首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 723 毫秒
1.
The occurrence of marine turtles in the diet of white sharks, Carcharodon carcharias, is reviewed worldwide. Four records of chelonians eaten by white sharks in the Mediterranean Sea are described, which on the basis of carapace remnants confirmed both the loggerhead Caretta caretta and green turtle Chelonia mydas to be preyed upon in those waters. The condition of these remains indicates that large white sharks can ingest turtles essentially intact. As well as falling prey to white sharks, we suspect that some interactions involve turtles being grab-released in a non-predatory mannner and their survivability from such low-intensity bites or other mouthings may be quite high. The white shark may be the chief marine predator of adult chelonians in the Mediterranean Sea, albeit the impact of this predation upon turtle populations is nominal compared to other sources of mortality. Further, we give an account describing an adult ocean sunfish, Mola mola, in the stomach of a white shark taken in Italian waters.  相似文献   

2.
We report a bump-head sunfish Mola alexandrini (120–130 cm estimated total length) photographed from a manned submersible at a depth of 220 m off Kagoshima Prefecture, Japan, in May 2004. Mola alexandrini is often misidentified as the ocean sunfish Mola mola. This individual represented three records for this species: first record by a manned submersible, second record from the mesopelagic zone in the north-west Pacific Ocean and a new distributional record from Kagoshima Prefecture, Japan.  相似文献   

3.
Relatively little is known about the biology and ecology of the world’s largest (heaviest) bony fish, the ocean sunfish Mola mola, despite its worldwide occurrence in temperate and tropical seas. Studies are now emerging that require many common perceptions about sunfish behaviour and ecology to be re-examined. Indeed, the long-held view that ocean sunfish are an inactive, passively drifting species seems to be entirely misplaced. Technological advances in marine telemetry are revealing distinct behavioural patterns and protracted seasonal movements. Extensive forays by ocean sunfish into the deep ocean have been documented and broad-scale surveys, together with molecular and laboratory based techniques, are addressing the connectivity and trophic role of these animals. These emerging molecular and movement studies suggest that local distinct populations may be prone to depletion through bycatch in commercial fisheries. Rising interest in ocean sunfish, highlighted by the increase in recent publications, warrants a thorough review of the biology and ecology of this species. Here we review the taxonomy, morphology, geography, diet, locomotion, vision, movements, foraging ecology, reproduction and species interactions of M. mola. We present a summary of current conservation issues and suggest methods for addressing fundamental gaps in our knowledge.  相似文献   

4.
We report the isolation and characterization of CAn microsatellite loci from the Mola mola genome using a variation of the hybrid capture method. Five loci exhibit high levels of heterozygocity and two show significant sequence similarity to genes from the closely related Fugu rubripes. These microsatellite markers should be useful in multidisciplinary efforts to understand population characteristics of the giant ocean sunfish.  相似文献   

5.
Recent molecular and morphological studies suggest the existence of at least three species of Mola (Mola spp. A, B and C). Currently, only Mola mola and Mola ramsayi are formally accepted and species A, B or C have not been assigned to these thus far. In this study, a large ocean sunfish in the western Mediterranean Sea was analysed molecularly and morphologically, identified as Mola sp. A and a detailed account of the specimen's parasite load is reported.  相似文献   

6.

Background

Understanding the distribution of marine biodiversity is a crucial first step towards the effective and sustainable management of marine ecosystems. Recent efforts to collate location records from marine surveys enable us to assemble a global picture of recorded marine biodiversity. They also effectively highlight gaps in our knowledge of particular marine regions. In particular, the deep pelagic ocean – the largest biome on Earth – is chronically under-represented in global databases of marine biodiversity.

Methodology/Principal Findings

We use data from the Ocean Biogeographic Information System to plot the position in the water column of ca 7 million records of marine species occurrences. Records from relatively shallow waters dominate this global picture of recorded marine biodiversity. In addition, standardising the number of records from regions of the ocean differing in depth reveals that regardless of ocean depth, most records come either from surface waters or the sea bed. Midwater biodiversity is drastically under-represented.

Conclusions/Significance

The deep pelagic ocean is the largest habitat by volume on Earth, yet it remains biodiversity''s big wet secret, as it is hugely under-represented in global databases of marine biological records. Given both its value in the provision of a range of ecosystem services, and its vulnerability to threats including overfishing and climate change, there is a pressing need to increase our knowledge of Earth''s largest ecosystem.  相似文献   

7.
8.
SYNOPSIS. Monocercomonas molae from the hindgut of the sunfish Mola mola is described. The host was taken from southern California coastal waters in October, 1964. The body of the flagellate is 8.0 × 10.7 microns. A single basal granule complex gives rise to 4 flagella, one of which is recurrent. The axostyle is relatively stout, with argentophilic granules, and possesses a periaxostylar ring. The capitulum of the axostyle continues into the sickle-shaped pelta, and the parabasal body is rod-shaped or lobed and roughly triangular in cross-section.  相似文献   

9.
Pop-up satellite archival tags (PSATs) were attached to 31 ocean sunfish, Mola mola. in the Northwest Atlantic between 2005 and 2008, in order to examine their vertical movement and behavior. Tags remained attached from 7 to 242 days, with a mean attachment period of 107.2 ± 80.6 (SD) days. Fish spent greater than 30% of their time in the top 10 m of the water column, and over 80% of time in the top 200 m. The maximum depth recorded by any fish was 844 m. Temperatures experienced by tagged fish ranged from 6 to 30 °C. Vertical behavior of M. mola changed over short-term and seasonal scales. Ocean sunfish in northeastern US waters in the summer months inhabited shallower depths and spent more time at the surface than those that moved south in the winter and spring. This shift from shallow to deeper depths was especially apparent when fish entered the Gulf Stream, where they spent little time at the surface and dove to depths of 400-800 m. A diel pattern was observed in vertical behavior. Tagged fish spent more time at depth during the day and inhabited shallower waters at night. There was no observed relationship between the amount of time per day that fish spent in cold water (< 10 °C) and the amount of time fish spent near the surface (0-6 m), indicating a lack of evidence for M. mola basking at the surface as a mechanism for behavioral thermoregulation.  相似文献   

10.
With the increase in global oceanic trade the establishment of non-indigenous marine organisms has become a major environmental and economic problem worldwide. Recently, the Atlantic rock crab (Cancer irroratus) was reported in Icelandic waters, Eastern North Atlantic. This is the first record of this relatively large crab species outside its natural range, i.e. the east coast of North America. The crab was most likely transferred to Iceland as larvae in ballast water and has successfully established a reproducing population in Icelandic waters. The species is distributed along the southwestern- and western-coast of Iceland. Adult specimens are now common in Faxaflói Bay, Southwest Iceland, but with sporadic occurrences in western and northwestern Icelandic waters. The green crab (Carcinus maenas) and the spider crab (Hyas araneus) are the only native brachyuran decapod species commonly found in its new habitat, but despite its recent colonization the rock crab was the most abundant brachyuran in the areas studied in southwest Iceland. Egg bearing rock crab and green crab females were found from June to October, while egg bearing spider crab females were seen from July to December. In Southwest Iceland both rock crab and green crab larvae were abundant in mid-summer but rare in both spring and autumn, which is opposite of what was observed for the spider crab. The size and abundance of adult crabs, their reproductive conditions, and occurrence of all larval stages, indicate that the Atlantic rock crab has successfully colonized Iceland.  相似文献   

11.
The most massive teleost, the ocean sunfish(Mola mola), is an order of magnitude smaller than the largest cartilaginous fish,the whale shark (Rhincodon typus), and issignificantly smaller than several other extantelasmobranch species. Possible reasons for this discrepancy in maximum size include:anatomical, physiological, ecological, and life-history/ontogenetic constraints. Weexamined life-history traits and growth ratesas the most likely constraints on maximum teleostsize. For pelagic fishes there appear to be two life-history strategies: producing few,large, live young or many, tiny eggs. We propose that this dichotomy is an evolutionaryvestige of the freshwater origins of teleosts, and is the basis of the limitation onmaximal body size in teleosts.  相似文献   

12.
Synopsis A further occurrence of Atherina boyeri in British waters is recorded. This species has a distribution which can be broadly defined as Mediterranean but has been occasionally recorded in waters which are beyond the northerly limits of its normal range. These records have usually been associated with localised thermal pollution but, at Oldbury-upon-Severn, England, this is probably not so. Morphometric and meristic data are presented which show clearly that this is a genuine record of A. boyeri. The existence of this species in waters with minimal, if any, thermal enrichment raises interesting questions regarding its distribution.This example and the other abnormal records of A. boyeri are, therefore, considered in relation to a number of environmental parameters. The parameters discussed, namely increased water temperature, decreased salinity and lagoon conditions have all been implicated in previous records.The conclusion tentatively reached is that A. boyeri is capable of surviving under a cooler temperature régime than that with which it is normally associated. Normally its range is restricted by inter-specific competition. In conditions of calmer water, however, in which there is also reduced salinity it is able to compete and maintain itself successfully.  相似文献   

13.
Cochlodinium polykrikoides (p) is a planktonic dinoflagellate known to produce red tides responsible for massive fish kills and thereby serious economic loss in Korean coastal waters, particularly during summer and fall seasons. The present study involved analyzing chlorophyll-a (Chl-a) from SeaWiFS ocean color imagery collected over the period 1998–2002 to understand the spatial and temporal aspects of C. polykrikoides blooms that occurred in the enclosed and semi-enclosed bays of the Korean Southeast Sea. NOAA-AVHRR data were used to derive Sea Surface Temperature (SST) to elucidate physical factors affecting the spatial distribution and abundance of C. polykrikoides blooms. The time series of SeaWiFS-derived Chl-a gave an impression that recent red tide events with higher concentrations appeared to span more than 8 weeks during summer and fall seasons and were widespread in most of the Korean Southeast Sea coastal bays and neighboring oceanic waters. Coupled eutrophication and certain oceanic processes were thought to give rise to the formation of massive C. polykrikoides blooms with cell abundances ranging from 1000 to 30,000 cells ml−1, causing heavy mortalities of aquaculture fish and other marine organisms in these areas. Our analysis indicated that Chl-a estimates from SeaWiFS ocean color imagery appeared to be useful in demarcating the locality, spatial extent and distribution of these blooms, but unique identification of C. polykrikoides from non-bloom and sediment dominated waters remains unsuccessful with this data alone. Thus, the classical spectral enhancement and classification techniques such as Forward Principal Component Analysis (FPCA) and Minimum Spectral Distance (MSD) to uniquely identify and better understand C. polykrikoides blooms characteristics from other optical water types were attempted on both low spatial resolution SeaWiFS ocean color imagery and high spatial resolution Landsat-7 ETM+ imagery. Application of these techniques could capture intricate and striking patterns of C. polykrikoides blooms from surrounding non-bloom and sediment dominated waters, providing improved capability of detecting, predicting and monitoring C. polykrikoides bloom in such optically complex waters. The result obtained from MSD classification showed that retrieval of C. polykrikoides bloom from the mixed phase of this bloom with turbid waters was not feasible with the SeaWiFS ocean color imagery, but feasible with Landsat-7 ETM+ imagery that provided more accurate and comparable spatial C. polykrikoides patterns consistent with in situ observations. The dense phase of the bloom estimated from these imageries occupied an area of more than 25 km2 around the coastal bays and the mixed phase extended over several hundreds kilometers towards the Southeast Sea offshore due to exchange of water masses caused by coastal and oceanic processes. Sea surface temperature analyzed from AVHRR infrared data captured the northeastward flow of Tsushima Warm Current (TWC) waters that provided favorable environmental conditions for the rapid growth and subsequent southward initiation of C. polykrikoides blooms in hydrodynamically active regions in the Korean Southeast Sea offshore.  相似文献   

14.
Estuaries are connected to both land and ocean so their physical, chemical, and biological dynamics are influenced by climate patterns over watersheds and ocean basins. We explored climate‐driven oceanic variability as a source of estuarine variability by comparing monthly time series of temperature and chlorophyll‐a inside San Francisco Bay with those in adjacent shelf waters of the California Current System (CCS) that are strongly responsive to wind‐driven upwelling. Monthly temperature fluctuations inside and outside the Bay were synchronous, but their correlations weakened with distance from the ocean. These results illustrate how variability of coastal water temperature (and associated properties such as nitrate and oxygen) propagates into estuaries through fast water exchanges that dissipate along the estuary. Unexpectedly, there was no correlation between monthly chlorophyll‐a variability inside and outside the Bay. However, at the annual scale Bay chlorophyll‐a was significantly correlated with the Spring Transition Index (STI) that sets biological production supporting fish recruitment in the CCS. Wind forcing of the CCS shifted in the late 1990s when the STI advanced 40 days. This shift was followed, with lags of 1–3 years, by 3‐ to 19‐fold increased abundances of five ocean‐produced demersal fish and crustaceans and 2.5‐fold increase of summer chlorophyll‐a in the Bay. These changes reflect a slow biological process of estuary–ocean connectivity operating through the immigration of fish and crustaceans that prey on bivalves, reduce their grazing pressure, and allow phytoplankton biomass to build. We identified clear signals of climate‐mediated oceanic variability in this estuary and discovered that the response patterns vary with the process of connectivity and the timescale of ocean variability. This result has important implications for managing nutrient inputs to estuaries connected to upwelling systems, and for assessing their responses to changing patterns of upwelling timing and intensity as the planet continues to warm.  相似文献   

15.
Southern Ocean waters are among the most vulnerable to ocean acidification. The projected increase in the CO2 level will cause changes in carbonate chemistry that are likely to be damaging to organisms inhabiting these waters. A meta‐analysis was undertaken to examine the vulnerability of Antarctic marine biota occupying waters south of 60°S to ocean acidification. This meta‐analysis showed that ocean acidification negatively affects autotrophic organisms, mainly phytoplankton, at CO2 levels above 1,000 μatm and invertebrates above 1,500 μatm, but positively affects bacterial abundance. The sensitivity of phytoplankton to ocean acidification was influenced by the experimental procedure used. Natural, mixed communities were more sensitive than single species in culture and showed a decline in chlorophyll a concentration, productivity, and photosynthetic health, as well as a shift in community composition at CO2 levels above 1,000 μatm. Invertebrates showed reduced fertilization rates and increased occurrence of larval abnormalities, as well as decreased calcification rates and increased shell dissolution with any increase in CO2 level above 1,500 μatm. Assessment of the vulnerability of fish and macroalgae to ocean acidification was limited by the number of studies available. Overall, this analysis indicates that many marine organisms in the Southern Ocean are likely to be susceptible to ocean acidification and thereby likely to change their contribution to ecosystem services in the future. Further studies are required to address the poor spatial coverage, lack of community or ecosystem‐level studies, and the largely unknown potential for organisms to acclimate and/or adapt to the changing conditions.  相似文献   

16.
Records of the ocean sunfish Mola mola along the Norwegian coast were compiled from all possible sources: literature, media, databases and museums. A total of 216 records were found between 1801 and 2015. They were distributed along the whole coast, except for the most north‐eastern part. Nearly all years with more than five records were after 2000, with 1985 as the only exception and with a maximum of 23 records in 2014. Most, 92·4%, were from July to December. Records from before 1979 were more incidental and random and no sunfish were recorded in 54 separate years between 1879 and 2015. The northernmost record was from 70° 44′ N in December 1881. No relationship between year and latitude was found. Forty‐four per cent of the records were of sunfish caught in fishing gear, 27% were found stranded and 30% were observed alive at sea. A trend of a decrease in numbers of observations of living individuals and an increase in numbers of strandings as dead individuals as autumn progressed was found. Geographical differences in the three categories of observation were also found. Among the specimens whose size was recorded, most were small, <30 kg and 70 cm in total length. Only 10 were heavier than 100 kg, all these were from before 1960. Annual numbers correlated weakly with sea temperatures. This was supported by a weak negative correlation with the North Atlantic Oscillation (NAO) index, because the majority of years since 2000 had a negative NAO.  相似文献   

17.
Aim Predicting distribution patterns of whale sharks (Rhincodon typus, Smith 1828) in the open ocean remains elusive owing to few pelagic records. We developed multivariate distribution models of seasonally variant whale shark distributions derived from tuna purse‐seine fishery data. We tested the hypotheses that whale sharks use a narrow temperature range, are more abundant in productive waters and select sites closer to continents than the open ocean. Location Indian Ocean. Methods We compared a 17‐year time series of observations of whale sharks associated with tuna purse‐seine sets with chlorophyll a concentration and sea surface temperature data extracted from satellite images. Different sets of pseudo‐absences based on random distributions, distance to shark locations and tuna catch were generated to account for spatiotemporal variation in sampling effort and probability of detection. We applied generalized linear, spatial mixed‐effects and Maximum Entropy models to predict seasonal variation in habitat suitability and produced maps of distribution. Results The saturated generalized linear models including bathymetric slope, depth, distance to shore, the quadratic of mean sea surface temperature, sea surface temperature variance and chlorophyll a had the highest relative statistical support, with the highest percent deviance explained when using random pseudo‐absences with fixed effect‐only models and the tuna pseudo‐absences with mixed‐effects models (e.g. 58% and 26% in autumn, respectively). Maximum Entropy results suggested that whale sharks responded mainly to variation in depth, chlorophyll a and temperature in all seasons. Bathymetric slope had only a minor influence on the presence. Main conclusions Whale shark habitat suitability in the Indian Ocean is mainly correlated with spatial variation in sea surface temperature. The relative influence of this predictor provides a basis for predicting habitat suitability in the open ocean, possibly giving insights into the migratory behaviour of the world’s largest fish. Our results also provide a baseline for temperature‐dependent predictions of distributional changes in the future.  相似文献   

18.
The cosmopolitan opah Lampris immaculatus (also known as the moonfish or mariposa) occurs commonly in New Zealand waters. The otoliths of 23 individuals were examined by light microscopy. All three of the otoliths of the endolymphatic sac of the opah have the characteristic appearance of the Stolkowski crystal form of the vaterite morph of calcium carbonate. Five randomly chosen pairs of asterici and sagittae and two lapilli otoliths were shown by X-ray diffraction to be composed of vaterite. In addition to their mineral composition, the sagitta and astericus of the opah present an unusual combination of anatomical features found in both what are generally regarded as primitive and as advanced fish. Vaterite otoliths also occur in the sunfish Mola mola and M. ramsayi, but with a different crystalline habit to that found in the opah, and in a distinctively different anatomical arrangement of the endolymphatic sac. It is argued that, based on their otolith mineralogy and morphology, the opah and the sunfish are each side of one of the biochemical and anatomical boundaries involved in the separation of the teleosts from other actinopterygian fish (sturgeons, paddle fish, gars and bowfins).  相似文献   

19.
The stomach of a spotted wolffish (Anarhichas minor) caught in Icelandic waters was found to contain ~727 greater eelpout larvae (Lycodes esmarkii). All the larvae were of similar size and at a similar state of digestion, indicating they were all consumed together. The likely explanation for this observation is that greater eelpout lay their eggs in a nest, with the larvae remaining in the nest for a short period after hatching. The larvae were then predated upon by the spotted wolffish while still in the nest. This study sheds new light on greater eelpout in Icelandic waters, with recently hatched larvae being present in March, breeding at a depth of ~200–250 m, and likely exhibiting nesting behavior, which has not previously been documented.  相似文献   

20.
North-Atlantic records of Schizymenia dubyi extend along the eastern shores of the North Atlantic from Morocco to southern Britain and Ireland, and the species is also recorded from Iceland. A study was undertaken to confirm the identity of the specimens from Iceland that were geographically separate from the main distribution of S. dubyi and in contrast to other species of the genus did not have gland cells. We analyzed rbcL and COI molecular sequence data from Icelandic specimens and compared the results with those for Schizymenia specimens available in GenBank. For both markers, Schizymenia was shown to be a monophyletic genus. The Icelandic specimens were clearly genetically distinct from S. dubyi and formed a well-supported clade with Schizymenia species from the Northern Pacific. Based on these results, we have described a new species, Schizymenia jonssonii, which can be distinguished by molecular phylogeny, its lack of gland cells and by being strictly intertidal. Crustose tetrasporophytes with identical COI and rbcL sequences were found at the same locations as foliose plants. Schizymenia apoda is reported for the first time in the UK, its identity confirmed by rbcL sequence data. In light of these findings, it is likely that by further molecular analysis of the genus Schizymenia in the north-eastern Atlantic and the Mediterranean, a higher diversity of Schizymenia spp. will be discovered in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号