共查询到20条相似文献,搜索用时 9 毫秒
1.
Ovaries of red snapper Lutjanus campechanus were examined histologically to determine rates of oocyte maturation, diel spawning periodicity and whether lunar cycle influenced spawning rhythm. Hydration of red snapper oocytes began during the mid‐morning hours; c . 5 h was necessary for oocytes to become fully hydrated and ovulation occurred no more than 5 h after oocytes attained full hydration. Appearance of fresh postovulatory follicles after 1330 hours and the absence of hydrated oocytes after 1830 hours signified that red snapper spawning occurred during this 5 h period. In addition, evidence of a peak in spawning was seen near 1600 hours. Postovulatory follicles degenerated within a 24 h time period. A lunar spawning cycle was not evident. 相似文献
2.
F. JOEL FODRIE † KENNETH L. HECK Jr † SEAN P. POWERS † WILLIAM M. GRAHAM † KELLY L. ROBINSON † 《Global Change Biology》2010,16(1):48-59
Global temperatures are rising, and are expected to produce a poleward shift in the distribution of many organisms. We quantified changes in fish assemblages within seagrass meadows of the northern Gulf of Mexico (GOM) between the 1970s and 2006–2007, and observed changes consistent with this forecast. During 2006–2007 we sampled seagrass meadows using the same gears and methods previously employed by R. J. Livingston in coastal waters of northwest Florida throughout the 1970s. Comparisons between datasets revealed numerous additions to the fish fauna during 2006–2007 that were completely absent in the 1970s, including: Lutjanus synagris (lane snapper), Epinephelus morio (red grouper), Chaetodon ocellatus (spotfin butterflyfish), Mycteroperca sp (grouper, non gag), Centropristis philadelphica (rock sea bass), Fistularia tabacaria (bluespotted cornetfish), Ocyurus chrysurus (yellowtail snapper), Thalassoma bifasciatum (bluehead wrasse), Abudefduf saxatilis (sergeant major), Acanthuridae spp. (surgeonfishes) and Sparisoma viride (stoplight parrotfish). Several other species showed large increases in abundance during the interval between 1979 and 2006, including Mycteroperca microlepis (gag grouper, up ∼200 ×), Lutjanus griseus (gray snapper, up ∼105 ×), and Nicholsina usta (emerald parrotfish, up ∼22 ×). All of these are tropical or subtropical species that now make up a greater percentage of seagrass-associated fish assemblages in the northern GOM than in the past. Additionally, we observed regional increases in air and sea surface temperatures (> 3 °C) during the ∼30 years that separate Livingston's samples and ours that correlate with northern shifts in the distribution of warm-water fishes. Documenting these range shifts is a critical first step in investigating the consequences of global warming for endemic marine communities and fishery production in the northern GOM. 相似文献
3.
1. Increasing temperature and invading species may interact in their effects on communities. In this study, we investigated how rising temperatures alter larval interactions between a naturally range‐expanding dragonfly, Crocothemis erythraea, and a native northern European species, Leucorrhinia dubia. Initial studies revealed that C. erythraea grow up to 3.5 times faster than L. dubia at temperatures above 16 °C. As a result, we hypothesised that divergent temperature responses would lead to rapid size differences between coexisting larvae and, consequently, to asymmetric intraguild predation at higher ambient temperatures. 2. Mortality and growth rates were measured in interaction treatments (with both species present) and non‐interaction controls (one species present) at four different temperature regimes: at an ambient temperature representative of central Germany, where both species overlap in distribution, and at temperatures increased by 2, 4 and 6 °C. 3. The mortality of C. erythraea did not differ between treatment and control. In contrast, mortality of L. dubia remained similar over all temperatures in the controls, but increased with temperature in the presence of the other species and was significantly higher there than in the controls. We concluded that L. dubia suffered asymmetric intraguild predation, particularly at increased temperature. Reduced growth rate of L. dubia in the interaction treatment at higher temperatures also suggested asymmetric competition for prey in the first phase of the experiment. 4. The results imply that the range expansion of C. erythraea may cause reduction in population size of syntopic L. dubia when temperature rises by more than 2 °C. The consequences for future range patterns, as well as other factors that may influence the interaction in nature, are discussed. 相似文献
4.
5.
6.
Age and growth of mangrove red snapper Lutjanus argentimaculatus at its cool‐water‐range limits 下载免费PDF全文
T. P. Piddocke G. L. Butler P. A. Butcher J. Stewart D. J. Bucher L. Christidis 《Journal of fish biology》2015,86(5):1587-1600
This study investigates the age and growth of Lutjanus argentimaculatus at its southern (cooler) range limits in eastern Australia. Specimens were collected from New South Wales and southern Queensland between November 2011 and December 2013. Fork lengths (LF) ranged from 190 to 1019 mm, and ages ranged from 2+ to 57+ years. Growth was described by the von Bertalanffy growth function with coefficients L∞ = 874·92 mm, K = 0·087 year?1 and t0 = ?2·76 years. Estimates of the instantaneous natural mortality rate (M) ranged from 0·072 to 0·25. The LF (mm) and mass (W; g) relationship was represented by the equation: . The maximum age of 57+ years is the oldest reported for any lutjanid and comparisons with tropical studies suggest that the age‐based demography of L. argentimaculatus follows a latitudinal gradient. High maximum ages and low natural mortality rates indicate considerable vulnerability to overexploitation at the species' cool‐water‐range limits. These results demonstrate the need to identify underlying processes driving latitudinal gradients in fish demography. 相似文献
7.
The abiotic and biotic factors limiting establishment of predatory fishes at their expanding northern range boundaries in Ontario,Canada 下载免费PDF全文
There is a poor understanding of the importance of biotic interactions in determining species distributions with climate change. Theory from invasion biology suggests that the success of species introductions outside of their historical ranges may be either positively (biotic acceptance) or negatively (biotic resistance) related to native biodiversity. Using data on fish community composition from two survey periods separated by approximately 28 years during which climate was warming, we examined the factors influencing the establishment of three predatory centrarchids: Smallmouth Bass (Micropterus dolomieu), Largemouth Bass (M. salmoides), and Rock Bass (Ambloplites rupestris) in lakes at their expanding northern range boundaries in Ontario. Variance partitioning demonstrated that, at a regional scale, abiotic factors play a stronger role in determining the establishment of these species than biotic factors. Pairing lakes within watersheds where each species had established with lakes sharing similar abiotic conditions where the species had not established revealed both positive and negative relationships between the establishment of centrarchids and the historical presence of other predatory species. The establishment of these species near their northern range boundaries is primarily determined by abiotic factors at a regional scale; however, biotic factors become important at the lake‐to‐lake scale. Studies of exotic species invasions have previously highlighted how spatial scale mediates the importance of abiotic vs. biotic factors on species establishment. Our study demonstrates how concepts from invasion biology can inform our understanding of the factors controlling species distributions with changing climate. 相似文献
8.
Climate‐driven range shifts of foundation species could alter ecosystem processes and community composition by providing different resources than resident foundation species. Along the US Atlantic coast, the northward expanding foundation species, black mangrove Avicennia germinans, is replacing the dominant salt marsh foundation species, marsh cordgrass Spartina alterniflora. These species have distinct detrital attributes that ostensibly provide different resources to epifauna. We experimentally examined how detritus of these species affects decomposition and community composition in different habitat contexts at regional and local scales. First, we manipulated detritus identity (Avicennia, Spartina) at 13 sites across a 5° latitudinal gradient spanning mangrove, mixed marsh‐mangrove and salt marsh habitats. Across latitude, we found that Avicennia detritus decomposed 2–4 times faster than Spartina detritus, suggesting that detrital turnover will increase with mangrove expansion. Epifaunal abundance and richness increased 2–7 times from south to north (mangrove to salt marsh) and were equivalent between Avicennia and Spartina detritus except for crabs, a dominant taxonomic group that preferred Spartina detritus. Second, to examine the whether changing habitat context affected regional patterns, we manipulated detritus identity and surrounding habitat type (mangrove, salt marsh) at a single mixed site, also including inert mimics to separate structural and nutritional roles of detritus. Epifaunal richness was similar between the two detrital types, but crabs were 2–7 times more abundant in Spartina detritus due to its structural attributes. Surrounding habitat type did not influence decomposition rate or community patterns, which suggests that latitudinal influences, not surrounding habitat, drove the regional community patterns in the first experiment. Overall, mangrove expansion could alter epifaunal communities due to the lower structural value and faster turnover of mangrove detritus. As species shift with changing climate, understanding foundation species substitutability is critical to predict community change, but we must account for concomitant environmental changes that also modify communities. 相似文献
9.
Cristin J. Monaco Corey J. A. Bradshaw David J. Booth Bronwyn M. Gillanders David S. Schoeman Ivan Nagelkerken 《Global Change Biology》2020,26(10):5564-5573
Climate change is redistributing marine and terrestrial species globally. Life‐history traits mediate the ability of species to cope with novel environmental conditions, and can be used to gauge the potential redistribution of taxa facing the challenges of a changing climate. However, it is unclear whether the same traits are important across different stages of range shifts (arrival, population increase, persistence). To test which life‐history traits most mediate the process of range extension, we used a 16‐year dataset of 35 range‐extending coral‐reef fish species and quantified the importance of various traits on the arrival time (earliness) and degree of persistence (prevalence and patchiness) at higher latitudes. We show that traits predisposing species to shift their range more rapidly (large body size, broad latitudinal range, long dispersal duration) did not drive the early stages of redistribution. Instead, we found that as diet breadth increased, the initial arrival and establishment (prevalence and patchiness) of climate migrant species in temperate locations occurred earlier. While the initial incursion of range‐shifting species depends on traits associated with dispersal potential, subsequent establishment hinges more on a species’ ability to exploit novel food resources locally. These results highlight that generalist species that can best adapt to novel food sources might be most successful in a future ocean. 相似文献
10.
Tom H. Oliver David B. Roy Tom Brereton Jeremy A. Thomas 《Global Change Biology》2012,18(5):1531-1539
Populations at the high latitude edge of species’ geographical ranges are thought to show larger interannual population fluctuations, with subsequent higher local extinction risk, than those within the ‘core’ climatic range. As climate envelopes shift northward under climate warming, however, we would expect populations to show dampened variability. We test this hypothesis using annual abundance indices from 19 butterfly species across 79 British monitoring sites between 1976 and 2009, a period of climatic warming. We found that populations in the latter (warmer) half of the recording period show reduced interannual population variability. Species with more southerly European distributions showed the greatest dampening in population variability over time. Our results suggest that increases in population variability occur towards climatic range boundaries. British sites, previously existing at the margins of suitable climate space, now appear to fall closer to the core climatic range for many butterfly species. 相似文献
11.
RICHARD B. BRADBURY JAMES W. PEARCE‐HIGGINS SIMON R. WOTTON GREG J. CONWAY PHIL V. GRICE 《Ibis》2011,153(2):336-344
The Dartford Warbler Sylvia undata has recently expanded its range northwards and upwards in the UK, consistent with the hypothesis that this cold‐sensitive species has responded to a warming climate. We interrogated distribution data, collected during four national surveys of this species between 1974 and 2006, to assess whether this large‐scale range expansion has been accompanied by finer‐scale changes in topographic characteristics of breeding locations. Within sites occupied in successive surveys, there was some evidence of limited altitudinal expansion between surveys. Within wider landscapes occupied in successive surveys, the preceding winter climate tended to be harsher at newly colonized sites than at sites that had already been occupied in the previous survey, while territories in newly colonized sites also tended to be on steeper slopes, especially if at higher altitude, and (in 1994 only) to be more south‐facing. Territories in sites that had already been occupied in the previous survey tended to be lower altitude, less steep and more north‐facing than territories in newly colonized landscapes. In 2006 only, the winter climate was significantly milder in newly colonized landscapes than in already occupied sites. The combined effects of a changing climate and topography may have influenced the pattern of in‐filling in the existing range, while colonization of distant areas, especially more latterly, may have been facilitated by a combination of increased dispersal pressure from the existing range and warming of climate which made higher altitude habitat in the new areas more suitable for occupancy. Careful consideration needs to be given to the importance of fine‐scale topographical variation in determining species’ responses to climate change in order to underpin robust adaptation strategies. 相似文献
12.
13.
Chiara Polce Michael P Garratt Mette Termansen Julian Ramirez‐Villegas Andrew J Challinor Martin G Lappage Nigel D Boatman Andrew Crowe Ayenew Melese Endalew Simon G Potts Kate E Somerwill Jacobus C Biesmeijer 《Global Change Biology》2014,20(9):2815-2828
Understanding how climate change can affect crop‐pollinator systems helps predict potential geographical mismatches between a crop and its pollinators, and therefore identify areas vulnerable to loss of pollination services. We examined the distribution of orchard species (apples, pears, plums and other top fruits) and their pollinators in Great Britain, for present and future climatic conditions projected for 2050 under the SRES A1B Emissions Scenario. We used a relative index of pollinator availability as a proxy for pollination service. At present, there is a large spatial overlap between orchards and their pollinators, but predictions for 2050 revealed that the most suitable areas for orchards corresponded to low pollinator availability. However, we found that pollinator availability may persist in areas currently used for fruit production, which are predicted to provide suboptimal environmental suitability for orchard species in the future. Our results may be used to identify mitigation options to safeguard orchard production against the risk of pollination failure in Great Britain over the next 50 years; for instance, choosing fruit tree varieties that are adapted to future climatic conditions, or boosting wild pollinators through improving landscape resources. Our approach can be readily applied to other regions and crop systems, and expanded to include different climatic scenarios. 相似文献
14.
15.
Rutger A. Wilschut Stefan Geisen Henk Martens Olga Kostenko Mattias de Hollander Freddy C. ten Hooven Carolin Weser L. Basten Snoek Janneke Bloem Danka Cakovi Tatjana elik Kadri Koorem Nikos Krigas Marta Manrubia Kelly S. Ramirez Maria A. Tsiafouli Branko Vre Wim H. van der Putten 《Global Change Biology》2019,25(8):2714-2726
Current climate change has led to latitudinal and altitudinal range expansions of numerous species. During such range expansions, plant species are expected to experience changes in interactions with other organisms, especially with belowground biota that have a limited dispersal capacity. Nematodes form a key component of the belowground food web as they include bacterivores, fungivores, omnivores and root herbivores. However, their community composition under climate change‐driven intracontinental range‐expanding plants has been studied almost exclusively under controlled conditions, whereas little is known about actual patterns in the field. Here, we use novel molecular sequencing techniques combined with morphological quantification in order to examine nematode communities in the rhizospheres of four range‐expanding and four congeneric native species along a 2,000 km latitudinal transect from South‐Eastern to North‐Western Europe. We tested the hypotheses that latitudinal shifts in nematode community composition are stronger in range‐expanding plant species than in congeneric natives and that in their new range, range‐expanding plant species accumulate fewest root‐feeding nematodes. Our results show latitudinal variation in nematode community composition of both range expanders and native plant species, while operational taxonomic unit richness remained the same across ranges. Therefore, range‐expanding plant species face different nematode communities at higher latitudes, but this is also the case for widespread native plant species. Only one of the four range‐expanding plant species showed a stronger shift in nematode community composition than its congeneric native and accumulated fewer root‐feeding nematodes in its new range. We conclude that variation in nematode community composition with increasing latitude occurs for both range‐expanding and native plant species and that some range‐expanding plant species may become released from root‐feeding nematodes in the new range. 相似文献
16.
Jani Heino Raimo Virkkala Heikki Toivonen 《Biological reviews of the Cambridge Philosophical Society》2009,84(1):39-54
Current rates of climate change are unprecedented, and biological responses to these changes have also been rapid at the levels of ecosystems, communities, and species. Most research on climate change effects on biodiversity has concentrated on the terrestrial realm, and considerable changes in terrestrial biodiversity and species’ distributions have already been detected in response to climate change. The studies that have considered organisms in the freshwater realm have also shown that freshwater biodiversity is highly vulnerable to climate change, with extinction rates and extirpations of freshwater species matching or exceeding those suggested for better‐known terrestrial taxa. There is some evidence that freshwater species have exhibited range shifts in response to climate change in the last millennia, centuries, and decades. However, the effects are typically species‐specific, with cold‐water organisms being generally negatively affected and warm‐water organisms positively affected. However, detected range shifts are based on findings from a relatively low number of taxonomic groups, samples from few freshwater ecosystems, and few regions. The lack of a wider knowledge hinders predictions of the responses of much of freshwater biodiversity to climate change and other major anthropogenic stressors. Due to the lack of detailed distributional information for most freshwater taxonomic groups and the absence of distribution‐climate models, future studies should aim at furthering our knowledge about these aspects of the ecology of freshwater organisms. Such information is not only important with regard to the basic ecological issue of predicting the responses of freshwater species to climate variables, but also when assessing the applied issue of the capacity of protected areas to accommodate future changes in the distributions of freshwater species. This is a huge challenge, because most current protected areas have not been delineated based on the requirements of freshwater organisms. Thus, the requirements of freshwater organisms should be taken into account in the future delineation of protected areas and in the estimation of the degree to which protected areas accommodate freshwater biodiversity in the changing climate and associated environmental changes. 相似文献
17.
Species traits and climate velocity explain geographic range shifts in an ocean‐warming hotspot 下载免费PDF全文
Jennifer M. Sunday Gretta T. Pecl Stewart Frusher Alistair J. Hobday Nicole Hill Neil J. Holbrook Graham J. Edgar Rick Stuart‐Smith Neville Barrett Thomas Wernberg Reg A. Watson Dan A. Smale Elizabeth A. Fulton Dirk Slawinski Ming Feng Ben T. Radford Peter A. Thompson Amanda E. Bates 《Ecology letters》2015,18(9):944-953
Species' ranges are shifting globally in response to climate warming, with substantial variability among taxa, even within regions. Relationships between range dynamics and intrinsic species traits may be particularly apparent in the ocean, where temperature more directly shapes species' distributions. Here, we test for a role of species traits and climate velocity in driving range extensions in the ocean‐warming hotspot of southeast Australia. Climate velocity explained some variation in range shifts, however, including species traits more than doubled the variation explained. Swimming ability, omnivory and latitudinal range size all had positive relationships with range extension rate, supporting hypotheses that increased dispersal capacity and ecological generalism promote extensions. We find independent support for the hypothesis that species with narrow latitudinal ranges are limited by factors other than climate. Our findings suggest that small‐ranging species are in double jeopardy, with limited ability to escape warming and greater intrinsic vulnerability to stochastic disturbances. 相似文献
18.
19.
20.
Rethinking tropical phenology: insights from long‐term monitoring and novel analytical methods 下载免费PDF全文
Here, we introduce the Special Section (SS) on long‐term monitoring and new analytical methods in tropical phenology. The SS puts together nine original papers plus a synthesis, bringing significant advances and new insights into our understanding of tropical phenology across Africa and tropical America. The papers address environmental cues, methodological shortcomings, and provide innovative analytical approaches, opening new pathways, perspective and applications of tropical phenology for forest management and environmental monitoring. The SS is a substantial step toward a more comprehensive overview of trends in tropical phenology, as seven of nine studies evaluate >10‐yr data sets applying new methods of analysis such as hierarchical Bayesian models, generalized additive models, and Fourier analysis. We argue that it is essential to maintain ongoing monitoring programs and build a tropical phenology network at least for long‐term (>10 yr) study sites, providing the means for national and international financial support. Cross‐continental comparisons are now a primary goal, as we work toward a global vision of trends and shifts in tropical phenology in the Anthropocene. 相似文献