首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations in the protein DJ-1 are associated with familial forms of Parkinson's disease, indicating that DJ-1 may be involved in pathways related to the etiology of this disorder. Here we have used solution state NMR and circular dichroism spectroscopies to evaluate the extent of structural perturbations associated with five different Parkinson's disease linked DJ-1mutations: L166P, E64D, M26I, A104T, and D149A. Comparison of the data with those obtained for the wild-type protein shows that the L166P mutation leads to severe and global destabilization and unfolding of the protein structure, while the structure of the E64D mutation, as expected, is nearly unperturbed. Interestingly, the remaining three mutants all show different degrees of structural perturbation, which are accompanied by a reduction in the thermodynamic stability of the protein. The observed structural and thermodynamic differences are likely to underlie any functional variations between these mutants and the wild type, which in turn are likely responsible for the pathogenicity of these mutations.  相似文献   

2.
YajL is the closest Escherichia coli homolog of the Parkinsonism-associated protein DJ-1, a multifunctional oxidative stress response protein whose biochemical function remains unclear. We recently described the oxidative-stress-dependent aggregation of proteins in yajL mutants and the oxidative-stress-dependent formation of mixed disulfides between YajL and members of the thiol proteome. We report here that yajL mutants display increased protein sulfenic acids levels and that formation of mixed disulfides between YajL and its protein substrates in vivo is inhibited by the sulfenic acid reactant dimedone, suggesting that YajL preferentially forms disulfides with sulfenylated proteins. YajL (but not YajL(C106A)) also forms mixed disulfides in vitro with the sulfenylated form of bovine serum albumin. The YajL-serum albumin disulfides can be subsequently reduced by glutathione or dihydrolipoic acid. We also show that DJ-1 can form mixed disulfides with sulfenylated E. coli proteins and with sulfenylated serum albumin. These results suggest that YajL and possibly DJ-1 function as covalent chaperones involved in the detection of sulfenylated proteins by forming mixed disulfides with them and that these disulfides are subsequently reduced by low-molecular-weight thiols.  相似文献   

3.
4.
Computational methods that predict protein stability changes induced by missense mutations have made a lot of progress over the past decades. Most of the available methods however have very limited accuracy in predicting stabilizing mutations because existing experimental sets are dominated by mutations reducing protein stability. Moreover, few approaches could consistently perform well across different test cases. To address these issues, we developed a new computational method PremPS to more accurately evaluate the effects of missense mutations on protein stability. The PremPS method is composed of only ten evolutionary- and structure-based features and parameterized on a balanced dataset with an equal number of stabilizing and destabilizing mutations. A comprehensive comparison of the predictive performance of PremPS with other available methods on nine benchmark datasets confirms that our approach consistently outperforms other methods and shows considerable improvement in estimating the impacts of stabilizing mutations. A protein could have multiple structures available, and if another structure of the same protein is used, the predicted change in stability for structure-based methods might be different. Thus, we further estimated the impact of using different structures on prediction accuracy, and demonstrate that our method performs well across different types of structures except for low-resolution structures and models built based on templates with low sequence identity. PremPS can be used for finding functionally important variants, revealing the molecular mechanisms of functional influences and protein design. PremPS is freely available at https://lilab.jysw.suda.edu.cn/research/PremPS/, which allows to do large-scale mutational scanning and takes about four minutes to perform calculations for a single mutation per protein with ~ 300 residues and requires ~ 0.4 seconds for each additional mutation.  相似文献   

5.
Three novel missense mutations have been identified in the phenylalanine hydroxylase (PAH) genes of Chinese individuals afflicted with various degrees of phenylketonuria (PKU). A T-to-C transition was observed in exon 5 of the gene, resulting in the substitution of Phe161 by Ser161. Two substitutions, G-to-T and T-to-G, were observed in exon 7, resulting in the substitution of Gly247 by Val247 and Leu255 by Val255, respectively. Expression analysis demonstrated that these mutant proteins produced between 0 and 15% of normal PAH enzyme activity. Population screening of a Chinese sample population indicates that these mutations are quite rare, together accounting for only about 4% of all PKU alleles among the Chinese. The P161S and G247V mutations were each present on a single PAH RFLP haplotype 4 chromosome in patients form Northern China, while the L255V mutation was present on chromosomes of both haplotypes 18 and 21 in patients from Southern China. These results suggest that the remaining 30% of uncharacterized PKU alleles in the Chinese population may bear a large number of relatively rare PAH mutations.  相似文献   

6.
The major candidate for multiple sulfatase deficiency is a defective formylglycine-generating enzyme (FGE). Though adequately produced, mutations in FGE stall the activation of sulfatases and prevent their activity. Missense mutations, viz. E130D, S155P, A177P, W179S, C218Y, R224W, N259I, P266L, A279V, C336R, R345C, A348P, R349Q and R349W associated with multiple sulfatase deficiency are yet to be computationally studied. Aforementioned mutants were initially screened through ws-SNPs&GO3D program. Mutant R345C acquired the highest score, and hence was studied in detail. Discrete molecular dynamics explored structural distortions due to amino acid substitution. Therein, comparative analyses of wild type and mutant were carried out. Changes in structural contours were observed between wild type and mutant. Mutant had low conformational fluctuation, high atomic mobility and more compactness than wild type. Moreover, free energy landscape showed mutant to vary in terms of its conformational space as compared to wild type. Subsequently, wild type and mutant were subjected to single-model analyses. Mutant had lesser intra molecular interactions than wild type suggesting variations pertaining to its secondary structure. Furthermore, simulated thermal denaturation showed dissimilar pattern of hydrogen bond dilution. Effects of these variations were observed as changes in elements of secondary structure. Docking studies of mutant revealed less favourable binding energy towards its substrate as compared to wild type. Therefore, theoretical explanations for structural distortions of mutant R345C leading to multiple sulfatase deficiency were revealed. The protocol of the study could be useful to examine the effectiveness of pharmacological chaperones prior to experimental studies.  相似文献   

7.
8.
9.
Nims NM  Vassmer D  Maser RL 《Biochemistry》2011,50(3):349-355
Polycystin-1 (PC1), the product of the polycystic kidney disease-1 (PKD1) gene, has a number of reported missense mutations whose pathogenicity is indeterminate. Previously, we utilized N-linked glycosylation reporter tags along with membrane insertion and topology assays to define the 11 membrane-spanning domains (I-XI) of PC1. In this report, we utilize glycosylation assays to determine whether two reported human polymorphisms/missense mutations within transmembrane (TM) domains VI and X affect the membrane topology of PC1. M3677T within TM VI had no effect on the topology of this TM domain as shown by the ability of two native N-linked glycosylation sites within the extracellular loop following TM VI to be glycosylated. In contrast, G4031D, within TM X, decreased the glycosylation of TM X reporter constructs, demonstrating that the substitution affected the C-terminal translocating activity of TM X. Furthermore, G4031D reduced the membrane association of TM X and XI together. These results suggest that G4031D affects the membrane insertion and topology of the C-terminal portion of polycystin-1 and represents a bona fide pathogenic mutation.  相似文献   

10.
Mutations in the PARK7/DJ-1 gene cause autosomal-recessive Parkinson's disease. In some patients the gene is deleted. The molecular basis of disease in patients with point mutations is less obvious. We have investigated the molecular properties of [L166P]DJ-1 and the novel variant [E64D]DJ-1. When transfected into non-neuronal and neuronal cell lines, steady-state expression levels of [L166P]DJ-1 were dramatically lower than wild-type [WT]DJ-1 and [E64D]DJ-1. Cycloheximide and pulse-chase experiments revealed that the decreased expression levels of [L166P]DJ-1 were because of accelerated protein turnover. Proteasomal degradation was not the major pathway of DJ-1 breakdown because treatment with the proteasome inhibitor MG-132 caused only minimal accumulation of DJ-1, even of the very unstable [L166P]DJ-1 mutant. Because of the structural resemblance of DJ-1 with bacterial cysteine proteases, we considered an autoproteolytic mechanism. However, neither pharmacological inhibition nor site-directed mutagenesis of the putative active site residue Cys-106 stabilized DJ-1. To gain further insight into the structural defects of DJ-1 mutants, human [WT]DJ-1 and both mutants were expressed in Escherichia coli. As in eukaryotic cells, expression levels of [L166P]DJ-1 were dramatically reduced compared with [WT]DJ-1 and [E64D]DJ-1. Circular dichroism spectrometry revealed that the solution structures of [WT]DJ-1 and [E64D]DJ-1 are rich in beta-strand and alpha-helix conformation. Alpha-helices were more susceptible to thermal denaturation than the beta-sheet, and [WT]DJ-1 was more flexible in this regard than [E64D]DJ-1. Thus, structural defects of [E64D]DJ-1 only become apparent upon denaturing conditions, whereas the L166P mutation causes a drastic defect that leads to excessive degradation.  相似文献   

11.
Bloom syndrome (BS) is an autosomal recessive disorder characterized by genomic instability and the early development of many types of cancer. Missense mutations have been identified in the BLM gene (encoding a RecQ helicase) in affected individuals, but the molecular mechanism and the structural basis of the effects of these mutations remain to be elucidated. We analysed five disease-causing missense mutations that are localized in the BLM helicase core region: Q672R, I841T, C878R, G891E and C901Y. The disease-causing mutants had low ATPase and helicase activities but their ATP binding abilities were normal, except for Q672, whose ATP binding activity was lower than that of the intact BLM helicase. Mutants C878R, mapping near motif IV, and G891E and C901Y, mapping in motif IV, displayed severe DNA-binding defects. We used molecular modelling to analyse these mutations. Our work provides insights into the molecular basis of BLM pathology, and reveals structural elements implicated in coupling DNA binding to ATP hydrolysis and DNA unwinding. Our findings will help to explain the mechanism underlying BLM catalysis and interpreting new BLM causing mutations identified in the future.  相似文献   

12.
Galactosemia type 2 is an autosomal recessive disorder characterized by the deficiency of galactokinase (GALK) enzyme due to missense mutations in GALK1 gene, which is associated with various manifestations such as hyper galactosemia and formation of cataracts. GALK enzyme catalyzes the adenosine triphosphate (ATP)–dependent phosphorylation of α‐d ‐galactose to galactose‐1‐phosphate. We searched 4 different literature databases (Google Scholar, PubMed, PubMed Central, and Science Direct) and 3 gene‐variant databases (Online Mendelian Inheritance in Man, Human Gene Mutation Database, and UniProt) to collect all the reported missense mutations associated with GALK deficiency. Our search strategy yielded 32 missense mutations. We used several computational tools (pathogenicity and stability, biophysical characterization, and physiochemical analyses) to prioritize the most significant mutations for further analyses. On the basis of the pathogenicity and stability predictions, 3 mutations (P28T, A198V, and L139P) were chosen to be tested further for physicochemical characterization, molecular docking, and simulation analyses. Molecular docking analysis revealed a decrease in interaction between the protein and ATP in all the 3 mutations, and molecular dynamic simulations of 50 ns showed a loss of stability and compactness in the mutant proteins. As the next step, comparative physicochemical changes of the native and the mutant proteins were carried out using essential dynamics. Overall, P28T and A198V were predicted to alter the structure and function of GALK protein when compared to the mutant L139P. This study demonstrates the power of computational analysis in variant classification and interpretation and provides a platform for developing targeted therapeutics.  相似文献   

13.
Behavioral phenotypes of Disc1 missense mutations in mice   总被引:6,自引:0,他引:6  
To support the role of DISC1 in human psychiatric disorders, we identified and analyzed two independently derived ENU-induced mutations in Exon 2 of mouse Disc1. Mice with mutation Q31L showed depressive-like behavior with deficits in the forced swim test and other measures that were reversed by the antidepressant bupropion, but not by rolipram, a phosphodiesterase-4 (PDE4) inhibitor. In contrast, L100P mutant mice exhibited schizophrenic-like behavior, with profound deficits in prepulse inhibition and latent inhibition that were reversed by antipsychotic treatment. Both mutant DISC1 proteins exhibited reduced binding to the known DISC1 binding partner PDE4B. Q31L mutants had lower PDE4B activity, consistent with their resistance to rolipram, suggesting decreased PDE4 activity as a contributory factor in depression. This study demonstrates that Disc1 missense mutations in mice give rise to phenotypes related to depression and schizophrenia, thus supporting the role of DISC1 in major mental illness.  相似文献   

14.
15.
Summary
We have determined the nucleotide sequence changes caused by three missense mutations leading to the production of inactive colicin E3 proteins. The ceaC1 mutation, affecting the transiocation of colicin E3 through bacterial membranes, is caused by a serine to phenylalanine change at position 37 within the glycine-rich region at the N-terminal part of colicin E3. This confirms previous results suggesting a role for this domain in colicin uptake by sensitive cells. The ceaC2 and ceaC3 mutations, abolishing colicin E3 RNase activity, affect the C-terminal enzymatic domain of the molecule, in the ceaC2 mutant, serine at position 529 was converted to leucine. The ceaC3 mutation replaced a glycine residue at position 524 with an aspartic acid residue. The two mutations ceaC2 and ceaC3 yieid information on the amino acid residues involved in the RNase activity of colicin E3.  相似文献   

16.
We have determined the nucleotide sequence changes caused by three missense mutations leading to the production of inactive colicin E3 proteins. The ceaC1 mutation, affecting the translocation of colicin E3 through bacterial membranes, is caused by a serine to phenylalanine change at position 37 within the glycine-rich region at the N-terminal part of colicin E3. This confirms previous results suggesting a role for this domain in colicin uptake by sensitive cells. The ceaC2 and ceaC3 mutations, abolishing colicin E3 RNase activity, affect the C-terminal enzymatic domain of the molecule. In the ceaC2 mutant, serine at position 529 was converted to leucine. The ceaC3 mutation replaced a glycine residue at position 524 with an aspartic acid residue. The two mutations ceaC2 and ceaC3 yield information on the amino acid residues involved in the RNase activity of colicin E3.  相似文献   

17.
18.
The major impact of an increase in genetic damage will be expressed as an increase in autosomal dominant and X-linked traits as well as chromosomal disorders. The present incidence of dominant traits has been estimated as 1% of live births, but recent data from British Columbia indicate the true value in that population may be an order of magnitude lower. These estimates are important if one measures the damage in terms of doubling dose. Neither the average mutation rate nor the number of loci capable of mutating to dominant detrimental form is known. Mutations that cause sterility or early embryonic loss are determental in the Darwinian sense but have little impact on society. Mutations that are more fit biologically may be a heavy burden to society if the affected persons require medical or institutional care. Since exposure to some mutagens is unavoidable, these factors must ultimately be included in a cost-benefit analysis.  相似文献   

19.
Hereditary tyrosinemia type 1 (HT1) is an autosomal recessive disease caused by a deficiency of the enzyme involved in the last step of tyrosine degradation, fumarylacetoacetate hydrolase (FAH). Thus far, 34 mutations in the FAH gene have been reported in various HT1 patients. Site-directed mutagenesis of the FAH cDNA was used to investigate the effects of eight missense mutations found in HTI patients on the structure and activity of FAH. Mutated FAH proteins were expressed in Escherichia coli and in mammalian CV-1 cells. Mutations N16I, F62C, A134D, C193R, D233V, and W234G lead to enzymatically inactive FAH proteins. Two mutations (R341W, associated with the pseudo-deficiency phenotype, and Q279R) produced proteins with a level of activity comparable to the wild-type enzyme. The N16I, F62C, C193R, and W234G variants were enriched in an insoluble cellular fraction, suggesting that these amino acid substitutions interfere with the proper folding of the enzyme. Based on the tertiary structure of FAH, on circular dichroism data, and on solubility measurements, we propose that the studied missense mutations cause three types of structural effects on the enzyme: 1) gross structural perturbations, 2) limited conformational changes in the active site, and 3) conformational modifications with no significant effect on enzymatic activity.  相似文献   

20.
Mitochondrial dysfunction represents a critical event during the pathogenesis of Parkinson's disease (PD) and expanding evidences demonstrate that an altered balance in mitochondrial fission/fusion is likely an important mechanism leading to mitochondrial and neuronal dysfunction/degeneration. In this study, we investigated whether DJ-1 is involved in the regulation of mitochondrial dynamics and function in neuronal cells. Confocal and electron microscopic analysis demonstrated that M17 human neuroblastoma cells over-expressing wild-type DJ-1 (WT DJ-1 cells) displayed elongated mitochondria while M17 cells over-expressing PD-associated DJ-1 mutants (R98Q, D149A and L166P) (mutant DJ-1 cells) showed significant increase of fragmented mitochondria. Similar mitochondrial fragmentation was also noted in primary hippocampal neurons over-expressing PD-associated mutant forms of DJ-1. Functional analysis revealed that over-expression of PD-associated DJ-1 mutants resulted in mitochondria dysfunction and increased neuronal vulnerability to oxidative stress (H(2) O(2)) or neurotoxin. Further immunoblot studies demonstrated that levels of dynamin-like protein (DLP1), also known as Drp1, a regulator of mitochondrial fission, was significantly decreased in WT DJ-1 cells but increased in mutant DJ-1 cells. Importantly, DLP1 knockdown in these mutant DJ-1 cells rescued the abnormal mitochondria morphology and all associated mitochondria/neuronal dysfunction. Taken together, these studies suggest that DJ-1 is involved in the regulation of mitochondrial dynamics through modulation of DLP1 expression and PD-associated DJ-1 mutations may cause PD by impairing mitochondrial dynamics and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号