首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder caused by mutations in the gene encoding thymidine phosphorylase (TP). The disease is characterized clinically by impaired eye movements, gastrointestinal dysmotility, cachexia, peripheral neuropathy, myopathy, and leukoencephalopathy. Molecular genetic studies of MNGIE patients' tissues have revealed multiple deletions, depletion, and site‐specific point mutations of mitochondrial DNA. TP is a cytosolic enzyme required for nucleoside homeostasis. In MNGIE, TP activity is severely reduced and consequently levels of thymidine and deoxyuridine in plasma are dramatically elevated. We have hypothesized that the increased levels of intracellular thymidine and deoxyuridine cause imbalances of mitochondrial nucleotide pools that, in turn, lead to the mtDNA abnormalities. MNGIE was the first molecularly characterized genetic disorder caused by abnormal mitochondrial nucleoside/nucleotide metabolism. Future studies are likely to reveal further insight into this expanding group of diseases.  相似文献   

2.
Over the last 15 years, important research has expanded our knowledge of the clinical, molecular genetic, and biochemical features of mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). The characterization of mitochondrial involvement in this disorder and the seminal determination of its genetic cause, have opened new possibilities for more detailed and deeper studies on the pathomechanisms in this progressive and fatal disease. It has been established that MNGIE is caused by mutations in the gene encoding thymidine phosphorylase (TP), which lead to absolute or nearly complete loss of its catalytic activity, producing systemic accumulations of its substrates, thymidine (dThd) and deoxyuridine (dUrd). Findings obtained from in vitro and in vivo studies indicate that the biochemical imbalances specifically impair mitochondrial DNA (mtDNA) replication, repair, or both leading to mitochondrial dysfunction. We have proposed that therapy for MNGIE should be aimed at reducing the concentrations of these toxic nucleosides to normal or nearly normal levels. The first treatment, allogeneic stem-cell transplantation (alloSCT) reported in 2006, produced a nearly full biochemical correction of the dThd and dUrd imbalances in blood. Clinical follow-up of this and other patients receiving alloSCT is necessary to determine whether this and other therapies based on a permanent restoration of TP will be effective treatment for MNGIE.  相似文献   

3.
Altered thymidine metabolism due to defects of thymidine phosphorylase.   总被引:9,自引:0,他引:9  
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive human disease due to mutations in the thymidine phosphorylase (TP) gene. TP enzyme catalyzes the reversible phosphorolysis of thymidine to thymine and 2-deoxy-D-ribose 1-phosphate. We present evidence that thymidine metabolism is altered in MNGIE. TP activities in buffy coats were reduced drastically in all 27 MNGIE patients compared with 19 controls. All MNGIE patients had much higher plasma levels of thymidine than normal individuals and asymptomatic TP mutation carriers. In two patients, the renal clearance of thymidine was approximately 20% that of creatinine, and because hemodialysis demonstrated that thymidine is ultrafiltratable, most of the filtered thymidine is likely to be reabsorbed by the kidney. In vitro, fibroblasts from controls catabolized thymidine in medium; by contrast, MNGIE fibroblasts released thymidine. In MNGIE, severe impairment of TP enzyme activity leads to increased plasma thymidine. In patients who are suspected of having MNGIE, determination of TP activity in buffy coats and thymidine levels in plasma are diagnostic. We hypothesize that excess thymidine alters mitochondrial nucleoside and nucleotide pools leading to impaired mitochondrial DNA replication, repair, or both. Therapies to reduce thymidine levels may be beneficial to MNGIE patients.  相似文献   

4.
Mutations in the nuclear gene encoding thymidine phosphorylase (TP) cause mitochondrial neurogastrointestinal encephalomyopathy (MNGIE), an autosomal recessive disease with mitochondrial dysfunction and mitochondrial DNA abnormalities. We have demonstrated alterations of thymidine (dThd) metabolism in MNGIE patients. Here, we report the accumulation of another substrate of TP, deoxyuridine (dUrd), whose circulating levels ranged from 5.5 to 24.4 microM (average 14.2) in MNGIE and were undetectable (<0.05 microM) in both TP mutation carriers and controls. The dramatic accumulation of dUrd may contribute to nucleotide pool imbalances and, together with the increased levels of dThd, is likely to contribute to the pathogenesis of MNGIE.  相似文献   

5.
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disease with mitochondrial DNA (mtDNA) alterations and is caused by mutations in the nuclear gene encoding thymidine phosphorylase (TP). The cardinal clinical manifestations are ptosis, ophthalmoparesis, gastrointestinal dysmotility, cachexia, peripheral neuropathy, and leukoencephalopathy. Skeletal muscle shows mitochondrial abnormalities, including ragged-red fibers and cytochrome c oxidase deficiency, together with mtDNA depletion, multiple deletions or both. In MNGIE patients, TP mutations cause a loss-of-function of the cytosolic enzyme, TP. As a direct consequence of the TP defect, thymidine metabolism is altered. High blood levels of this nucleoside are likely to lead to mtDNA defects even in cells that do not express TP, such as skeletal muscle. We hypothesize that high concentrations of thymidine affect dNTP (deoxyribonucleoside triphosphate) metabolism in mitochondria more than in cytosol or nuclei, because mitochondrial dNTPs depend mainly on the thymidine salvage pathway, whereas nuclear dNTPs depend mostly on de novo pathway. The imbalance in the mitochondrial dNTP homeostasis affects mtDNA replication, leading to mitochondrial dysfunction.  相似文献   

6.

Background

Although causative mutations have been identified for numerous mitochondrial disorders, few disease-modifying treatments are available. Two examples of treatable mitochondrial disorders are coenzyme Q10 (CoQ10 or ubiquinone) deficiency and mitochondrial neurogastrointestinal encephalomyopathy (MNGIE).

Scope of review

Here, we describe clinical and molecular features of CoQ10 deficiencies and MNGIE and explain how understanding their pathomechanisms have led to rationale therapies. Primary CoQ10 deficiencies, due to mutations in genes required for ubiquinone biosynthesis, and secondary deficiencies, caused by genetic defects not directly related to CoQ10 biosynthesis, often improve with CoQ10 supplementation. In vitro and in vivo studies of CoQ10 deficiencies have revealed biochemical alterations that may account for phenotypic differences among patients and variable responses to therapy. In contrast to the heterogeneous CoQ10 deficiencies, MNGIE is a single autosomal recessive disease due to mutations in the TYMP gene encoding thymidine phosphorylase (TP). In MNGIE, loss of TP activity causes toxic accumulations of the nucleosides thymidine and deoxyuridine that are incorporated by the mitochondrial pyrimidine salvage pathway and cause deoxynucleoside triphosphate pool imbalances, which, in turn cause mtDNA instability. Allogeneic hematopoetic stem cell transplantation to restore TP activity and eliminate toxic metabolites is a promising therapy for MNGIE.

Major conclusions

CoQ10 deficiencies and MNGIE demonstrate the feasibility of treating specific mitochondrial disorders through replacement of deficient metabolites or via elimination of excessive toxic molecules.

General significance

Studies of CoQ10 deficiencies and MNGIE illustrate how understanding the pathogenic mechanisms of mitochondrial diseases can lead to meaningful therapies. This article is part of a Special Issue entitled: Biochemistry of Mitochondria, Life and Intervention 2010.  相似文献   

7.
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disease due to ECGF1 gene mutations causing thymidine phosphorylase (TP) deficiency. Analysis of post-mortem samples of five MNGIE patients and two controls, revealed TP activity in all control tissues, but not in MNGIE samples. Converse to TP activity, thymidine and deoxyuridine were absent in control samples, but present in all tissues of MNGIE patients. Concentrations of both nucleosides in the tissues were generally higher than those observed in plasma of MNGIE patients. Our observations indicate that in the absence of TP activity, tissues accumulate nucleosides, which are excreted into plasma.  相似文献   

8.
Abstract

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a rare and fatal inherited metabolic disorder due to mutations in the nuclear TYMP gene and leads to a deficiency in the enzyme thymidine phosphorylase. This results in an accumulation of the deoxynucleosides, thymidine and deoxyuridine in the cellular and extracellular compartments, ultimately leading to mitochondrial failure. The understanding of the precise molecular mechanisms that underlie the disease pathology is limited, being hampered by the rarity of the disorder. Expression profiling of serum based mircoRNAs and subsequent bioinformatical analyses provide an approach to facilitate the identity of dysregulated genes and signalling pathways potentially involved in the pathogenesis of MNGIE.  相似文献   

9.
Mycoplasma pneumoniae (Mpn) is a human pathogen causing acute respiratory diseases and accounts for approximately 30% cases of community-acquired pneumonia. Co-infection with Mycoplasmas compromises the efficacy of anticancer and antiviral nucleoside analog-based drugs due to the presence of Mycoplasma thymidine phosphorylase (TP). In this study, a TP-deficient strain of Mpn was generated in order to study the effect of Mpn TP in the metabolism of nucleoside analogs. Deficiency in TP activity led to increased uptake and incorporation of radiolabeled deoxyuridine and uracil but thymidine uptake was not affected. The activities of enzymes in the salvage of thymidine and deoxyuridine, e.g., thymidine kinase and uracil phosphoribosyltransferase were upregulated in the TP-deficient mutant, which may explain the increased uptake of deoxyuridine and uracil. Thirty FDA-approved anticancer and antiviral nucleoside and nucleobase analogs were used to screen their inhibitory activity toward the TP mutant and the wild type strain. Seven analogs were found to inhibit strongly the growth of both wild type and TP mutant. Differences in the inhibitory effect of several purine analogs between the two strains were observed. Further study is needed in order to understand the mechanism of inhibition caused by these analogs. Our results indicated that TP is not an essential gene for Mpn survival and TP deficiency affects other enzymes in Mpn nucleotide metabolism, and suggested that Mycoplasma nucleotide biosynthesis pathway enzymes are potential targets for future development of antibiotics.  相似文献   

10.
Depletion and multiple deletions of mitochondrial DNA (mtDNA) have been associated with a growing number of autosomal diseases that have been classified as defects of intergenomic communication. MNGIE, an autosomal recessive disorder associated with mtDNA alterations is due to mutations in thymidine phosphorylase that may cause imbalance of the mitochondrial nucleotide pool. Subsequently, mutations in the mitochondrial proteins adenine nucleotide translocator 1, Twinkle, and polymerase gamma have been found to cause autosomal dominant progressive external ophthalmoplegia with multiple deletions of mtDNA. Uncovering the molecular bases of intergenomic communication defects will enhance our understanding of the mechanisms responsible for maintaining mtDNA integrity.  相似文献   

11.
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a rare autosomal recessive mitochondrial disease associated with mutations in the nuclear TYMP gene. As a result, the thymidine phosphorylase (TP) enzyme activity is markedly reduced leading to toxic accumulation of thymidine and therefore altered mitochondrial DNA. MNGIE is characterized by severe gastrointestinal dysmotility, neurological impairment, reduced life expectancy and poor quality of life. There are limited therapeutic options for MNGIE. In the attempt to restore TP activity, allogenic hematopoietic stem cell transplantation has been used as cellular source of TP. The results of this approach on ∼20 MNGIE patients showed gastrointestinal and neurological improvement, although the 5-year mortality rate is about 70%. In this study we tested whether the liver may serve as an alternative source of TP. We investigated 11 patients (7M; 35–55 years) who underwent hepatic resection for focal disorders. Margins of normal liver tissue were processed to identify, quantify and localize the TP protein by Western Blot, ELISA, and immunohistochemistry, and to evaluate TYMP mRNA expression by qPCR. Western Blot identified TP in liver with a TP/GAPDH ratio of 0.9±0.5. ELISA estimated TP content as 0.5±0.07 ng/μg of total protein. TP was identified in both nuclei and cytoplasm of hepatocytes and sinusoidal lining cells. Finally, TYMP mRNA was expressed in the liver. Overall, our study demonstrates that the liver is an important source of TP. Orthotopic liver transplantation may be considered as a therapeutic alternative for MNGIE patients.  相似文献   

12.
Thymidine phosphorylase (TP) regulates intracellular and plasma thymidine levels. TP deficiency is hypothesized to (i) increase levels of thymidine in plasma, (ii) lead to mitochondrial DNA alterations, and (iii) cause mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). In order to elucidate the physiological roles of TP, we generated mice deficient in the TP gene. Although TP activity in the liver was inhibited in these mice, it was fully maintained in the small intestine. Murine uridine phosphorylase (UP), unlike human UP, cleaves thymidine, as well as uridine. We therefore generated TP-UP double-knockout (TP(-/-) UP(-/-)) mice. TP activities were inhibited in TP(-/-) UP(-/-) mice, and the level of thymidine in the plasma of TP(-/-) UP(-/-) mice was higher than for TP(-/-) mice. Unexpectedly, we could not observe alterations of mitochondrial DNA or pathological changes in the muscles of the TP(-/-) UP(-/-) mice, even when these mice were fed thymidine for 7 months. However, we did find hyperintense lesions on magnetic resonance T(2) maps in the brain and axonal edema by electron microscopic study of the brain in TP(-/-) UP(-/-) mice. These findings suggested that the inhibition of TP activity caused the elevation of pyrimidine levels in plasma and consequent axonal swelling in the brains of mice. Since lesions in the brain do not appear to be due to mitochondrial alterations and pathological changes in the muscle were not found, this model will provide further insights into the causes of MNGIE.  相似文献   

13.
Mitochondrial (mt) neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disease associated with depletion, deletions, and point mutations of mtDNA. Patients lack a functional thymidine phosphorylase and their plasma contains high concentrations of thymidine and deoxyuridine; elevation of the corresponding triphosphates probably impairs normal mtDNA replication and repair. To study metabolic events leading to MNGIE we used as model systems skin and lung fibroblasts cultured in the presence of thymidine and/or deoxyuridine at concentrations close to those in the plasma of the patients, a more than 100-fold excess relative to controls. The two deoxynucleosides increased the mt and cytosolic dTTP pools of skin fibroblasts almost 2-fold in cycling cells and 8-fold in quiescent cells. During up to a two-month incubation of quiescent fibroblasts with thymidine (but not with deoxyuridine), mtDNA decreased to approximately 50% without showing deletions or point mutations. When we removed thymidine, but maintained the quiescent state, mtDNA recovered rapidly. With thymidine in the medium, the dTTP pool of quiescent cells turned over rapidly at a rate depending on the concentration of thymidine, due to increased degradation and resynthesis of dTMP in a substrate (=futile) cycle between thymidine kinase and 5'-deoxyribonucleotidase. The cycle limited the expansion of the dTTP pool at the expense of ATP hydrolysis. We propose that the substrate cycle represents a regulatory mechanism to protect cells from harmful increases of dTTP. Thus MNGIE patients may increase their consumption of ATP to counteract an unlimited expansion of the dTTP pool caused by circulating thymidine.  相似文献   

14.
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder associated with multiple mutations in mitochondrial DNA, both deletions and point mutations, and mutations in the nuclear gene for thymidine phosphorylase. Spinazzola et al. (Spinazzola, A., Marti, R., Nishino, I., Andreu, A., Naini, A., Tadesse, S., Pela, I., Zammarchi, E., Donati, M., Oliver, J., and Hirano, M. (2001) J. Biol. Chem. 277, 4128-4133) showed that MNGIE patients have elevated circulating thymidine levels and they hypothesized that this generates imbalanced mitochondrial deoxyribonucleoside triphosphate (dNTP) pools, which in turn are responsible for mitochondrial (mt) DNA mutagenesis. We tested this hypothesis by culturing HeLa cells in medium supplemented with 50 microM thymidine. After 8-month growth, mtDNA in the thymidine-treated culture, but not the control, showed multiple deletions, as detected both by Southern blotting and by long extension polymerase chain reaction. After 4-h growth in thymidine-supplemented medium, we found the mitochondrial dTTP and dGTP pools to expand significantly, the dCTP pool to drop significantly, and the dATP pool to drop slightly. In whole-cell extracts, dTTP and dGTP pools also expanded, but somewhat less than in mitochondria. The dCTP pool shrank by about 50%, and the dATP pool was essentially unchanged. These results are discussed in terms of the recent report by Nishigaki et al. (Nishigaki, Y., Marti, R., Copeland, W. C., and Hirano, M. (2003) J. Clin. Invest. 111, 1913-1921) that most mitochondrial point mutations in MNGIE patients involve T --> C transitions in sequences containing two As to the 5' side of a T residue. Our finding of dTTP and dGTP elevations and dATP depletion in mitochondrial dNTP pools are consistent with a mutagenic mechanism involving T-G mispairing followed by a next-nucleotide effect involving T insertion opposite A.  相似文献   

15.
Mitochondrial (mt) DNA depletion syndromes can arise from genetic deficiencies for enzymes of dNTP metabolism, operating either inside or outside mitochondria. MNGIE is caused by the deficiency of cytosolic thymidine phosphorylase that degrades thymidine and deoxyuridine. The extracellular fluid of the patients contains 10-20 microM deoxynucleosides leading to changes in dTTP that may disturb mtDNA replication. In earlier work, we suggested that mt dTTP originates from two distinct pathways: (i) the reduction of ribonucleotides in the cytosol (in cycling cells) and (ii) intra-mt salvage of thymidine (in quiescent cells). In MNGIE and most other mtDNA depletion syndromes, quiescent cells are affected. Here, we demonstrate in quiescent fibroblasts (i) the existence of small mt dNTP pools, each usually 3-4% of the corresponding cytosolic pool; (ii) the rapid metabolic equilibrium between mt and cytosolic pools; and (iii) the intra-mt synthesis and rapid turnover of dTTP in the absence of DNA replication. Between 0.1 and 10 microM extracellular thymidine, intracellular thymidine rapidly approaches the extracellular concentration. We mimic the conditions of MNGIE by maintaining quiescent fibroblasts in 10-40 microM thymidine and/or deoxyuridine. Despite a large increase in intracellular thymidine concentration, cytosolic and mt dTTP increase at most 4-fold, maintaining their concentration for 41 days. Other dNTPs are marginally affected. Deoxyuridine does not increase the normal dNTP pools but gives rise to a small dUTP and a large dUMP pool, both turning over rapidly. We discuss these results in relation to MNGIE.  相似文献   

16.
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a severe human disease caused by mutations in TYMP, the gene encoding thymidine phosphorylase (TP). It belongs to a broader group of disorders characterized by a pronounced reduction in mitochondrial DNA (mtDNA) copy number in one or more tissues. In most cases, these disorders are caused by mutations in genes involved in deoxyribonucleoside triphosphate (dNTP) metabolism. It is generally accepted that imbalances in mitochondrial dNTP pools resulting from these mutations interfere with mtDNA replication. Nonetheless, the precise mechanistic details of this effect, in particular, how an excess of a given dNTP (e.g., imbalanced dTTP excess observed in TP deficiency) might lead to mtDNA depletion, remain largely unclear. Using an in organello replication experimental model with isolated murine liver mitochondria, we observed that overloads of dATP, dGTP, or dCTP did not reduce the mtDNA replication rate. In contrast, an excess of dTTP decreased mtDNA synthesis, but this effect was due to secondary dCTP depletion rather than to the dTTP excess in itself. This was confirmed in human cultured cells, demonstrating that our conclusions do not depend on the experimental model. Our results demonstrate that the mtDNA replication rate is unaffected by an excess of any of the 4 separate dNTPs and is limited by the availability of the dNTP present at the lowest concentration. Therefore, the availability of dNTP is the key factor that leads to mtDNA depletion rather than dNTP imbalances. These results provide the first test of the mechanism that accounts for mtDNA depletion in MNGIE and provide evidence that limited dNTP availability is the common cause of mtDNA depletion due to impaired anabolic or catabolic dNTP pathways. Thus, therapy approaches focusing on restoring the deficient substrates should be explored.  相似文献   

17.
Abstract

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a rare disorder caused by mutations in the thymidine phosphorylase gene (TYMP), leading to secondary aberrations to the mitochondrial genome. The disease is characterised by gastrointestinal dysmotility, sensorimotor peripheral neuropathy and leukoencephalopathy. The understanding of the molecular mechanisms that underlie the central nervous system (CNS) is hindered by the lack of a representative disease model; to address this we have developed an in vitro 3-D cerebral organoid of MNGIE. Induced pluripotent stem cells (iPSCs) generated from peripheral blood mononuclear cells (PBMCs) of a healthy control and a patient with MNGIE were characterised to ascertain bona fide pluripotency through the evaluation of pluripotency markers and the differentiation to the germ layers. iPSC lines were differentiated into cerebral organoids. Thymidine phosphorylase expression in PBMCs, iPSCs and Day 92 organoids was evaluated by immunoblotting and intact organoids were sampled for histological evaluation of neural markers. iPSCs demonstrated the expression of pluripotency markers SOX2 and TRA1-60 and the plasticity to differentiate into the germ layers. Cerebral organoids stained positive for the neural markers GFAP, O4, Tuj1, Nestin, SOX2 and MBP. Consistent with the disease phenotypes, MNGIE cells did not display thymidine phosphorylase expression whereas control PBMCs and Day 92 organoids did. Remarkably, control iPSCs did not stain positive for thymidine phosphorylase. We have established for the first time a MNGIE iPSC line and cerebral organoid model, which exhibited the expression of cells relevant to the study of the disease, such as neural stem cells, astrocytes and myelinating oligodendrocytes.  相似文献   

18.
In the present paper we demonstrate that the cytostatic and antiviral activity of pyrimidine nucleoside analogues is markedly decreased by a Mycoplasma hyorhinis infection and show that the phosphorolytic activity of the mycoplasmas is responsible for this. Since mycoplasmas are (i) an important cause of secondary infections in immunocompromised (e.g. HIV infected) patients and (ii) known to preferentially colonize tumour tissue in cancer patients, catabolic mycoplasma enzymes may compromise efficient chemotherapy of virus infections and cancer. In the genome of M. hyorhinis, a TP (thymidine phosphorylase) gene has been annotated. This gene was cloned, expressed in Escherichia coli and kinetically characterized. Whereas the mycoplasma TP efficiently catalyses the phosphorolysis of thymidine (Km=473 μM) and deoxyuridine (Km=578 μM), it prefers uridine (Km=92 μM) as a substrate. Our kinetic data and sequence analysis revealed that the annotated M. hyorhinis TP belongs to the NP (nucleoside phosphorylase)-II class PyNPs (pyrimidine NPs), and is distinct from the NP-II class TP and NP-I class UPs (uridine phosphorylases). M. hyorhinis PyNP also markedly differs from TP and UP in its substrate specificity towards therapeutic nucleoside analogues and susceptibility to clinically relevant drugs. Several kinetic properties of mycoplasma PyNP were explained by in silico analyses.  相似文献   

19.
20.
Mitochondrial DNA (mtDNA) is replicated by the DNA polymerase g in concert with accessory proteins such as the mtDNA helicase, single stranded DNA binding protein, topoisomerase, and initiating factors. Nucleotide precursors for mtDNA replication arise from the mitochondrial salvage pathway originating from transport of nucleosides, or alternatively from cytoplasmic reduction of ribonucleotides. Defects in mtDNA replication or nucleotide metabolism can cause mitochondrial genetic diseases due to mtDNA deletions, point mutations, or depletion which ultimately cause loss of oxidative phosphorylation. These genetic diseases include mtDNA depletion syndromes such as Alpers or early infantile hepatocerebral syndromes, and mtDNA deletion disorders, such as progressive external ophthalmoplegia (PEO), ataxia-neuropathy, or mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). This review focuses on our current knowledge of genetic defects of mtDNA replication (POLG, POLG2, C10orf2) and nucleotide metabolism (TYMP, TK2, DGOUK, and RRM2B) that cause instability of mtDNA and mitochondrial disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号