首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chlorarachniophytes are enigmatic marine unicellular algae that acquired photosynthesis by secondary endosymbiosis. Chlorarachniophytes are unusual in that the nucleus of the engulfed algal cell (a green alga) persists in a miniaturized form, termed a nucleomorph. The nucleomorph genome of the model chlorarachniophyte, Bigelowiella natans CCMP621, is 373 kilobase pairs (kbp) in size, the smallest nuclear genome characterized to date. The B. natans nucleomorph genome is composed of three chromosomes, each with canonical eukaryotic telomeres and sub-telomeric ribosomal DNA (rDNA) operons transcribed away from the chromosome end. Here we present the complete rDNA operon and telomeric region from the nucleomorph genome of Lotharella oceanica CCMP622, a newly characterized chlorarachniophyte strain with a genome ~610 kbp in size, significantly larger than all other known chlorarachniophytes. We show that the L. oceanica rDNA operon is in the opposite chromosomal orientation to that of B. natans. Furthermore, we determined the rDNA operon orientation of five additional chlorarachniophyte strains, the majority of which possess the same arrangement as L. oceanica, with the exception of Chlorarachnion reptans and those very closely related to B. natans. It is thus possible that the ancestral rDNA operon orientation of the chlorarachniophyte nucleomorph genome might have been the same as in the independently evolved, red algal-derived, nucleomorph genomes of cryptophytes. A U2 small nuclear RNA gene was found adjacent to the telomere in Gymnochlora stellata CCMP2057 and Chlorarachnion sp. CCMP2014. This feature may represent a useful evolutionary character for inferring the relationships among extant lineages.  相似文献   

2.
Large miliolid foraminifers bear various types of algal endosymbionts including chlorophytes, dinoflagellates, rhodophytes, and diatoms. Symbiosis plays a key role in the adaptation of large foraminifera to survival and growth in oligotrophic seas. The identity and diversity of foraminiferal symbionts, however, remain largely unknown. In the present work we use ribosomal DNA (rDNA) sequences to identify chlorophyte endosymbionts in large miliolid foraminifera of the superfamily Soritacea. Partial 18S and complete Internal Transcribed Spacer (ITS) rDNA sequences were obtained from symbionts of eight species representing all genera of extant chlorophyte-bearing Soritacea. Phylogenetic analysis of the sequences confirms the previous fine structure-based identification of these endosymbionts as belonging to the genus Chlamydomonas. All foraminiferal symbionts form a monophyletic group closely related to Chlamydomonas noctigama. The group is composed of seven types identified in this study, including one previously morphologically described species, Chlamydomonas hedleyi. Each of these types can be considered as a separate species, based on the comparison of genetic differences observed between other established Chlamydomonas species. Several foraminiferal species share the same symbiont type, but only one species, Archaias angulatus, was found to bear more than one type.  相似文献   

3.
漆酚是漆树科植物独有的化学成分,具有良好的抗氧化、抗肿瘤、抗病毒等生物活性,极具药物和工业生产开发价值。该研究通过对国内外有关漆树科各类群有关漆酚数据的搜集和整理,开展漆树科漆酚的多样性与分布情况的综合统计;同时在利用核基因ETS和叶绿体基因rps16和trnL-F重建漆树科系统发育树的基础上,探讨漆酚在漆树科及各属间的起源和演化关系。结果表明:(1)漆树科漆酚具有较高的多样性,在其苯环和-R链上都有很大的变异。(2)发现漆酚仅存在于Anacardioideae亚科中,是该亚科的一个重要界定特征。(3)基于漆酚苯环结构和-R链特征的祖先性状重建分析表明,漆树科的漆酚是由邻苯二酚向间苯二酚演化,而漆酚-R链的十五烃(烯)基则是向十七烃(烯)基平行演化。  相似文献   

4.
Pestalotiopsis sp. is a mycoparasite of the plant pathogen Aecidium wenshanense. To further understand the mycoparasitism mechanism of Pestalotiopsis sp., we assembled and analyzed its genome. The genome of Pestalotiopsis sp. strain PG52 was assembled into 335 scaffolds and had a size of 58.01 Mb. A total of 20,023 predicted genes and proteins were annotated. This study compared PG52 with the mycoparasites Trichoderma harzianum, Trichoderma atroviride, and Trichoderma virens. This study reveals the entirely different mycoparasitism mechanism of Pestalotiopsis compared to Trichoderma and reveals this mycoparasite’s strong ability to produce secondary metabolites.  相似文献   

5.
Five clinical isolates, strains IFM 0137, 0372(T), 0496, 0556, and 0952, were provisionally assigned to the genus Nocardia based on morphological criteria. Nearly complete 16S rDNA sequences were determined for these strains. These data showed that they are most similar to that of Nocardia africana, Nocardia cerradoensis and Nocardia veterana. However, DNA-DNA relatedness data showed that the five strains were of a single species and were distinguishable from N. africana, N. cerradoensis and N. veterana. Therefore, these strains represent a new species within the genus Nocardia. The designation of these five strains is Nocardia aobensis sp. nov. The type strain is IFM 0372(T) (=NBRC 100429(T)=JCM 12352(T)=DSM 44805(T)).  相似文献   

6.
四川省雅江松茸菌的分离与系统发育   总被引:7,自引:0,他引:7  
对外生菌根真菌-松茸的纯培养条件进行了探讨,并从采集自四川省雅江县的松茸子实体中获得了10株松茸菌的纯培养物;分别以NS1和NS6 ,NS1和NS8,ITS4和ITS5为引物,对分离获得的松茸菌进行了18S r DNA PCR- RFL P和ITS PCR-RFL P分析,结果显示,用Alu I,H ae III,H inf I和Msp I四种限制性内切酶,这些松茸菌株的18S r DNA、ITS片段的酶切图谱完全相同;代表菌E7的ITS序列分析结果表明,本研究分离的松茸菌与Tricholoma matsutake的菌株在系统发育上高度同源,在分类上应属于同一个种  相似文献   

7.
The green lineage (Viridiplantae) comprises the green algae and their descendants the land plants, and is one of the major groups of oxygenic photosynthetic eukaryotes. Current hypotheses posit the early divergence of two discrete clades from an ancestral green flagellate. One clade, the Chlorophyta, comprises the early diverging prasinophytes, which gave rise to the core chlorophytes. The other clade, the Streptophyta, includes the charophyte green algae from which the land plants evolved. Multi-marker and genome scale phylogenetic studies have greatly improved our understanding of broad-scale relationships of the green lineage, yet many questions persist, including the branching orders of the prasinophyte lineages, the relationships among core chlorophyte clades (Chlorodendrophyceae, Ulvophyceae, Trebouxiophyceae and Chlorophyceae), and the relationships among the streptophytes. Current phylogenetic hypotheses provide an evolutionary framework for molecular evolutionary studies and comparative genomics. This review summarizes our current understanding of organelle genome evolution in the green algae, genomic insights into the ecology of oceanic picoplanktonic prasinophytes, molecular mechanisms underlying the evolution of complexity in volvocine green algae, and the evolution of genetic codes and the translational apparatus in green seaweeds. Finally, we discuss molecular evolution in the streptophyte lineage, emphasizing the genetic facilitation of land plant origins.  相似文献   

8.
The rbcS gene coding for the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) of the brown alga Pylaiella littoralis is located within the plastid genome and is transcribed as a single polycistronic mRNA with the gene for the large subunit of Rubisco, rbcL. The structure of the Rubisco operon from P. littoralis was determined. Molecular phylogenies for rbcS and rbcL with a wide range of prokaryotes and eukaryotes were constructed which are congruent with recent evidence for polyphyletic plastid origins. Both rbcL and rbcS of the -purple bacterium Alcaligenes eutrophus clearly cluster with the rhodophyte and chromophyte proteins. The data suggest that the Rubisco operons of red algal and chromophytic plastids derive from -purple eubacterial antecedents, rather than the cyanobacterial lineage of eubacteria from which other of their genes derive. This implies a lateral transfer of Rubisco genes from -purple eubacterial ancestors to the cyanobacterial ancestor of rhodophyte and chromophyte plastids.  相似文献   

9.
Migratory birds are known to play a role in the long‐distance transportation of microorganisms. To investigate whether this is true for rickettsial agents, we undertook a study to characterize tick infestation in populations of the migratory passerine bird Riparia riparia (Passeriformes: Hirundinidae), the sand martin. A total of 194 birds were sampled and ticks removed from infested birds. The ticks were identified as female Ixodes lividus (Acari: Ixodidae) using standard morphological and molecular techniques. Tick DNA was assayed to detect Rickettsia spp. using polymerase chain reaction and DNA was sequenced for species identification. A single Rickettsia spp. was detected in 100% of the ticks and was designated Rickettsia sp. IXLI1. Partial sequences of 17‐kDa and ompA genes showed greatest similarity to Rickettsia sp. TCM1, an aetiological agent of Japanese spotted fever‐like illness, previously described in Thailand. Phylogenetic analysis showed that Rickettsia sp. IXLI1 fitted neatly into a group containing strains Rickettsia japonica, Rickettsia sp. strain Davousti and Rickettsia heilongjiangensis. In conclusion, this research shows that U.K. migratory passerine birds host ticks infected with Rickettsia species and contribute to the geographic distribution of spotted fever rickettsial agents.  相似文献   

10.
11.
Two actinomycete strains isolated from sputum between 1999 and 2001 in Japan were provisionally assigned to the genus Nocardia based on morphological criteria. These isolates were further studied in order to determine their specific taxonomic status. Detailed chemotaxonomic characterization and 16S rDNA gene sequence analysis of these isolates also confirmed that they belong to the genus Nocardia. The 16S rDNA sequence data of the two strains showed that they are most similar to that of Nocardia carnea and Nocardia flavorosea. However, DNA-DNA relatedness data showed that the two strains could be distinguished from N. carnea and N. flavorosea and therefore represented two new species within the genus Nocardia. The designation of the two isolated strains are Nocardia testaceus for IFM 0937(T) (=JCM 12235(T), DSM 44765(T)) and Nocardia senatus for IFM 10088(T) (=JCM 12236(T), DSM 44766(T)).  相似文献   

12.
Background and AimsThe dynamics of genome evolution caused by whole genome duplications and other processes are hypothesized to shape the diversification of plants and thus contribute to the astonishing variation in species richness among the main lineages of land plants. Ferns, the second most species-rich lineage of land plants, are highly suitable to test this hypothesis because of several unique features that distinguish fern genomes from those of seed plants. In this study, we tested the hypothesis that genome diversity and disparity shape fern species diversity by recording several parameters related to genome size and chromosome number.MethodsWe conducted de novo measurement of DNA C-values across the fern phylogeny to reconstruct the phylogenetic history of the genome space occupation in ferns by integrating genomic parameters such as genome size, chromosome number and average DNA amount per chromosome into a time-scaled phylogenetic framework. Using phylogenetic generalized least square methods, we determined correlations between chromosome number and genome size, species diversity and evolutionary rates of their transformation.Key ResultsThe measurements of DNA C-values for 233 species more than doubled the taxon coverage from ~2.2 % in previous studies to 5.3 % of extant diversity. The dataset not only documented substantial differences in the accumulation of genomic diversity and disparity among the major lineages of ferns but also supported the predicted correlation between species diversity and the dynamics of genome evolution.ConclusionsOur results demonstrated substantial genome disparity among different groups of ferns and supported the prediction that alterations of reproductive modes alter trends of genome evolution. Finally, we recovered evidence for a close link between the dynamics of genome evolution and species diversity in ferns for the first time.  相似文献   

13.
The animal gut is a habitat for diverse communities of microorganisms (microbiota). Honeybees and bumblebees have recently been shown to harbour a distinct and species poor microbiota, which may confer protection against parasites. Here, we investigate diversity, host specificity and transmission mode of two of the most common, yet poorly known, gut bacteria of honeybees and bumblebees: Snodgrassella alvi (Betaproteobacteria) and Gilliamella apicola (Gammaproteobacteria). We analysed 16S rRNA gene sequences of these bacteria from diverse bee host species across most of the honeybee and bumblebee phylogenetic diversity from North America, Europe and Asia. These focal bacteria were present in 92% of bumblebee species and all honeybee species but were found to be absent in the two related corbiculate bee tribes, the stingless bees (Meliponini) and orchid bees (Euglossini). Both Snodgrassella alvi and Gilliamella apicola phylogenies show significant topological congruence with the phylogeny of their bee hosts, albeit with a considerable degree of putative host switches. Furthermore, we found that phylogenetic distances between Gilliamella apicola samples correlated with the geographical distance between sampling locations. This tentatively suggests that the environmental transmission rate, as set by geographical distance, affects the distribution of G. apicola infections. We show experimentally that both bacterial taxa can be vertically transmitted from the mother colony to daughter queens, and social contact with nest mates after emergence from the pupa greatly facilitates this transmission. Therefore, sociality may play an important role in vertical transmission and opens up the potential for co‐evolution or at least a close association of gut bacteria with their hosts.  相似文献   

14.
On the basis of cultivation-dependent (isolation on mineral salt medium supplemented with 0.5% methanol) and -independent (DGGE analysis) methods, we investigated the influence of the host plant species Trifolium repens and Cerastium holosteoides, three geographic locations and the land-use types meadow, mown pasture and pasture on the abundance and community composition of selected phyllosphere bacteria with emphasis on Methylobacterium species. Methylobacterium abundance was significantly higher on leaves of T. repens (mean value 2.0×10(7) CFU PPFM per g leaf) than on leaves of C. holosteoides (mean value 2.0×10(6) CFU per g leaf). Leaves from the sampling site Schorfheide-Chorin showed slightly lower Methylobacterium numbers than leaves of the other sampling sites. Land-use and sampling period had no consistent influence on Methylobacterium community size. Methylobacterium community composition was very similar over both sampling periods, all three sampling sites, all land-use types and both plant species. Moreover, no relationship between geographic and genetic distance was observed. Community composition of selected Proteobacteria was influenced by plant species, geographic location and land-use. Often, differences in community composition could be observed between meadows, mown pastures and pastures but not between different kinds of meadows (cutted once versus three times) and mown pastures (fertilized versus non-fertilized). The results also indicate, that whether there are differences between land-use types or not strongly depends on the investigated host plant species and ecosystem. Besides Methylobacterium, representatives of Methylophilus were detected. The results indicate that Methylobacterium species are generally abundant and stable members of the phyllosphere community whereas other genera occur more occasionally, and that Methylobacterium clearly dominates the methylotrophic phyllosphere community.  相似文献   

15.
The cryptomonads are an enigmatic group of marine and freshwater unicellular algae that acquired their plastids through the engulfment and retention of a eukaryotic ("secondary") endosymbiont. Together with the chlorarachniophyte algae, the cryptomonads are unusual in that they have retained the nucleus of their endosymbiont in a miniaturized form called a nucleomorph. The nucleomorph genome of the cryptomonad Guillardia theta has been completely sequenced and with only three chromosomes and a total size of 551 kb, is a model of nuclear genome compaction. Using this genome as a reference, we have investigated the structure and content of nucleomorph genomes in a wide range of cryptomonad algae. In this study, we have sequenced nine new cryptomonad nucleomorph 18S ribosomal DNA (rDNA) genes and four heat shock protein 90 (hsp90) gene fragments, and using pulsed-field gel electrophoresis and Southern hybridizations, have obtained nucleomorph genome size estimates for nine different species. We also used long-range polymerase chain reaction to obtain nucleomorph genomic fragments from Hanusia phi CCMP325 and Proteomonas sulcata CCMP704 that are syntenic with the subtelomeric region of nucleomorph chromosome I in G. theta. Our results indicate that (1) the presence of three chromosomes is a common feature of the nucleomorph genomes of these organisms, (2) nucleomorph genome size varies dramatically in the cryptomonads examined, (3) unidentified cryptomonad species CCMP1178 has the largest nucleomorph genome identified to date at approximately 845 kb, (4) nucleomorph genome size reductions appear to have occurred multiple times independently during cryptomonad evolution, (5) the relative positions of the 18S rDNA, ubc4, and hsp90 genes are conserved in three different cryptomonad genera, and (6) interchromosomal recombination appears to be rapidly changing the size and sequence of a repetitive subtelomeric region of the nucleomorph genome between the 18S rDNA and ubc4 loci. These results provide a glimpse into the genetic diversity of nucleomorph genomes in cryptomonads and set the stage for more comprehensive sequence-based studies in closely and distantly related taxa.  相似文献   

16.
17.
The online resource http://www.plantrdnadatabase.com/ stores information on the number, chromosomal locations and structure of the 5S and 18S‐5.8S‐26S (35S) ribosomal DNAs (rDNA) in plants. This resource was exploited to study relationships between rDNA locus number, distribution, the occurrence of linked (L‐type) and separated (S‐type) 5S and 35S rDNA units, chromosome number, genome size and ploidy level. The analyses presented summarise current knowledge on rDNA locus numbers and distribution in plants. We analysed 2949 karyotypes, from 1791 species and 86 plant families, and performed ancestral character state reconstructions. The ancestral karyotype (2= 16) has two terminal 35S sites and two interstitial 5S sites, while the median (2= 24) presents four terminal 35S sites and three interstitial 5S sites. Whilst 86.57% of karyotypes show S‐type organisation (ancestral condition), the L‐type arrangement has arisen independently several times during plant evolution. A non‐terminal position of 35S rDNA was found in about 25% of single‐locus karyotypes, suggesting that terminal locations are not essential for functionality and expression. Single‐locus karyotypes are very common, even in polyploids. In this regard, polyploidy is followed by subsequent locus loss. This results in a decrease in locus number per monoploid genome, forming part of the diploidisation process returning polyploids to a diploid‐like state over time.  相似文献   

18.
The 18S ribosomal DNAs ofCordyceps spp. were amplified for the first time by the PCR method. New primers were designed based on the sequence of the 18S ribosomal DNA ofSclerotinia sclerotiorum.  相似文献   

19.
Background and AimsThe ribosomal DNA (rDNA) gene family, encoding ribosomal RNA (rRNA), has long been regarded as an archetypal example illustrating the model of concerted evolution. However, controversy is arising, as rDNA in many eukaryotic species has been proved to be polymorphic. Here, a metagenomic strategy was applied to detect the intragenomic polymorphism as well as the evolutionary patterns of 26S rDNA across the genus Camellia.MethodsDegenerate primer pairs were designed to amplify the 26S rDNA fragments from different Camellia species. The amplicons were then paired-end sequenced on the Illumina MiSeq platform.Key ResultsAn extremely high level of rDNA polymorphism existed universally in Camellia. However, functional rDNA was still the major component of the family, and was relatively conserved among different Camellia species. Sequence variations mainly came from rRNA pseudogenes and favoured regions that are rich in GC. Specifically, some rRNA pseudogenes have existed in the genome for a long time, and have even experienced several expansion events, which has greatly enriched the abundance of rDNA polymorphism.Conclusions Camellia represents a group in which rDNA is subjected to a mixture of concerted and birth-and-death evolution. Some rRNA pseudogenes may still have potential functions. Conversely, when released from selection constraint, they can evolve in the direction of decreasing GC content and structural stability through a methylation-induced process, and finally be eliminated from the genome.  相似文献   

20.
Evaluating the impact of plant domestication on the population structure of the associated pathogens provides an opportunity to increase our understanding of how and why diseases emerge. Here, we investigated the evolution of the population structure of the apple scab fungus Venturia inaequalis in response to the domestication of its host. Inferences were drawn from multilocus microsatellite data obtained from samples collected on (i) the Central Asian Malus sieversii, the main progenitor of apple, (ii) the European crabapple, Malus sylvestris, a secondary progenitor of apple, and (iii) the cultivated apple, Malus×domestica, in orchards from Europe and Central Asia. Using clustering methods, we identified three distinct populations: (i) a large European population on domesticated and wild apples, (ii) a large Central Asian population on domesticated and wild apples in urban and agricultural areas, and (iii) a more geographically restricted population in M. sieversii forests growing in the eastern mountains of Kazakhstan. Unique allele richness and divergence time estimates supported a host‐tracking co‐evolutionary scenario in which this latter population represents a relict of the ancestral populations from which current populations found in human‐managed habitats were derived. Our analyses indicated that the domestication of apple induced a significant change in the genetic differentiation of populations of V. inaequalis in its centre of origin, but had little impact on its population dynamics and mating system. We discuss how the structure of the apple‐based agrosystem may have restricted changes in the population structure of the fungus in response to the domestication of its host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号