首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The recovery criterion for pallid sturgeon Scaphirhynchus albus consists of attaining a self‐sustaining genetically diverse population for two generations. The suppressed pallid sturgeon population is theorized as a potential factor limiting recovery; therefore, the Pallid Sturgeon Conservation and Augmentation Program (PSCAP) was implemented to proliferate the overall population. The pallid sturgeon population has been quantified in the lower basin of the Missouri River (Gavins Point Dam [rkm 1,305.2] to the confluence of the Missouri and Mississippi rivers [rkm 0.0]), but previous population estimates have only covered less than ten percent of the lower basin. Therefore, the objectives of this study were to quantify the annual pallid sturgeon population (2015–2017) in a novel, unquantified 30.1 rkm reach of the lower Missouri River basin and compare these results to previously published population estimates in the lower Missouri River basin. The study area included a six‐bend reach in the upper channelized Missouri River, approximately 226.3 rkm below the last main‐stem dam. Population estimates (Nsp) for the “super‐population” of pallid sturgeon within the 30.1 rkm study area varied from 593 (95% CI 471–716) in 2015 to 471 (373–569) in 2016 and 608 (482–734) in 2017. The population estimates (fish/rkm ± SE) ranged from 15.6 ± 1.0 to 20.2 ± 1.3 fish/rkm. This study aligned with a previously published estimate in the same proximal reach but was two or three times higher compared to an estimate reported from approximately 500 rkm downstream. Understanding the temporal and spatial variations of the pallid sturgeon population is critical as recovery efforts continue, especially to seed input parameters into population prediction models that provide management guidance.  相似文献   

2.
We produced pallid sturgeon Scaphirhynchus albus embryos at five pre-hatch developmental stages and isolated and quantified genomic DNA from four of the stages using four commercial DNA isolation kits. Genomic DNA prepared using the kit that produced the largest yields and concentrations were used for microsatellite DNA analyses of 10–20 embryos at each of the five developmental stages. We attempted to genotype the hatchery-produced embryos at 19 microsatellite loci and confirmed reliable genotyping by comparing the microsatellite genotypes to those of known parents. Embryos at stages 5 and 8 did not produce reliable genotyping while those at stages 14, 24 and 33 did. We used the same DNA isolation method on 262 wild-caught acipenseriform embryos collected from the lower Yellowstone River. A total of 200 of the wild embryos were successfully identified to stages 8 to 34 and the rest could not be staged. Using a combination of single nucleotide polymorphism and microsatellite markers, 249 of the wild-caught embryos were genetically identified as paddlefish Polyodon spathula, five were identified as shovelnose sturgeon Scaphirhynchus platorynchus and eight failed to amplify. None were identified as pallid sturgeon. This study demonstrates that early-stage wild-spawned acipenseriform embryos can be genetically identified less than 24 h post-spawn. This methodology will be useful for recovery efforts for endangered pallid sturgeon and can be applied to other acipenseriform species.  相似文献   

3.
Movement and distribution of the endangered pallid sturgeon Scaphirhynchus albus has generally been documented using radio telemetry. However, because of the time and cost involved in tracking individual fish (i.e. small sample size), it is often difficult to evaluate spatial distribution of groups of fish over long time periods (> 3 years). Standardized sampling for pallid sturgeon, which relies on a variety of gear types, has been conducted on the Missouri River downstream of Fort Randall Dam annually since 2003. Using catch data from 2003 to 2006, the spatial distribution of juvenile pallid sturgeon was evaluated using spatial scan statistics. Presence/absence of pallid sturgeon was summarized from a variety of gear and distribution patterns were analyzed based on: (i) each gear per season, (ii) all gear pooled per season, (iii) each gear pooled across seasons, and (iv) pooled data from all gear and years combined. Three significant clusters of pallid sturgeon captures were identified when all gear and years were pooled. Distribution patterns identified using data from summer trammel nets agreed well with the overall pooled dataset and could be used to identify areas with a high probability of pallid sturgeon presence. This methodology can be used to identify areas where pallid sturgeon are likely to occur, thus improving sampling efficiency for monitoring vital statistics for this endangered species. Moreover, this approach could be applied to other reaches of the Missouri River using existing data from the Pallid Sturgeon Monitoring and Assessment Program. Once identified, these areas could then be evaluated to better understand the habitat requirements of pallid sturgeon.  相似文献   

4.
Hatchery augmentation has been used to mitigate declines in fish populations worldwide, especially for sturgeon species. Information regarding stocking success including survival, dispersal, and growth of sturgeon post‐stocking may refine sturgeon augmentation programs and facilitate recovery. Pallid sturgeon Scaphirhynchus albus populations have been supplemented by hatchery‐reared stocks for 25 years in the Missouri River, USA. We assessed survival, dispersal patterns, and growth characteristics of post‐stocked pallid sturgeon in the lower Missouri River. Hatchery‐reared pallid sturgeon stocked at age‐1 (4.1%) and > age‐1 (2.9%) were recaptured at a higher frequency than fish stocked at age‐0 (0.3%). Post‐stocking dispersal patterns suggested dispersal range increase as age increased, but individuals tended to remain in the same river segment as their stocking location. Growth rates varied by year class with younger year classes having truncated growth trajectories compared to older year classes. Post‐stock survival of pallid sturgeon varied by age‐at‐stocking and suggest age‐1 survival has declined through time. Augmentation of pallid sturgeon may benefit from considering dispersal from stocking location and by stocking older individuals which appear to have increased survival post‐stocking. A better understanding regarding environmental drivers of growth and specific habitat features used is needed to better predict optimal timing and location of future stockings.  相似文献   

5.
Long‐term population trends of pallid sturgeon Scaphirhynchus albus in the lower Missouri River were evaluated via a discrete and stochastic age‐structure population viability model. The intent of this model was to (i) estimate the local pallid sturgeon population size, (ii) quantify the contribution of hatchery‐reared fish to the overall population, (iii) predict the level of natural production needed to create a self‐sustaining population, and (iv) determine the parameters that produce the largest model sensitivity. The model estimated that the wild, adult population size was approximately 6000 fish that remained in the lower Missouri River in 2012 compared to approximately 42 000 hatchery‐reared pallid sturgeon. Under the assumption of no natural recruitment, the population size will continue to decline at approximately 8% annually, with an annual egg to age‐1 survival rate of 0.00011 predicted to maintain a stable population. The model was most sensitive to survival rates of fish ≥ age‐1 and less sensitive to age‐0 survival rates and fecundity. Decreasing or increasing the female spawning interval by 1 year had minimal effect on the overall population trajectory. Recovery management planning for a species such as pallid sturgeon, which is slow‐growing, late‐maturing, and has intermittent spawning would require several years to access recovery potential and management decisions. Barring any unforeseen natural catastrophe, the pallid sturgeon population in the lower Missouri River is not in immediate danger of local extirpation; however, the population appears to be far from viable and self‐sustaining.  相似文献   

6.
Natural reproduction of pallid sturgeon Scaphirhynchus albus has been limited for decades and a recruitment bottleneck is hypothesized to occur during the larval stage of development. In this study, we evaluated the effects of water velocity and temperature on the swimming activity, energy use, settling behaviour and mortality of endogenously feeding larvae. The swimming activity of drifting sturgeon larvae (i.e., fish exhibiting negative rheotaxis) increased at low water velocity. In subsequent experiments, we observed greater energy depletion and resultant mortality of larvae in no-flow environments (0 cm s−1) compared to tanks with water velocity ranging from 3.5 to 8.3 cm s−1. The growth rate of drifting larvae was positively related to water temperature (18.7–23.3°C), but reduced growth rate at low water temperature (18.7°C) resulted in protracted development that extended average drift duration by ~4 days compared to larvae reared at 23.3°C. This study provides evidence that cooler summer water temperatures, characteristic of present-day conditions in the upper Missouri River, can reduce larval development and extend both the drift duration and distance requirements of S. albus. Moreover, if dispersed into low velocity environments, such as in reservoir headwaters, larvae may experience increased mortality owing to a mismatch between early life stage drift requirements and habitat conditions in the river. Manipulation of water releases to increase seasonal water temperature below dams may aid survival of S. albus larvae by shortening the time and distance spent drifting.  相似文献   

7.
Population characteristics of pallid sturgeon Scaphirhynchus albus in the lower Missouri River are relatively unknown. Therefore, data collected from the Nebraska Game and Parks Commission Pallid Sturgeon Population Assessment Program was synthesized to (i) document the population structure of pallid sturgeon by origin (hatchery‐reared or wild), gender, and reproductive readiness, (ii) document the minimum size and age‐at‐maturity by gender, and (iii) document the fecundity rates of the fish that were successfully spawned in the hatchery. During this 4‐year study (2008–2011), relative abundance for wild and hatchery‐reared pallid sturgeon collected with gill nets did not significantly change whereas relative abundance for wild fish using trot lines declined significantly. The proportion of hatchery‐reared pallid sturgeon increased annually, with the population being composed primarily of hatchery‐reared fish. The proportion of reproductively ready females to non‐reproductively ready females was 1 : 2.0, compared to male ratios at 1 : 0.9. Minimum fork length‐at‐maturity was estimated for females at 788 mm and for males at 798 mm. Minimum age‐at‐maturity for hatchery‐reared released fish was age‐9 for females and age‐7 for males. Highest relative fecundity, based on the ovosomatic index, was 10% with an overall mean of 7%. The number of eggs per ml (egg size) was not correlated with fork length (P = 0.0615) or weight (P = 0.0957). Relative condition factor (Kn) for females was significantly different by reproductive condition (P = 0.0014) and Kn for males did not differ between reproductive conditions (P = 0.2634). Detecting shifts in population characteristics are essential not only to understand population dynamics since hatchery inputs and natural perturbations continue to change the population structure but also to assess species recovery efforts to ensure long‐term species sustainability.  相似文献   

8.
Habitat selection has been quantified for age‐0 and adult pallid sturgeon Scaphirhynchus albus Bull. Illinois State Lab. Nat. Hist., 7, 1905, 37, but little is known regarding habitat use of the juvenile fish. The objective of this study was to quantify habitat use and selection of juvenile pallid sturgeon in the Missouri River, Nebraska, USA. Thirty‐seven age‐4 pallid sturgeon with transmitters were released in July of 2014, plus an additional 21 in September, with habitat monitored using biotelemetry. Age‐1 and age‐4 hatchery reared pallid sturgeon were found to avoid areas associated with the outside bend and thalweg habitats that were characterized by rapid water velocity (>1 ms?1), which accounted for 50% of the area in the channelized Missouri River. Age‐1 pallid sturgeon selected an off‐channel habitat and inside bend habitat while age‐4 pallid sturgeon selected an off‐channel and inside bend channel border habitat. Juvenile pallid sturgeon in unaltered rivers have been shown to associate with island tips and sand bars, habitat that is largely absent in the channelized Missouri River. This study indicates that juvenile pallid sturgeon in the Missouri River, Nebraska are selecting habitats with shallow water and slow water velocity, similar to those associated with island tips and sand bars in unaltered reaches.  相似文献   

9.
The pallid sturgeon (Scaphirhynchus albus) was not described until 1905, when it was commonly caught by commercial fishers. This species began to decline in the early 1900s presumably because of overharvest and habitat degradation. The U.S. Fish and Wildlife Service listed S. albus as an endangered species in 1990. Because S. albus live in deep, turbid rivers that are difficult to sample, very little is known about its reproductive timing and spawning habitat. The act of spawning has never been observed in nature. Captures of wild young S. albus verifying natural reproduction are rare, the last being a 4‐year‐old fish taken in 1978. In this paper, we describe the first collection of a larval S. albus from the wild and subsequent larval collections in the Mississippi River from 1998 to 2000 using a modified slingshot balloon trawl (the Missouri Trawl) designed to capture small fishes in deep, turbulent rivers. We captured larval Scaphirhynchus spp., including verified S. albus, in association with island habitats often in heavy detritus, especially at downstream tips. We postulate that Scaphirhynchus spp. spawned at the heads of islands upstream from where we collected larvae, but we cannot be certain. The capture of larval S. albus verifies reproduction possibly from the lower Missouri River to the upper and lower Mississippi River. However, we found no evidence of recruitment of S. albus from 1998 to 2000 as we were unable to capture juveniles after 374 trawl hauls that captured over 21 735 fish.  相似文献   

10.
A multiyear study of pallid sturgeon distribution and relative abundance was conducted in the lower and middle Mississippi river (LMR and MMR, respectively). The LMR and MMR comprise the free‐flowing Mississippi River extending 1857 river kilometers (rkm) from its mouth at the Gulf of Mexico upstream to the mouth of the Missouri River. A total of 219 pallid sturgeon and 6018 shovelnose sturgeon was collected during the periods 1996–1997 and 2000–2006. Trotlines baited with worms were the primary collecting gear. The smallest pallid sturgeon captured on trotlines was 405 mm FL and the largest was 995 mm FL. Mean size of pallid sturgeon was statistically smaller in the Mississippi River below the Atchafalaya River near Baton Rouge, LA (621 mm FL). Mean abundance (catch per trotline night) of pallid sturgeon was highest at water temperatures around 10°C. There was a latitudinal trend in mean abundance of pallid and shovelnose sturgeon, but the pattern differed between species. Pallid sturgeon abundance was statistically (P < 0.05) higher (0.3 fish per trotline night) in the lower reach between the Atchafalaya River and New Orleans (rkm 154–507), and at the Chain of Rocks (COR), a low water dam near the mouth of the Missouri River. Pallid sturgeon abundance between these two locations was statistically the same (0.12–0.23). Shovelnose sturgeon abundance increased going upstream, but was disproportionally higher at the COR (22 fish per line compared with <6 fish per line in other reaches). Overall, the ratio between pallid and shovelnose sturgeon varied from a high of 1 : 6 at the lower reach, and gradually decreased upstream to a low of 1 : 77 at the COR. Based on differences in sturgeon abundance, size and habitat characteristics, the free‐flowing Mississippi River can be divided into two reaches in the MMR (i.e. COR is a separate location), and four reaches (i.e., including the Atchafalaya River) in the LMR where management goals may differ.  相似文献   

11.
Fragmentation of the Yellowstone River is hypothesized to preclude recruitment of endangered Scaphirhynchus albus (pallid sturgeon) by impeding upstream spawning migrations and access to upstream spawning areas, thereby limiting the length of free‐flowing river required for survival of early life stages. Building on this hypothesis, the reach of the Yellowstone River affected by Intake Diversion Dam (IDD) is targeted for modification. Structures including a rock ramp and by‐pass channel have been proposed as restoration alternatives to facilitate passage. Limited information on migrations and swimming capabilities of pallid sturgeon is available to guide engineering design specifications for the proposed structures. Migration behavior, pathways (channel routes used during migrations), and swimming capabilities of free‐ranging wild adult pallid sturgeon were examined using radiotelemetry, and complemented with hydraulic data obtained along the migration pathways. Migrations of 12–26% of the telemetered pallid sturgeon population persisted to IDD, but upstream passage over the dam was not detected. Observed migration pathways occurred primarily through main channel habitats; however, migrations through side channels up to 3.9 km in length were documented. The majority of pallid sturgeon used depths of 2.2–3.4 m and mean water velocities of 0.89–1.83 m/s while migrating. Results provide inferences on depths, velocities, and habitat heterogeneity of reaches successfully negotiated by pallid sturgeon that may be used to guide designs for structures facilitating passage at IDD. Passage will provide connectivity to potential upstream spawning areas on the Yellowstone River, thereby increasing the likelihood of recruitment for this endangered species.  相似文献   

12.
Environmental Biology of Fishes - We released nearly 1.0 million 1-day post-hatch (dph) and 5-dph pallid sturgeon (Scaphirhynchus albus) free embryos in the Missouri River on 1 July 2019 and...  相似文献   

13.
Prior to anthropogenic modifications, the historic Missouri River provided ecological conditions suitable for reproduction, growth, and survival of pallid sturgeon Scaphirhynchus albus. However, little information is available to discern whether altered conditions in the contemporary Missouri River are suitable for feeding, growth and survival of endangered pallid sturgeon during the early life stages. In 2004 and 2007, nearly 600 000 pallid sturgeon free embryos and larvae were released in the upper Missouri River and survivors from these releases were collected during 2004–2010 to quantify natural growth rates and diet composition. Based on genetic analysis and known‐age at release (1–17 days post‐hatch, dph), age at capture (dph, years) could be determined for each survivor. Totals of 23 and 28 survivors from the 2004 and 2007 releases, respectively, were sampled. Growth of pallid sturgeon was rapid (1.91 mm day?1) during the initial 13–48 dph, then slowed as fish approached maximum length (120–140 mm) towards the end of the first growing season. The diet of young‐of‐year pallid sturgeon was comprised of Diptera larvae, Diptera pupae, and Ephemeroptera nymphs. Growth of pallid sturgeon from ages 1–6 years was about 48.0 mm year?1. This study provides the first assessment of natural growth and diet of young pallid sturgeon in the wild. Results depict pallid sturgeon growth trajectories that may be expected for naturally produced wild stocks under contemporary habitat conditions in the Missouri River and Yellowstone River.  相似文献   

14.
15.
Predation can play an important role in the recruitment dynamics of fishes with intensity regulated by behavioral (i.e., prey selectivity) and/or environmental conditions that may be especially important for rare or endangered fishes. We conducted laboratory experiments to quantify prey selection and capture efficiency by three predators employing distinct foraging strategies: pelagic piscivore (walleye Sander vitreus); benthic piscivore (flathead catfish Pylodictis olivaris) and generalist predator (smallmouth bass Micropterus dolomieu) foraging on two size classes of age-0 pallid sturgeon: large (75–100 mm fork length [FL]) and small (40–50 mm FL). Experiments at high (> 70 nephalometric turbidity units [NTU]) and low (< 5 NTU) turbidity for each predator were conducted with high and low densities of pallid sturgeon and contrasting densities of an alternative prey, fathead minnow Pimephales promelas. Predator behaviors (strikes, captures, and consumed prey) were also quantified for each prey type. Walleye and smallmouth bass negatively selected pallid sturgeon (Chesson’s α?=?0.04–0.1) across all treatments, indicating low relative vulnerability to predation. Relative vulnerability to predation by flathead catfish was moderate for small pallid sturgeon (α?=?0.44, neutral selection), but low for large pallid sturgeon (α?=?0.11, negative selection). Turbidity (up to 100 NTU) did not affect pallid sturgeon vulnerability, even at low density of alternative prey. Age-0 pallid sturgeon were easily captured by all predators, but were rarely consumed, suggesting mechanisms other than predator capture efficiency govern sturgeon predation vulnerability.  相似文献   

16.
Successful recruitment of endangered pallid sturgeon has not been documented in the upper Missouri River basin for decades, and research on the reproductive ecology of pallid sturgeon has been hindered by low sample size. A conservation propagation program was initiated in the 1990s, and the oldest age class of hatchery‐origin pallid sturgeon are becoming sexually mature increasing the number of reproductively‐active fish in the system. However, it is currently unknown how the reproductive ecology of hatchery‐origin pallid sturgeon relates to the few remaining wild fish. Following spring reproductive assessments, weekly relocations were recorded for each individual from late‐May to mid‐July to facilitate comparisons of spawning season movements among reproductive classifications and between spring hydrographs (2015 and 2016) for male pallid sturgeon. Mean total movement distances (±SE) were 104.5 km (18.9) for reproductively‐active wild males, 116.0 km (18.1) for reproductively‐active 1997‐year class males, and 20.6 km (3.0) for non‐reproductively‐active fish of unconfirmed sex. Movement characteristics of reproductively‐active males did not differ between 2015 and 2016 despite a difference of eight days in the timing of peak discharge and a difference of 79 m3/s (16.7%) in magnitude. Male aggregations were observed on the descending limb of the hydrograph in 2016 during temperatures suitable for spawning, but female pallid sturgeon underwent follicular atresia, similar to the other years of the study. Hatchery‐origin pallid sturgeon from the conservation propagation program appear to have retained reproductive characteristics from the wild broodstock, a key finding for a population where local extirpation of the wild stock is imminent.  相似文献   

17.
Acipenseriformes (sturgeons and paddlefish) globally have declined throughout their range due to river fragmentation, habitat loss, overfishing, and degradation of water quality. In North America, pallid sturgeon (Scaphirhynchus albus) populations have experienced poor to no recruitment, or substantial levels of hybridization with the closely related shovelnose sturgeon (S. platorynchus). The Lower Missouri River is the only portion of the species’ range where successful reproduction and recruitment of genetically pure pallid sturgeon have been documented. This paper documents spawning habitat and behavior on the Lower Missouri River, which comprises over 1,300 km of unfragmented river habitat. The objective of this study was to determine spawning locations and describe habitat characteristics and environmental conditions (depth, water velocity, substrate, discharge, temperature, and turbidity) on the Lower Missouri River. We measured habitat characteristics for spawning events of ten telemetry-tagged female pallid sturgeon from 2008–2013 that occurred in discrete reaches distributed over hundreds of kilometers. These results show pallid sturgeon select deep and fast areas in or near the navigation channel along outside revetted banks for spawning. These habitats are deeper and faster than nearby river habitats within the surrounding river reach. Spawning patches have a mean depth of 6.6 m and a mean depth-averaged water-column velocity of 1.4 m per second. Substrates in spawning patches consist of coarse bank revetment, gravel, sand, and bedrock. Results indicate habitat used by pallid sturgeon for spawning is more common and widespread in the present-day channelized Lower Missouri River relative to the sparse and disperse coarse substrates available prior to channelization. Understanding the spawning habitats currently utilized on the Lower Missouri River and if they are functioning properly is important for improving habitat remediation measures aimed at increasing reproductive success. Recovery efforts for pallid sturgeon on the Missouri River, if successful, can provide guidance to sturgeon recovery on other river systems; particularly large, regulated, and channelized rivers.  相似文献   

18.
Synopsis Scaphirhynchus albus and S. platorynchus were studied in Missouri during 1978–1979 to assess their distribution and abundance, to obtain information on their life histories, and to identify existing or potential threats to their survival. S. platorynchus was collected in substantial numbers (4355 specimens) at all 12 sampling stations in the Missouri and Mississippi rivers, while only 11 S. albus were captured from 6 stations. Twelve specimens identified in the field as hybrids between the two species were captured from 4 stations. Morphometric and meristic comparisons of presumed hybrids with the parent species, using cluster and principal components analyses, demonstrated intermediacy of most specimens identified in the field as hybrids. Aquatic insects comprised most of the diet of S. platorynchus and S. albus, but S. albus and the hybrids had consumed considerable quantities of fish. S. albus grew more rapidly than S. platorynchus, while the growth of hybrids was intermediate. Hybridization appears to be a recent phenomenon, resulting from man-caused changes in the big-river environment. Hybridization may be a threat to survival of S. albus in the study streams.  相似文献   

19.
General biological characteristics and the contemporary status of the kaluga, Huso dauricus, and Amur sturgeon, Acipenser schrenckii, are described. Both inhabit the Amur River basin. Kaluga is the largest freshwater fish in this river system reaching more than 5.6 m in length and more than 1000 kg in weight. We recognize four populations of kaluga: the first is from the estuary of the Amur River and coastal brackish waters of the Sea of Okhotsk and Sea of Japan, the second is from the lower Amur River, the third is from the middle-Amur, and the fourth occurs in lower reaches of the Zeya and Bureya rivers. Freshwater and brackish water morphs exist in the estuary population, with the freshwater morph predominating in number. The number of individuals in the lower Amur River population at age 2 or greater was recently estimated to be 40 000, and in the middle Amur, 30 000. The population will continue to decline because of rampant overfishing. The Amur sturgeon is represented in the Amur River basin by two morphs: brown and gray. Brown morphs occur in the middle and lower parts of the Amur River; they grow more slowly than the gray ones. Today, the lower Amur River population of Amur sturgeon is made up of 95 000 fish at age 2 or greater and is approximately half as large as the population in the middle Amur River. Populations of kaluga and Amur sturgeon in the Zeya and Bureya rivers are extremely small and on the verge of extinction.  相似文献   

20.
As pallid sturgeon, Scaphirhynchus albus (Forbes & Richardson, 1905), natural reproduction and recruitment remains very minimal in the lower Missouri River from Gavins Point Dam (river kilometer [rkm] 1305.2) to the confluence with the Mississippi River (rkm 0.0), hatchery supplementation and river‐wide monitoring efforts have continued. Annual survival estimates of hatchery‐reared pallid sturgeon stocked in the lower Missouri River were previously estimated during 1994–2008. Low recapture rates prior to 2006 limited the data available to estimate survival, which resulted in considerable uncertainty for the estimate of annual survival of age‐1 fish. Therefore, the objective was to provide more precise estimates of annual survival of pallid sturgeon using five additional years of stocking and sampling. The Cormack‐Jolly‐Seber model structure provided in program MARK was used to estimate the age‐specific survival estimates. Over 135 000 hatchery‐reared pallid sturgeon were released during 1994–2011 and recaptured at a rate of 1.9%, whereby estimates for the annual survival of age‐0 (Ø = 0.048) and >age‐1 (Ø = 0.931) were similar to those previously reported, but the age‐1 (Ø = 0.403) survival estimate was 52% lower. Post hoc analysis using time‐specific survival estimates indicated lower survival for age‐1 fish post‐2003 year classes, relative to the pre‐2002 year classes. An analysis confirms that hatchery‐reared pallid sturgeon continue to survive in the wild. However, low survival during the first 2 years of life is a management concern as efforts are aimed at maximizing genetic diversity and population growth. A follow‐up analysis also demonstrated the variability of capture rates and survival over time, which reinforces the need to continue to monitor and evaluate mark‐recapture data. The mark‐recapture efforts have provided demographic parameter estimates that remain a critical component for species recovery as these data are incorporated into population models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号