containing individuals that have diverse allozyme and RAPD genotypes. The CZ isolated from giant clams from different areas in the Philippines (21 isolates, 7 clam species), the Australian Great Barrier Reef (1 isolate, 1 clam species), Palau (8 isolates, 7 clam species), and Okinawa, Japan (1 isolate, 1 clam species) shared the same rDNA‐ITS sequences. Furthermore, analysis of fresh isolates from giant clams collected from these geographical areas shows that these bivalves also host indistinguishable clade C symbionts. These data demonstrate that conspecific Symbiodinium genotypes, particularly clade A symbionts, are distributed in giant clams throughout the Indo‐Pacific.  相似文献   

16.
Cospeciation of psyllids and their primary prokaryotic endosymbionts   总被引:3,自引:0,他引:3  
Psyllids are plant sap-feeding insects that harbor prokaryotic endosymbionts in specialized cells within the body cavity. Four-kilobase DNA fragments containing 16S and 23S ribosomal DNA (rDNA) were amplified from the primary (P) endosymbiont of 32 species of psyllids representing three psyllid families and eight subfamilies. In addition, 0.54-kb fragments of the psyllid nuclear gene wingless were also amplified from 26 species. Phylogenetic trees derived from 16S-23S rDNA and from the host wingless gene are very similar, and tests of compatibility of the data sets show no significant conflict between host and endosymbiont phylogenies. This result is consistent with a single infection of a shared psyllid ancestor and subsequent cospeciation of the host and the endosymbiont. In addition, the phylogenies based on DNA sequences generally agreed with psyllid taxonomy based on morphology. The 3' end of the 16S rDNA of the P endosymbionts differs from that of other members of the domain Bacteria in the lack of a sequence complementary to the mRNA ribosome binding site. The rate of sequence change in the 16S-23S rDNA of the psyllid P endosymbiont was considerably higher than that of other bacteria, including other fast-evolving insect endosymbionts. The lineage consisting of the P endosymbionts of psyllids was given the designation Candidatus Carsonella (gen. nov.) with a single species, Candidatus Carsonella ruddii (sp. nov.).  相似文献   

17.
Whiteflies contain primary prokaryotic endosymbionts located within specialized host cells. This endosymbiotic association is the result of a single infection of the host followed by vertical transmission of the endosymbiont to the progeny. Whiteflies may also be associated with other bacteria called secondary (S-) endosymbionts. The nucleotide sequence of the 16S–23S ribosomal DNA from S-endosymbionts of 13 whitefly species was determined. A phylogenetic analysis of these sequences indicated their grouping into two major clusters, one consisting of two S-endosymbionts related to previously described T-type endosymbionts. The second cluster contained the 16S–23S rDNA sequence of the type strain of Arsenophonus nasoniae as well as sequences of S-endosymbionts from 11 whitefly species. This Arsenophonus cluster contained four S-endosymbionts with intervening sequences of 70–184 nucleotides in their 23S rDNAs. The phylogenetic tree of the Arsenophonus cluster differed greatly from the phylogenetic tree of the primary endosymbionts. These results suggest that, unlike the primary endosymbiont, Arsenophonus may infect whiteflies multiple times and may also be horizontally transmitted.  相似文献   

18.
The taxonomy of the genus Monoraphidium is unclear due in part to the absence of morphological features to clearly distinguish one species from another. Phytoplankton samples collected from lakes in the Arrowwood National Refuge in eastern North Dakota were found to contain several morphological species of Monoraphidium. Eighteen Monoraphidium isolates were examined with light microscopy and six morphological species were identified. PCR–RFLP of the 18S rDNA was used to type the isolates. Following digestion by Hae III and Taq I, the 18S rDNA PCR–RFLP patterns indicated 10 different types. Presently, the 18S rDNA product is being sequenced for each of the 10 types. By examining morphological characters and 18S rDNA sequences, congruence between morphology and sequence data may be compared. Also, because there is a lack of morphological characters defining Monoraphidium species, diversity within the 18S rDNA sequences may aid in the taxonomy of the genus and its place within the Chlorococcales. Supported by National Science Foundation Grants MCB‐0084188 and DBI‐0070387.  相似文献   

19.
Cryptophytes are unicellular, biflagellate algae with plastids (chloroplasts) derived from the uptake of a red algal endosymbiont. These organisms are unusual in that the nucleus of the engulfed red alga persists in a highly reduced form called a nucleomorph. Nucleomorph genomes are remarkable in their small size (<1,000 kilobase pairs [kbp]) and high degree of compaction (~1 kbp per gene). Here, we investigated the molecular and karyotypic diversity of nucleomorph genomes in members of the genus Cryptomonas. 18S rDNA genes were amplified, sequenced, and analyzed from C. tetrapyrenoidosa Skuja CCAP979/63, C. erosa Ehrenb. emmend. Hoef‐Emden CCAP979/67, Cryptomonas sp. CCAP979/52, C. lundii Hoef‐Emden et Melkonian CCAP979/69, and C. lucens Skuja CCAP979/35 in the context of a large set of publicly available nucleomorph 18S rDNA sequences. Pulsed‐field gel electrophoresis (PFGE) was used to examine the nucleomorph genome karyotype of each of these strains. Individual chromosomes ranged from ~160 to 280 kbp in size, with total genome sizes estimated to be ~600–655 kbp. Unexpectedly, the nucleomorph karyotype of Cryptomonas sp. CCAP979/52 is significantly different from that of C. tetrapyrenoidosa and C. lucens, despite the fact that their 18S rDNA genes are >99% identical to one another. These results suggest that nucleomorph karyotype similarity is not a reliable indicator of evolutionary affinity and provides a starting point for further investigation of the fine‐scale dynamics of nucleomorph genome evolution within members of the genus Cryptomonas.  相似文献   

20.
Thirteen undescribed strains of ballistoconidium-forming yeasts, isolated from leaves collected in the suburbs and along the southeast seacoast of Bangkok, Thailand, were divided into four different groups in the genusSporobolomyces on the basis of morphological, physiological, biochemical, and chemotaxonomical characteristics, and analyses of the sequences of 18S rDNA and internal transcribed spacer regions. DNA-DNA reassociation experiments with related species revealed that these four groups were four new distinct species.Sporobolomyces nylandii sp. nov.,S. poonsookiae sp. nov.,S. blumeae sp. nov. andS. vermiculatus sp. nov. are proposed for these strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号