首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
While kelp forests are some of the best-surveyed ecosystems in California, information on cryptic inhabitants and their role within the community are lacking. Kelp itself provides overall structure to the habitat; however the rocky reef to which the kelp attaches is known to provide additional structure for cryptic species. Gymnothorax mordax, the California moray, is an elusive predatory species that is considered abundant in the waters around Catalina Island. However, no life history data exists for this species. We examined habitat composition, relative abundance, size pattern distributions, and biomass of G. mordax within Two Harbors, Catalina Island. Habitats were sampled using a combination of baited trap collection and transect surveys using SCUBA. A total of 462 G. mordax were captured, primarily in shallow (< 10 m) waters. Individuals of G. mordax were associated with mostly boulder and cobble substrates. Measurements of relative abundance and density indicate that G. mordax is more prevalent than reported in previous studies. We also discovered that the 6 trapping sites from which all morays were collected, differed in size structuring and density while the relatively high biomass did not change across sites. In general, southern facing sites exhibited higher densities of morays, while northern facing sites showed more size structuring. We show how the structural complexity of the rocky reef habitat in an already diverse kelp forest ecosystem, can support a high biomass of a cryptic elongate predatory fish.  相似文献   

2.
We conducted a 15 yr mark‐resight study of branded California sea lions (Zalophus californianus) at San Miguel Island, California, to estimate age‐specific recruitment and natality of the population. We used the Schwarz and Stobo model to estimate sighting, survival, recruitment, timing of births, abundance, and age‐specific natality from sighting histories of 1,276 parous females. The advantage of this approach was that the reproductive status of females did not have to be known for all females of reproductive age. Probability of recruitment into the reproductive population began at age 3 or 4, peaked between ages 5 and 7, and slowly declined. Age‐specific natality was similar for ages 4–16 but declined after age 17, suggesting that reproductive senescence occurs in older females. The average annual natality for parous females 4–16 yr of age was 0.77 (SE = 0.03); natality declined to 0.56 (SE = 0.10) for parous females 17–21 yr of age. Natality for both age classes was reduced during El Niño conditions by 24% and 34%, respectively. In addition to reducing natality, El Niño events may result in a delay of recruitment if females experience El Niño conditions before they turn 4 yr of age.  相似文献   

3.
Samples from the southern California sector of the California Current System were examined to test for interannual changes in winter–spring abundance of the planktonic copepod, Calanus pacificus, coincident with the 1992–93 and 1958–59 El Niños, each evaluated relative to immediately preceding years, and for interdecadal change (the early 1990s relative to the late 1950s). Calanus was anomalously rare in both of the El Niño periods, as was macrozooplankton, but (unlike macrozooplanktonic biomass) was not rarer in the early 1990s than in the late 1950s. The El Niño anomalies in Calanus’s abundance and macrozooplanktonic biomass were not spatially correlated on the mesoscale, implying that different proximate ecological causes may dominate at this scale.  相似文献   

4.
We censused butterflies flying across the Panama Canal at Barro Colorado Island (BCI) for 16 years and butterfly hostplants for 8 years to address the question: What environmental factors influence the timing and magnitude of migrating Aphrissa statira butterflies? The peak migration date was earlier when the wet season began earlier and when soil moisture content in the dry season preceding the migration was higher. The peak migration date was also positively associated with peak leaf flushing of one hostplant (Callichlamys latifolia) but not another (Xylophragma seemannianum). The quantity of migrants was correlated with the El Niño Southern Oscillation, which influenced April soil moisture on BCI and total rainfall in the dry season. Both hostplant species responded to El Niño with greater leaf flushing, and the number of adults deriving from or laying eggs on those new leaves was greatest during El Niño years. The year 1993 was exceptional in that the number of butterflies migrating was lower than predicted by the El Niño event, yet the dry season was unusually wet for an El Niño year as well. Thus, dry season rainfall appears to be a primary driver of larval food production and population outbreaks for A. statira. Understanding how global climate cycles and local weather influence tropical insect migrations improves the predictability of ecological effects of climate change.  相似文献   

5.
In the wet forests of Panama, El Niño typically brings a more prolonged and severe dry season. Interestingly, many trees and lianas that comprise the wet forests increase their productivity as a response to El Niño. Here, we quantify the abundance of migrating Marpesia chiron butterflies over 17 yr and the production of new leaves of their hostplants over 9 yr to test the generality of the El Niño migration syndrome, i.e., whether increased abundance of migrating insects and productivity of their food plants are associated with El Niño and La Niña events. We find that the quantity of M. chiron migrating across the Panama Canal was directly proportional to the sea surface temperature (SST) anomaly of the Pacific Ocean, which characterizes El Niño and La Niña events. We also find that production of new leaves by its larval host trees, namely Brosimum alicastrum, Artocarpus altilis, and Ficus citrifolia, was directly proportional to the SST anomaly, with greater leaf flushing occurring during the period of the annual butterfly migration that followed an El Niño event. Combining these and our previously published results for the migratory butterfly Aphrissa statira and its host lianas, we conclude that dry season rainfall and photosynthetically active radiation can serve as primary drivers of larval food production and insect population outbreaks in Neotropical wet forests, with drier years resulting in enhanced plant productivity and herbivore abundance. Insect populations should closely track changes in both frequency and amplitude of the El Niño Southern Oscillation with climate change.  相似文献   

6.
Annual 4th of July Butterfly Count data spanning more than 20 years are examined to explore Vanessa cardui (Painted Lady) population fluctuations with ENSO (El Niño) and Pacific Decadal Oscillation (PDO) indices. California, Colorado and Nebraska censuses exhibit a strong positive correlation with the strong El Niño events of 1982–1983 and 1997–1998 and the weaker event of 1991–1992. Regression analysis shows the population fluctuations are strongly coupled to climate variations on both short (El Niño) and longer (Pacific Decadal Oscillation) time scales. Recognizing the sensitivity to these time scales is important for predicting longer‐term global climate change effects.  相似文献   

7.
Aim To assess the impacts of El Niño–La Niña events on the pup weaning mass and diet of female southern elephant seals (Mirounga leonina) feeding in the Bellingshausen Sea, Antarctica, and to understand the ecological processes that drive these impacts. Location Atlantic southern elephant seal weaning mass and diet were measured at King George Island (62º14′ S, 58º30′ W). Feeding areas for pregnant female seals from King George Island are located west of Alexander Island in the Bellingshausen Sea. Methods Data on weaning mass were collected between 1985 and 1994 during the breeding season (September–November). Moulting females were anaesthetized and cephalopod beaks were isolated and identified from stomach contents obtained from stomach lavages. Sea‐surface temperature anomaly (SSTA) data for the ‘El Niño 3.4’ geographical region (5º N–5º S, 120º W–170º W) were used to define El Niño–Southern Oscillation (ENSO) event years (grouped as El Niño, La Niña and Neutral) as well as the strength of each ENSO event year. Using data from the US National Center for Environmental Prediction, temperature, sea ice concentration and atmospheric pressure anomalies in the Bellingshausen Sea were calculated from March to August, corresponding to the feeding period of pregnant female seals. Results Positive temperature anomalies and negative pressure anomalies in the Bellingshausen Sea were observed during La Niña years and negative temperature anomalies and positive pressure anomalies during El Niño years. These data correlate with sea ice concentration anomalies, which are highly negative during La Niña years and highly positive during El Niño years. Warm temperature conditions in the Bellingshausen Sea during La Niña years are strongly related to both higher weaning mass in elephant seals and to an increase in squid beaks in the stomach contents of females. Main conclusions It is possible that higher elephant seal weaning masses in La Niña years correlate with warmer waters in the Bellingshausen Sea leading to the rapid growth of squid and their more frequent descents to depths frequented by elephant seals. This results in increased predation by pregnant females, leading to a greater mass among weaned pups. This hypothesis may guide future research about interactions between climate and the marine biosphere.  相似文献   

8.
Increasing ocean temperatures due to global warming are predicted to have negative effects on coral reef fishes. El Niño events are associated with elevated water temperatures at large spatial (1000s of km) and temporal (annual) scales, providing environmental conditions that enable temperature effects on reef fishes to be tested directly. We compared remote sensing data of sea surface temperature (SST) anomalies, surface current flow and chlorophyll‐a (Chl‐a) concentration with monthly patterns in larval supply of coral reef fishes in nearshore waters around Rangiroa Atoll (French Polynesia) from January 1996 to March 2000. This time included an intense El Niño (April 1997–May 1998) event between two periods of La Niña (January–March 1996 and August 1998–March 2000) conditions. There was a strong relationship between the timing of the El Niño event, current flow, ocean productivity (as measured by Chl‐a) and larval supply. In the warm conditions of the event, there was an increase in the SST anomaly index up to 3.5 °C above mean values and a decrease in the strength of the westward surface current toward the reef. These conditions coincided with low concentrations of Chl‐a (mean: 0.06 mg m?3, SE ± 0.004) and a 51% decline in larval supply from mean values. Conversely, during strong La Niña conditions when SST anomalies were almost 2 °C below mean values and there was a strong westward surface current, Chl‐a concentration was 150% greater than mean values and larval supply was 249% greater. A lag in larval supply suggested that productivity maybe affecting both the production of larvae by adults and larval survival. Our results suggest that warming temperatures in the world's oceans will have negative effects on the reproduction of reef fishes and survival of their larvae within the plankton, ultimately impacting on the replenishment of benthic populations.  相似文献   

9.
The influence of El Niño/Southern Oscillation (ENSO) on rainfall and its possible effect on availability of food for white‐tailed deer (Odocoileus virginianus) in a tropical dry forest in the Pacific coast of Mexico was studied. From 1977 to 2003 there were three significant El Niño and La Niña events. During El Niño years rainfall decreased during the wet season ( June to October) and increased during the dry season (November to May), with the opposite effect during La Niña years. Plant diversity was monitored in permanent plots during the wet and dry seasons of 1989–1993. The results provide evidence that ENSO events affect deer food availability, particularly in the dry season.  相似文献   

10.
Decadal‐scale climatic regimes and the shifts between them have important impacts on marine ecosystems. Climatic regime shifts have been observed or hypothesized in the North Pacific basin in 1976–77 and 1989. This paper examines long‐term (1951–99) trends in calanoid copepod populations off southern California, and the evidence for responses to regime shifts. Most of the species of calanoid copepod that were analysed underwent one or more step changes during the 49 years covered by the study. All but one of these changes occurred in five periods: the late 1950s, late 1960s, mid‐1970s, early 1980s and around 1990. The late 1960s changes are considered to be artifacts of an increase in sampling depth. Strong El Niño conditions affected California waters during the late 1950s and early 1980s. The step changes of the mid‐1970s and late 1980s to early 1990s may have been responses to regime shifts or other climatic events. 28% of the species and subspecies responded to the 1976–77 event, all increasing in abundance. Another 28% of the copepod categories underwent step changes around 1990, most decreasing. Evidence for regime shifts in the hydrographic variables that were examined is mixed. The 10‐m temperature increased in the mid‐1970s. Abrupt changes in variables around 1990 were short‐lived. However, the population responses around 1990 and to the El Niños of the late 1950s and early 1980s indicate that some species of calanoid copepods may respond on longer time scales to environmental conditions that persist only a few years.  相似文献   

11.
Dosidicus gigas (jumbo or Humboldt squid) is a semelparous, major predator of the eastern Pacific that is ecologically and commercially important. In the Gulf of California, these animals mature at large size (>55 cm mantle length) in 1–1.5 years and have supported a major commercial fishery in the Guaymas Basin during the last 20 years. An El Niño event in 2009–2010, was accompanied by a collapse of this fishery, and squid in the region showed major changes in the distribution and life‐history strategy. Large squid abandoned seasonal coastal‐shelf habitats in 2010 and instead were found in the Salsipuedes Basin to the north, an area buffered from the effects of El Niño by tidal upwelling and a well‐mixed water column. The commercial fishery also relocated to this region. Although large squid were not found in the Guaymas Basin from 2010 to 2012, small squid were abundant and matured at an unusually small mantle‐length (<30 cm) and young age (approximately 6 months). Juvenile squid thus appeared to respond to El Niño with an alternative life‐history trajectory in which gigantism and high fecundity in normally productive coastal‐shelf habitats were traded for accelerated reproduction at small size in an offshore environment. Both small and large mature squid, were present in the Salsipuedes Basin during 2011, indicating that both life‐ history strategies can coexist. Hydro‐acoustic data, reveal that squid biomass in this study area nearly doubled between 2010 and 2011, primarily due to a large increase in small squid that were not susceptible to the fishery. Such a climate‐driven switch in size‐at‐maturity may allow D. gigas to rapidly adapt to and cope with El Niño. This ability is likely to be an important factor in conjunction with longerterm climate‐change and the potential ecological impacts of this invasive predator on marine ecosystems.  相似文献   

12.
Abstract

El Niño and La Niña climate perturbations alter sea currents and food availability for seabirds in many areas of the world. This changes their breeding success and mortality. Blue penguin (Eudyptula minor) breeding success is dependent upon whether one or two clutches per season are laid, and the hatching and fledging success of these clutches. This study uses six years of data from five blue penguin breeding colonies, three from Taiaroa Head, Otago Peninsula and two from Oamaru, to examine whether annual variation in breeding success correlates with El Niño/La Niña perturbations. When La Niña conditions prevailed, penguins started breeding later, and there was a lower proportion of double breeders than in El Niño and normal years. The probability of a newly hatched chick surviving to fledging was also dependent on whether large‐scale climatic conditions prevailed, whereas hatching success and overall breeding success (number of fledged chicks per breeding pair) showed no correlation with climate perturbations.  相似文献   

13.
Aim To assess the importance of drought and teleconnections from the tropical and north Pacific Ocean on historical fire regimes and vegetation dynamics in north‐eastern California. Location The 700 km2 study area was on the leeward slope of the southern Cascade Mountains in north‐eastern California. Open forests of ponderosa pine (Pinus ponderosa var. ponderosa Laws.) and Jeffrey pine (P. jeffreyi Grev. & Balf) surround a network of grass and shrub‐dominated meadows that range in elevation from 1650 to 1750 m. Methods Fire regime characteristics (return interval, season and extent) were determined from crossdated fire scars and were compared with tree‐ring based reconstructions of precipitation and temperature and teleconnections for the period 1700–1849. The effect of drought on fire regimes was determined using a tree‐ring based proxy of climate from five published chronologies. The number of forest‐meadow units that burned was compared with published reconstructions of the El Niño/Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). Results Landscape scale fires burned every 7–49 years in meadow‐edge forests and were influenced by variation in drought, the PDO and ENSO. These widespread fires burned during years that were dryer and warmer than normal that followed wetter and cooler years. Less widespread fires were not associated with this wet, then dry climate pattern. Widespread fires occurred during El Niño years, but fire extent was mediated by the phase of the PDO. Fires were most widespread when the PDO was in a warm or normal phase. Fire return intervals, season and extent varied at decadal to multi‐decadal time scales. In particular, an anomalously cool, wet period during the early 1800s resulted in widespread fires that occurred earlier in the year than fires before or after. Main conclusions Fire regimes in north‐eastern California were strongly influenced by regional and hemispheric‐scale climate variation. Fire regimes responded to variation that occurred in both the north and tropical Pacific. Near normal modes of the PDO may influence fire regimes more than extreme conditions. The prevalence of widespread teleconnection‐driven fires in the historic record suggests that variation in the Pacific Ocean was a key regulator of fire regimes through its influence on local fuel production and successional dynamics in north‐eastern California.  相似文献   

14.
We studied spatial variability in giant kelp (Macrocystis pyrifera) forests at 84 sites along the west coast of North America in order to assess the impacts of the 1997–98 El Niño. Our sites spanned the geographic range of giant kelp in the Northern Hemisphere and were surveyed just before, immediately following, several months after, more than one year after, and nearly two years after the El Niño. Interspersion of sample units allowed us to compare the effects of this disturbance among spatial scales ranging from a few meters to more than a thousand kilometers. Variance components analyses revealed that El Niño shifted the relative importance of factors that regulate giant kelp communities from factors acting at the scale of a few meters (local control) to factors operating at hundreds of kilometers (regional control). Moreover, El Niño resulted in a near‐to‐complete loss of giant kelp populations throughout nearly two‐thirds of the species' range. Evaluation of these effects along with oceanographic data (at the “appropriate” spatial scales), along with closer examination of giant kelp populations in the most severely impacted region (Baja) suggested that the among‐region differences in giant kelp survival was due, at least in part, to El Niño‐induced differences in ocean climate. Giant kelp recovery following El Niño was also scale‐dependent, but driven by factors different from those of the disturbance. Here, we present results for several species of macroalgae in an attempt to relate the importance of El Niño to that of other processes in creating scale‐dependent patterns of variability.  相似文献   

15.
The zooplankton of the northern California Current are typically characterized by an abundance of lipid‐rich copepods that support rapid growth and survival of ecologically, commercially, and recreationally valued fish, birds, and mammals. Disruption of this food chain and reduced ecosystem productivity are often associated with climatic variability such as El Niño events. We examined the variability in timing, magnitude, and duration of positive temperature anomalies and changes in copepod species composition in the northern California Current in relation to 10 tropical El Niño events. Measurable impacts on mesozooplankton of the northern California Current were observed during seven of 10 of these events. The occurrence of anomalously warm water and the response of the copepod community was rapid (lag of zero to 2 months) following the initiation of canonical Eastern Pacific (EP) events, but delayed (lag of 2–8 months) following ‘Modoki’ Central Pacific (CP) events. The variable lags in the timing of a physical and biological response led to impacts in the northern California Current peaking in winter during EP events and in the spring during CP events. The magnitude and duration of the temperature and copepod anomalies were strongly and positively related to the magnitude and duration of El Niño events, but were also sensitive to the phase of the lower frequency Pacific Decadal Oscillation. When fisheries managers and biological oceanographers are faced with the prospect of a future El Niño event, prudent management and observation will require consideration of the background oceanographic conditions, the type of event, and both the magnitude and duration of the event when assessing the potential physical and biological impacts on the northern California Current.  相似文献   

16.
Variation in the diet of the Pacific sand lance Ammodytes hexapterus was examined in three years (2009–2011) at four sites in British Columbia, Canada. There were 12 major taxa of prey in diets, eight of which were Crustacea, with copepods being by far the dominant taxon in all 12 site‐years. Of the 22 copepod taxa recorded, only Calanus marshallae and Pseudocalanus spp. occurred in all collections, and these two calanoid species dominated diets in terms of frequency of occurrence and total numbers of prey (Pseudocalanus spp. in most collections), and total prey biomass (C. marshallae in all collections). Based on an index of relative importance, C. marshallae was the primary prey at the two southerly sampling sites (Pine and Triangle Islands) and Pseudocalanus spp. at the two northerly sites (Lucy Island and S'G ang Gwaay). Based on an index of dietary overlap, the species composition of the copepod component of A. hexapterus diets overlapped very strongly at the northerly and the southerly pairs of sites in both a cold‐water La Niña year (2009) and a warm‐water El Niño year (2010), but overall there was more homogeneity amongst all four sites in the La Niña year.  相似文献   

17.
The round stingray, Urobatis halleri, is a viviparous elasmobranch that inhabits inshore, benthic habitats ranging from the western U.S.A. to Panama. The population genetic structure of this species was inferred with seven polymorphic microsatellite loci in samples collected at three sites in coastal southern California, one near Santa Catalina Island, California and one in the eastern Gulf of California. Urobatis halleri is relatively common, but little is known of its movement patterns or population structure. Small FST values (?0·0017 to 0·0005) suggested little structure among coastal populations of southern and Baja California. The population sampled at Santa Catalina Island, which is separated by a deep‐water channel from the coastal sites, however, was significantly divergent (large FST, 0·0251) from the other populations, suggesting low connectivity with coastal populations. The Santa Catalina Island population also had the lowest allele richness and lowest average heterozygosity, suggesting recent population bottlenecks in size.  相似文献   

18.
One of the major uncertainties of 21st century climate change is the potential for shifts to the intensity and frequency of the El Niño Southern Oscillation (ENSO) cycle. Although this phenomenon is known to have dramatic impacts on ecosystems regionally and globally, the biological consequences of climate change‐driven shifts in future ENSO events have been unexplored. Here, we investigate the potential impacts that a persistent El Niño, La Niña, or ‘Neutral' phase may have on species distributions. Using MaxEnt, we model the distribution of climatically suitable habitat for three northeast Australian butterfly subspecies (Doleschallia bisaltide australis, Hypolimnas alimena lamina, and Mycalesis terminus terminus) across the three ENSO phases. We find that the spatial extent and quality of habitat are lowest under conditions that would characterize a persistent El Niño (hot/dry). In contrast, suitable habitat is broadest under the warm/wet conditions associated with La Niña. Statistical analyses of the difference between pair‐wise combinations of suitability maps using Hellinger distance showed that projections for each subspecies and ENSO phase combination were significantly different from other combinations. The resilience of these, and other, butterfly (sub)species to changes in ENSO will be influenced by fluctuations in the strength of these events, availability of refugia, and life‐history characteristics. However, the population dynamics of wet‐ and dry‐season phenotypes of M. t. terminus and physiological limitations to high temperatures suggest that this subspecies, in particular, may have limited resilience should the strength and frequency of El Niño events increase.  相似文献   

19.
We analyzed the phytoplankton present in the lower sector of the Salado River (Buenos Aires, Argentina) for 10 years (1995–2005) and detected significant changes occurring in chlorophyte abundance and species richness during La Niña event (1998–1999), which period was analyzed throughout the entire basin (main stream and tributaries). We compared the physicochemical and biologic variables between two El Niño–La Niña–Southern Oscillation (ENSO) periods – El Niño (March 1997–January 1998) and La Niña (May 1998–May 1999) – to identify possible indicators of a relationship between climatic anomalies and chlorophyte performance. Chlorophyte density increased during the La Niña. Under normal or extreme hydrologic conditions, mobile (Chlamydomonas spp.) and nonmobile (Monoraphidium spp.) chlorophytes codominated. These species belonged to Reynolds's functional groups X1 and X2, those typical of nutrient‐enriched environments. Comparative analyses between El Niño and La Niña periods indicated significant differences in physicochemical (K+, dissolved polyphenols, particulate reactive phosphorus, alkalinity, pH) and biologic (species diversity and richness, phytoplankton and chlorophyte total densities) variables between the two periods at all basin sites. During the La Niña condition, species richness was greater owing to interconnected shallow lakes and drainage‐channel inputs, while the Shannon diversity index was lower because of the high abundance values of Monoraphidium minutum. A detailed analysis of the chlorophytes in the entire basin, indicated that changes in density and species dominance occurred on a regional scale although diverse chlorophyte assemblages were identified in the different sectors of the Salado River basin. After La Niña event, the entire basin had the potential to revert to the previous density values, showing the resilience to global environmental changes and the ability to reestablish the general conditions of stability.  相似文献   

20.
There is a limited knowledge about the El Niño–Southern Oscillation (ENSO) effects on the Amazon basin, the world's largest tropical rain forest and a major factor in the global carbon cycle. Seasonal precipitation in the Andean watershed annually causes a several month‐long inundation of the floodplains along the Amazon River that induces the formation of annual rings in trees of the flooded forests. Radial growth of trees is mainly restricted to the nonflooded period and thus the ring width corresponds to its duration. This allows the construction of a tree‐ring chronology of the long‐living hardwood species Piranhea trifoliata Baill. (Euphorbiaceae). El Niño causes anomalously low precipitation in the catchment that results in a significantly lower water discharge of the Amazon River and consequently in an extension of the vegetation period. In those years tree rings are significantly wider. Thus the tree‐ring record can be considered as a robust indicator reflecting the mean climate conditions of the whole Western Amazon basin. We present a more than 200‐year long chronology, which is the first ENSO‐sensitive dendroclimatic proxy of the Amazon basin and permits the dating of preinstrumental El Niño events. Time series analyses of our data indicate that during the last two centuries the severity of El Niño increased significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号