首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apicomplexan parasites, such as Toxoplasma gondii, are unusual in that each cell contains a single apicoplast, a plastid-like organelle that compartmentalizes enzymes involved in the essential 2C-methyl-D-erythritol 4-phosphate pathway of isoprenoid biosynthesis. The last two enzymatic steps in this organellar pathway require electrons from a redox carrier. However, the small iron-sulfur cluster-containing protein ferredoxin, a likely candidate for this function, has not been investigated in this context. We show here that inducible knockdown of T. gondii ferredoxin results in progressive inhibition of growth and eventual parasite death. Surprisingly, this phenotype is not accompanied by ultrastructural changes in the apicoplast or overall cell morphology. The knockdown of ferredoxin was instead associated with a dramatic decrease in cellular levels of the last two metabolites in isoprenoid biosynthesis, 1-hydroxy-2-methyl-2-(E)- butenyl-4-pyrophosphate, and isomeric dimethylallyl pyrophosphate/isopentenyl pyrophosphate. Ferredoxin depletion was also observed to impair gliding motility, consistent with isoprenoid metabolites being important for dolichol biosynthesis, protein prenylation, and modification of other proteins involved in motility. Significantly, pharmacological inhibition of isoprenoid synthesis of the host cell exacerbated the impact of ferredoxin depletion on parasite replication, suggesting that the slow onset of parasite death after ferredoxin depletion is because of isoprenoid scavenging from the host cell and leading to partial compensation of the depleted parasite metabolites upon ferredoxin knockdown. Overall, these findings show that ferredoxin has an essential physiological function as an electron donor for the 2C-methyl-D-erythritol 4-phosphate pathway and is a potential drug target for apicomplexan parasites.  相似文献   

2.
Two inhibitors of metabolite translocators, sodium pyrophosphate (NaPP) and D,L-glyceraldehyde (DLG), respectively, were added into suspension cultures of Taxus chinensis var. mairei at the early and late growth phases to investigate the translocation of isopentenyl pyrophosphate (IPP) from cytoplasm to plastids for Taxol biosynthesis. NaPP and DLG hardly affected cell biomass and viability regardless of the phases of their introduction. The Taxol content varied less when NaPP or DLG was added at day 7 but decreased obviously when NaPP or DLG was introduced at day 14. It is thus inferred that NaPP and DLG inhibited Taxol biosynthesis by blocking IPP translocation at the late growth phase, suggesting that the translocation of IPP be involved only at the late growth phase of Taxus cells.  相似文献   

3.
4.
Vitamins are essential components of the human diet. By contrast, the malaria parasite Plasmodium falciparum and related apicomplexan parasites synthesize certain vitamins de novo, either completely or in parts. The various biosynthesis pathways are specific to different apicomplexan parasites and emphasize the distinct requirements of these parasites for nutrients and growth factors. The absence of vitamin biosynthesis in humans implies that inhibition of the parasite pathways might be a way to interfere specifically with parasite development. However, the roles of biosynthesis and uptake of vitamins in the regulation of vitamin homeostasis in parasites needs to be established first. In this article, the procurement of vitamins B(1), B(5) and B(6) by Plasmodium and other apicomplexan parasites is discussed.  相似文献   

5.
6.
7.
Toxoplasma gondii is an obligatory intracellular apicomplexan parasite which exploits host cell surface components in cell invasion and intracellular parasitization. Sulfated glycans such as heparin and heparan sulfate have been reported to inhibit cell invasion by T. gondii and other apicomplexan parasites such as Plasmodium falciparum. The aim of this study was to investigate the heparin‐binding proteome of T. gondii. The parasite‐derived components were affinity‐purified on the heparin moiety followed by MS fingerprinting of the proteins. The heparin‐binding proteins of T. gondii and P. falciparum were compared based on functionality and affinity to heparin. Among the proteins identified, the invasion‐related parasite ligands derived from tachyzoite/merozoite surface and the secretory organelles were prominent. However, the profiles of the proteins were different in terms of affinity to heparin. In T. gondii, the proteins with highest affinity to heparin were the intracellular components with functions of parasite development contrasted to that of P. falciparum, of which the rhoptry‐derived proteins were prominently identified. The profiling of the heparin‐binding proteins of the two apicomplexan parasites not only explained the mechanism of heparin‐mediated host cell invasion inhibition, but also, to a certain extent, revealed that the action of heparin on the parasite extended after endocytosis.  相似文献   

8.
Parasitism has evolved innumerable times among eukaryotes. Red algal parasites alone have independently evolved over 100 times. The accepted evolutionary paradigm proposes that red algal parasites arise by first infecting a close relative and over time diversifying and infecting more distantly related species. This provides a natural evolutionary gradient of relationships between hosts and parasites that share a photosynthetic common ancestor. Upon infection, the parasite deposits its organelles into the host cell and takes over, spreading through cell‐cell connections. Microscopy and molecular studies have demonstrated that the parasites do not maintain their own plastid, but rather abscond with a dedifferentiated host plastid as they pack up spores for dispersal. We sequenced a ~90 kb plastid genome from the parasite Choreocolax polysiphoniae, which has lost genes for light harvesting and photosynthesis. Furthermore, the presence of a native C. polysiphoniae plastid indicates that not all red algal parasites follow the same evolutionary pathway to parasitism. Along with the 167 kb plastid genome of its host, Vertebrata lanosa, these plastids are the first to be sequenced from the Ceramiales.  相似文献   

9.
Lipoic acid is an essential cofactor for enzymes that participate in key metabolic pathways in most organisms. While in mammalian cells lipoylated proteins reside exclusively in the mitochondria, apicomplexan parasites of the genus Plasmodium harbour two independent lipoylation pathways in the mitochondrion and the apicoplast, a second organelle of endosymbiotic origin. Protein lipoylation in the apicoplast relies on de novo lipoic acid synthesis while lipoylation of proteins in the mitochondrion depends on scavenging of lipoic acid from the host cell. Here, we analyse the impact of lipoic acid scavenging on the development of Plasmodium berghei liver stage parasites. Treatment of P. berghei-infected HepG2 cells with the lipoic acid analogue 8-bromo-octanoic acid (8-BOA) abolished lipoylation of mitochondrial enzyme complexes in the parasite while lipoylation of apicoplast proteins was not affected. Parasite growth as well as the ability of the parasites to successfully complete liver stage development by merosome formation were severely impaired but not completely blocked by 8-BOA. Liver stage parasites were most sensitive to 8-BOA treatment during schizogony, the phase of development when the parasite grows and undergoes extensive nuclear division to form a multinucleated syncytium. Live cell imaging as well as immunofluorescence analysis and electronmicroscopy studies revealed a close association of both host cell and parasite mitochondria with the parasitophorous vacuole membrane suggesting that host cell mitochondria might be involved in lipoic acid uptake by the parasite from the host cell.  相似文献   

10.
Artemisinin is a well-known antimalarial drug isolated from the Artemisia annua plant. The biosynthesis of this well-known molecule has been reinvestigated by using [1-13C]acetate, [2-13C]acetate, and [1,6-13C2]glucose. The 13C peak enrichment in artemisinin was observed in six and nine carbon atoms from [1-13C]acetate and [2-13C]acetate, respectively. The 13C NMR spectra of 13C-enriched artemisinin suggested that the mevalonic acid (MVA) pathway is the predominant route to biosynthesis of this sesquiterpene. On the other hand, the peak enrichment of five carbons of 13C-artemisinin including carbon atoms originating from methyls of dimethylallyl group of geranyl pyrophosphate (GPP) and farnesyl pyrophosphate (FPP) was observed from [1,6-13C2]glucose. This suggested that GPP which is supposed to be biosynthesized in plastids travels from plastids to cytosol through the plastidial wall and combines with isopentenyl pyrophosphate (IPP) to form the (E,E)-FPP which finally cyclizes and oxidizes to artemisinin. In this way the DXP pathway also contributes to the biosynthesis of this sesquiterpene.  相似文献   

11.
The apicoplast organelle of the malaria parasite Plasmodium falciparum contains metabolic pathways critical for liver-stage and blood-stage development. During the blood stages, parasites lacking an apicoplast can grow in the presence of isopentenyl pyrophosphate (IPP), demonstrating that isoprenoids are the only metabolites produced in the apicoplast which are needed outside of the organelle. Two of the isoprenoid biosynthesis enzymes are predicted to rely on iron-sulfur (FeS) cluster cofactors, however, little is known about FeS cluster synthesis in the parasite or the roles that FeS cluster proteins play in parasite biology. We investigated two putative FeS cluster synthesis pathways (Isc and Suf) focusing on the initial step of sulfur acquisition. In other eukaryotes, these proteins can be located in multiple subcellular compartments, raising the possibility of cross-talk between the pathways or redundant functions. In P. falciparum, SufS and its partner SufE were found exclusively the apicoplast and SufS was shown to have cysteine desulfurase activity in a complementation assay. IscS and its effector Isd11 were solely mitochondrial, suggesting that the Isc pathway cannot contribute to apicoplast FeS cluster synthesis. The Suf pathway was disrupted with a dominant negative mutant resulting in parasites that were only viable when supplemented with IPP. These parasites lacked the apicoplast organelle and its organellar genome – a phenotype not observed when isoprenoid biosynthesis was specifically inhibited with fosmidomycin. Taken together, these results demonstrate that the Suf pathway is essential for parasite survival and has a fundamental role in maintaining the apicoplast organelle in addition to any role in isoprenoid biosynthesis.  相似文献   

12.
Micronemes are specialised organelles, found in all apicomplexan parasites, which secrete molecules that are essential for parasite attachment to and invasion of host cells. Regions of several microneme proteins have sequence similarity to the Apple domains (A-domains) of blood coagulation factor XI (FXI) and plasma pre-kallikrein (PK). We have used mass spectrometry on a recombinant-expressed, putative A-domain from the microneme protein EtMIC5 from Eimeria tenella, to demonstrate that three intramolecular disulphide bridges are formed. These bridges are analogous to those that stabilise A-domains in FXI and PK. The data confirm that the apicomplexan domains are structural homologues of A-domains and are therefore novel members of the PAN module superfamily, which also includes the N-terminal domains of members of the plasminogen/hepatocyte growth factor family. The role of A-domains/PAN modules in apicomplexan parasites is not known, but their presence in the microneme suggests that they may be important for mediating protein-protein or protein-carbohydrate interactions during parasite attachment and host cell invasion.  相似文献   

13.
Chloroplast preparations from the mesocarp ofPersea gratissima and from light-grown shoots ofPisum sativum were unable to synthesize abscisic acid (ABA) from mevalonolactone, mevalonic acid, or isopentenyl pyrophosphate. Similar plastid preparations transformed [2-14C]ABA into acidic products that were chromatographically similar to those generated byP. gratissima mesocarp slices and excised shoots ofP. sativum. Attempts to increase ABA catabolism in chloroplast preparations using sedimentation through Percoll to remove associated proteases also reduced the capacity for ABA catabolism, suggesting that such catabolism arose from contaminating, cytoplasmic enzymes. Both lincomycin and chloramphenicol inhibited the catabolism of ABA by excised shoots ofP. sativum but had little effect on either ABA biosynthesis or ABA catabolism in mesocarp fromP. gratissima. These processes were inhibited markedly by cycloheximide.  相似文献   

14.
This review offers a snapshot of our current understanding of the origin, biology, and metabolic significance of the non-photosynthetic plastid organelle found in apicomplexan parasites. These protists are of considerable medical and veterinary importance world-wide, Plasmodium spp., the causative agent of malaria being foremost in terms of human disease. It has been estimated that approximately 8% of the genes currently recognized by the malarial genome sequencing project (now nearing completion) are of bacterial/plastid origin. The bipartite presequences directing the products of these genes back to the plastid have provided fresh evidence that secondary endosymbiosis accounts for this organelle's presence in these parasites. Mounting phylogenetic evidence has strengthened the likelihood that the plastid originated from a red algal cell. Most importantly, we now have a broad understanding of several bacterial metabolic systems confined within the boundaries of the parasite plastid. The primary ones are type II fatty acid biosynthesis and isoprenoid biosynthesis. Some aspects of heme biosynthesis also might take place there. Retention of the plastid's relict genome and its still ill-defined capacity to participate in protein synthesis might be linked to an important house-keeping process, i.e. guarding the type II fatty acid biosynthetic pathway from oxidative damage. Fascinating observations have shown the parasite plastid does not divide by constriction as in typical plants, and that plastid-less parasites fail to thrive after invading a new cell. The modes of plastid DNA replication within the phylum also have provided surprises. Besides indicating the potential of the parasite plastid for therapeutic intervention, this review exposes many gaps remaining in our knowledge of this intriguing organelle. The rapid progress being made shows no sign of slackening.  相似文献   

15.
Abscisic acid is considered an apocarotenoid formed by cleavage of a C-40 precursor and subsequent oxidation of xanthoxin and abscisic aldehyde. Confirmation of this reaction sequence is still awaited, and might best be achieved using a cell-free system capable of both carotenoid and abscisic acid biosynthesis. An abscisic acid biosynthesizing cell-free system, prepared from flavedo of mature orange fruits, was used to demonstrate conversion of farnesyl pyrophosphate, geranylgeranyl pyrophosphate and all-trans-β-carotene into a range of β,β-xanthophylls, xanthoxin, xanthoxin acid, 1′,4′-trans-abscisic acid diol and abscisic acid. Identification of product carotenoids was achieved by high-performance liquid chromatography and on-line spectral analysis of individual components together with co-chromatography. Putative C-15 intermediates and product abscisic acid were identified by combined capillary gas chroma-tography-mass spectrometry. Kinetic studies revealed that β-carotene, formed from either famesyl pyrophosphate or geranylgeranyl pyrophosphate, reached a maximum within 30 min of initiation of the reaction. Thereafter, β-carotene levels declined exponentially. Catabolism of substrate β-carotene into xanthophylls, putative abscisic acid precursors and product abscisic acid was restricted to the all-trans-isomer. However, when a combination of all-trans- and 9-cis-β-carotene in the ratio 1:1 was used as substrate, formation of abscisic acid and related metabolites was enhanced. Biosyn-thetically prepared [14C]-all-trans-violaxanthin, [14C]-all-trans-neoxanthin and [14C]-9′-cis-neoxanthin were used as substrates to confirm the metabolic interrelationship between carotenoids and abscisic acid. The results are consistent with 9′-cis-neoxan-thin being the immediate carotenoid precursor to ABA, which is oxidatively cleaved to produce xanthoxin. Formation of abscisic aldehyde was not observed. Rather, xanthoxin appeared to be converted to abscisic acid via xanthoxin acid and 1′,4′-trans-abscisic acid diol. An alternative pathway for abscisic acid biosynthesis is therefore proposed.  相似文献   

16.
The phylum Apicomplexa encompasses a large number of intracellular protozoan parasites, including the causative agents of malaria (Plasmodium), toxoplasmosis (Toxoplasma), and many other human and animal diseases. Apicomplexa have recently been found to contain a relic, nonphotosynthetic plastid that has attracted considerable interest as a possible target for therapeutics. This plastid is known to have been acquired by secondary endosymbiosis, but when this occurred and from which type of alga it was acquired remain uncertain. Based on the molecular phylogeny of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes, we provide evidence that the apicomplexan plastid is homologous to plastids found in dinoflagellates-close relatives of apicomplexa that contain secondary plastids of red algal origin. Surprisingly, apicomplexan and dinoflagellate plastid-targeted GAPDH sequences were also found to be closely related to the plastid-targeted GAPDH genes of heterokonts and cryptomonads, two other groups that contain secondary plastids of red algal origin. These results address several outstanding issues: (1) apicomplexan and dinoflagellate plastids appear to be the result of a single endosymbiotic event which occurred relatively early in eukaryotic evolution, also giving rise to the plastids of heterokonts and perhaps cryptomonads; (2) apicomplexan plastids are derived from a red algal ancestor; and (3) the ancestral state of apicomplexan parasites was photosynthetic.  相似文献   

17.
The metabolism of isopentenyl adenine, Δ-isopentenyl pyrophosphate, DL-mevalonic acid and adenine in detached inflorescence stalks of Yucca has been studied using radioactive tracer techniques. Xylem feeding of detached stalks with Δ-isopentenyl pyrophosphate, DL-mevalonic acid or adenine did not result in the formation of zeatin- or isopentenyl adenine cytokinins. In contrast isopentenyl adenine fed to a detached inflorescence stalk lead to the formation of isopentenyl- and zeatin nucleotides in the exudate. After alkaline phosphatase treatment of this exudate an unknown compound, presumably isopentenyl adenine-7-glucoside was also detected. The same compound was found after incubation of phloem exudate with isopentenyl adenine. The occurrence of both zeatin- and isopentenyl adenine nucleotides in phloem exudate from an attached inflorescence stalk of Yucca is described.  相似文献   

18.
Croteau R 《Plant physiology》1992,98(4):1515-1517
Clomazone, an herbicide that reduces the levels of leaf carotenoids and chlorophylls, is thought to act by inhibiting isopentenyl pyrophosphate isomerase or the prenyltransferases responsible for the synthesis of geranylgeranyl pyrophosphate. Cell-free extracts prepared from the oil glands of common sage (Salvia officinalis) are capable of converting isopentenyl pyrophosphate to geranylgeranyl pyrophosphate. Clomazone at 250 micromolar (a level that produced leaf bleaching) had no detectable effect on the activity of the relevant enzymes (isopentenyl pyrophosphate isomerase and the three prenyltransferases, geranyl, farnesyl, and geranylgeranyl pyrophosphate synthases). Thus, inhibition of geranylgeranyl pyrophosphate biosynthesis does not appear to be the mode of action of this herbicide.  相似文献   

19.
In higher plants, two independent pathways are responsible for the biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate, the central five-carbon precursors of all isoprenoids. The cytosolic pathway, which involves mevalonate (MVA) as a key intermediate, provides the precursor molecules for sterols, ubiquinone, and certain sesquiterpenes, whereas the plastidial MVA-independent pathway is involved in the formation of precursors for the biosynthesis of isoprene, monoterpenes, diterpenes, carotenoids, abscisic acid, and the side chains of chlorophylls, tocopherols, and plastoquinone. Recent experiments provided indirect evidence for the presence of an export system for isoprenoid intermediates from the plastids to the cytosol in Arabidopsis thaliana. Here we report that isolated chloroplasts (from spinach, kale, and Indian mustard), envelope membrane vesicles, and proteoliposomes prepared from the solubilized proteins of envelope membranes (from spinach) are capable of the efficient transport of isopentenyl diphosphate and geranyl diphosphate. Lower rates of transport were observed with the substrates farnesyl diphosphate and dimethylallyl diphosphate, whereas geranylgeranyl diphosphate and mevalonate were not transported with appreciable efficiency. Our data suggest that plastid membranes possess a unidirectional proton symport system for the export of specific isoprenoid intermediates involved in the metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis.  相似文献   

20.
Plasmodium parasites that cause the disease malaria have developed an elaborate trafficking pathway to facilitate the export of hundreds of effector proteins into their host cell, the erythrocyte. In this review, we outline how certain effector proteins contribute to parasite survival, virulence, and immune evasion. We also highlight how parasite proteins destined for export are recognised at the endoplasmic reticulum to facilitate entry into the export pathway and how the effector proteins are able to transverse the bounding parasitophorous vaculoar membrane via the Plasmodium translocon of exported proteins to gain access to the host cell. Some of the gaps in our understanding of the export pathway are also presented. Finally, we examine the degree of conservation of some of the key components of the Plasmodium export pathway in closely related apicomplexan parasites, which may provide insight into how the diverse apicomplexan parasites have adapted to survival pressures encountered within their respective host cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号