首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modulation of epithelial cell proliferation by the dissolved oxygen concentration (PO2) of the growth medium was assessed with primary human foreskin epithelium and a continuous monkey kidney epithelial cell line (LLC-MK2). Direct measurement of the growth medium PO2 provides the first quantitative evaluation of epithelial cell proliferation as a function of PO2 provides the first quantitative evaluation of epithelial cell proliferation as a function of PO2. Sustained proliferation of LLC-MK2 cells occurs in serum-free medium equilibrated with a gas phase containing 18% or 30% O2 v/v. Mid-logarithmic phase cultures rapidly consume dissolved oxygen; this results in a 60–70 mm Hg decline in PO2 and leads to a stable growth medium PO2 between 70 and 100 mm Hg, well above anoxic values. In contrast, if culture medium is equilibrated with a gas phase containing 0% or 1% O2 v/v to yield a growth medium PO2 ~ 20–40 mm Hg, proliferation of LLC-MK2 and primary foreskin epithelial cells is retarded, and LLC-MK2 cells use little dissolved oxygen. Gentle, continuous rocking to prevent diffusion gradient formation enhances proliferation slightly at the higher PO2, but neither periodic fluid renewals nor continued rocking stimulates cells retarded by a lowered oxygen concentration to resume proliferation. The data collectively demonstrate that epithelial cell proliferation requires a PO2 > 40 mm Hg, and threshold requirements are probably closer to 70 mm Hg. Glycolysis continues at a PO2 insufficient for proliferation, but more lactic acid accumulates in actively proliferating cultures than in cultures equilibrated with 0% oxygen. We conclude that epithelial cells in vitro both consume more oxygen and require a higher PO2 for continued proliferation, and that the oxygen requirement for epithelial cell proliferation exceeds that of a comparable population of fibroblasts for which low oxygen may enhance survival and proliferation.  相似文献   

2.
This study compares the effects of reduced (5%) or normal (5% CO2 in air; 20% O2) oxygen tension on the in vitro maturation of early preantral ovarian follicles isolated from 14-day-old (C57BI/6J × CBAca) F1 mice. Intact follicles (100–130 μm) are singly cultured in 20 μl droplets α-MEM enriched with FCS and rFSH under mineral oil at 37°C and 100% humidity. In this culture system the follicles are allowed to attach to the bottom of the petri dishes. Follicle in vitro growth, hormone secretory capacity, and in vitro ovulation were studied under the two oxygen tensions. Spontaneous oocyte release from the follicle during a 16-day culture period was observed significantly more under 5% oxygen. Antrallike cavity formation was not observed under 5% O2. The follicles in the 5% O2 cultures reaching day 16 were stripped of their granulosa cell layers, and 83% of the retrieved oocytes had already undergone spontaneous germinal-vesicle breakdown (GVBD). Under 20% O2, the GV stage was maintained until day 16 in 77% of the oocytes. Under 5% O2, intact follicle survival up to day 12 was significantly reduced as compared to the 5% CO2 in air conditioning. The hCG stimulus on day 12 induced mucification in a significantly larger proportion of follicles cultured under 20% O2 (79% vs. 47%). Germinal-vesicle breakdown (20% O2:95%, 5%, O2:42%) and first polar body extrusion (20% O2:40%, 5% O2:15%) were significantly more prevalent under normal oxygen tension. A reduced secretory capacity of E2 and inhibin was demonstrated for follicles cultured under 5% O2. The histological study of serially sectioned follicles showed increased areas of centrally located granulosa cell necrosis and pyknosis in the cumulus cells. Gassing follicle cultures using 5% CO2 in air provided appropriate conditions for normal growth, enhanced whole-follicle survival, differentiation, and hormone production, and improved the yield of meiotic competent oocytes. © 1996 Wiley-Liss, Inc.  相似文献   

3.
The optimisation of haematopoietic stem and progenitor cell expansion is on demand in modern cell therapy. In this work, haematopoietic stem/progenitor cells (HSPCs) have been selected from unmanipulated cord blood mononuclear cells (cbMNCs) due to adhesion to human adipose-tissue derived stromal cells (ASCs) under standard (20%) and tissue-related (5%) oxygen. ASCs efficiently maintained viability and supported further HSPC expansion at 20% and 5% O2. During co-culture with ASCs, a new floating population of differently committed HSPCs (HSPCs-1) grew. This suspension was enriched with СD34+ cells up to 6 (20% O2) and 8 (5% O2) times. Functional analysis of HSPCs-1 revealed cobble-stone area forming cells (CAFCs) and lineage-restricted colony-forming cells (CFCs). The number of CFCs was 1.6 times higher at tissue-related O2, than in standard cultivation (20% O2). This increase was related to a rise in the number of multipotent precursors - BFU-E, CFU-GEMM and CFU-GM. These changes were at least partly ensured by the increased concentration of MCP-1 and IL-8 at 5% O2. In summary, our data demonstrated that human ASCs enables the selection of functionally active HSPCs from unfractionated cbMNCs, the further expansion of which without exogenous cytokines provides enrichment with CD34+ cells. ASCs efficiently support the viability and proliferation of cord blood haematopoietic progenitors of different commitment at standard and tissue-related O2 levels at the expense of direct and paracrine cell-to-cell interactions.  相似文献   

4.
Frankia, the actinomycete partner in the nitrogenfixing symbiosis of certain woody non-legumes, has been shown to fix nitrogen in pure culture under aerobic conditions. The sensitivity of in vivo nitrogen-fixation (acetylene reduction) to oxygen tension in the gas phase was measured in short-term assays with two Frankia isolates designated ARI3 and CcI3. The carbon source utilized had an effect on the optimum O2 concentration for acetylene reduction. Cells utilizing an organic acid, e.g., propionate or pyruvate had maximum nitrogenase activity at an oxygen concentration of 15 to 20%. In contrast, cells respiring a sugar, e.g., trehalose or glucose, or endogenous reserves (glycogen or trehalose) had maximum acetylene reduction activity at 5 to 10% in the gas phase. Oxygen uptake kinetics showed that respiration in vesicle-containing cells utilizing trehalose had a biphasic response to oxygen concentration with a diffusion limited component at oxygen concentrations of 20 M to more than 300 M. These results suggested that trehalose was oxidized in the vesicles as well as in the vegetative hyphae. Oxygen concentration also had an effect on the trehalose-supported growth of cells (non nitrogenfixing, [+NH4Cl]). Cells grown with 5–10% O2 in the gas phase had a doubling time approximately half those grown with 20% O2 (atmospheric). Propionate-grown cells showed similar growth rates at the two oxygen tensions, and grew faster (almost 2x) than the trehalose cells at 5–10% O2. Trehalose also supported approximately 40% lower rates of oxygen uptake than propionate in vesicle-containing cells.  相似文献   

5.

The milieu of male germline stem cells (mGSCs) is characterized as a low-oxygen (O2) environment, whereas, their in-vitro expansion is typically performed under normoxia (20–21% O2). The comparative information about the effects of low and normal O2 levels on the growth and differentiation of caprine mGSCs (cmGSCs) is lacking. Thus, we aimed to investigate the functional and multilineage differentiation characteristics of enriched cmGSCs, when grown under hypoxia and normoxia. After enrichment of cmGSCs through multiple methods (differential platting and Percoll-density gradient centrifugation), the growth characteristics of cells [population-doubling time (PDT), viability, proliferation, and senescence], and expression of key-markers of adhesion (β-integrin and E-Cadherin) and stemness (OCT-4, THY-1 and UCHL-1) were evaluated under hypoxia (5% O2) and normoxia (21% O2). Furthermore, the extent of multilineage differentiation (neurogenic, adipogenic, and chondrogenic differentiation) under different culture conditions was assessed. The survival, viability, and proliferation were significantly (p?<?0.05) improved, thus, yielding a significantly (p?<?0.05) higher number of viable cells with larger colonies under hypoxia. Furthermore, the expression of stemness and adhesion markers were distinctly upregulated under lowered O2 conditions. Conversely, the differentiated regions and expression of differentiation-specific genes [C/EBPα (adipogenic), nestin and β-tubulin (neurogenic), and COL2A1 (chondrogenic)] were significantly (p?<?0.05) reduced under hypoxia. Overall, the results demonstrate that culturing cmGSCs under hypoxia augments the growth characteristics and stemness but not the multilineage differentiation of cmGSCs, as compared with normoxia. These data are important to develop robust methodologies for ex-vivo expansion and lineage-committed differentiation of cmGSCs for clinical applications.

  相似文献   

6.
This study aimed to examine the proliferative behavior and molecular mechanisms of rat bone marrow-derived MSCs (rBMSCs) cultured under three different oxygen concentrations. Passaged rBMSCs exhibited significantly greater proliferation rates at 1% O2 and 5% O2 than those at 18% O2 and the cells exposed to 1% O2 showed the highest proliferative potential, which was evidenced by the growth curves, colony-forming efficiencies, and CCK-8 absorbance values. The rBMSCs grown under hypoxic culture conditions (1% O2 and 5% O2) had the increased percentage of cells in S?+?G2/M-phase and the decreased apoptotic index, compared with normoxia (18% O2). It was revealed for the first time that there were more phosphohistone H3 (PHH3)-positive cells and higher expressions of proliferating cell nuclear antigen (PCNA) in the hypoxic cultures of rBMSCs than in the normoxic culture. Hypoxia upregulated the anti-apoptotic protein Bcl-2 and downregulated the pro-apoptotic proteins Bax and the cleaved caspase-3 in cultured rBMSCs. The levels of hypoxia-inducible factor-1α (HIF-1α) and phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2) were increased in the hypoxic-cultured rBMSCs. Nevertheless, no significant difference was observed in p53 level of rBMSCs between different oxygen concentrations. In conclusion, the hypoxia exerts a promoting effect on the in vitro expansion of rBMSCs via several signaling and molecular pathways involved in the control of cell cycle and apoptosis.  相似文献   

7.
Hydrogen peroxide (H2O2) has been reported to be present at significant levels in the lens and aqueous humor in some cataract patients and suggested as a possible source of chronically inflicted damage to lens epithelial (LE) cells. We measured H2O2effects on bovine and mouse LE cells and determined whether LE cells from old calorically restricted mice were more resistant to H2O2-induced cellular damage than those of same age ad libitum fed (AL) mice. Bovine lens epithelial cells were exposed to H2O2at 40 or 400 μM for 2 h and then allowed to recover from the stress. The cells were assayed for DNA damage, DNA synthesis, cell viability, cell morphology, response to growth stimuli, and proliferation potential. Hydrogen peroxide-treated cells showed an increased DNA unwinding 50% greater than that for untreated controls. These DNA strand breaks appeared to be almost completely rejoined by 30 min following removal of the cells from a 2-h exposure. The 40 μM exposure did not produce a significantly lower DNA synthesis rate than the control, it responded to growth factor stimuli, and it replicated as did the control cells after removal of H2O2. The 400 μM H2O2severely affected DNA synthesis and replication, as shown by increased cell size and by markedly reduced clonal cell growth. The cells did not respond to growth stimulation by serum or growth factors and lost irreversibly the capacity to proliferate. The responses of LE cells from old adlib diet (AL) and calorically restricted (CR) mice to H2O2were significantly different. Exposure of LE cells to 20, 40, or 100 μM H2O2for 1 h induces a significant loss of cellular proliferation in cells from old AL mice. LE cells from long-term CR mice of the same strain and age were more resistant to oxidative damage at all three concentrations of H2O2than those of both old and young AL mice and showed a significantly higher proliferation potential following treatment. It is concluded that CR results in superior resistance to reactive oxygen radicals in the lens epithelium.  相似文献   

8.
9.
Perturbations to Fe species contributing to generation of DNA single-strand breaks (SSBs) and inhibition of growth by H2O2 were studied in HL-60 cells made Fe-deficient by 24 h pretreatment with 144 μM bathophenanthroline disulfonic acid and 400 μM ascorbic acid (Free Radic. Biol. Med. 20: 399; 1996). The diffusion distance for SSB generation (d) in Fe-deficient cells, measured via inhibition with the 0OH scavenger Me2SO using alkaline elution, was 6.5 nm. This is similar to the d for Fe-normal cells reported previously. After 1 and 3 h in fresh RPMI 1640 medium containing 10% serum, SSB generation increased from 29 to 56 and 93% of control Fe-normal cells, respectively. The d of the major contributor to SSB generation at these two treatment times was 1.9 nm. This d resembled the d for Fe-ATP as determined in isolated Ehrlich cell nuclei. The association of ATP with Fe2+ was further supported by decreased SSB generation in cells in which ATP synthesis was inhibited. In contrast to SSB generation, H2O2-induced inhibition of growth of Fe-deficient cells treated immediately after placing in fresh medium was not appreciably different from Fe-normal cells. However, after 3 h, an approximately 70% greater concentration of H2O2 than for control, Fe-normal cells was required to inhibit growth. This increase in H2O2 concentration was associated with decreased generation of SSBs by H2O2 in isolated HL-60 cell nuclei. Thus, Fe bound to nuclear structures is more closely associated with inhibition of cell growth than apparent Fe-ATP species. In parallel experiments, changes in total cellular Fe assayed by ashing and complexing with ferrozine were consistent with a non-transferrin mode of acquisition. These short-term changes appear due to processes accompanying reestablishment of the Fe content and distribution normally observed during long-term growth.  相似文献   

10.
The ability of bovine blastocysts to recover after cryopreservation and thawing procedures is often assessed by evaluating their re-expansion during in vitro co-culture. However, the influence of factors such as feeder cell type and gas atmosphere on blastocyst survival and evolution have never been considered. This study therefore compared two cell co-culture systems and two different gas atmospheres to assess survival of in vitro produced bovine blastocysts after vitrification. Day-7 blastocysts (n=181) were vitrified in a mixture of 25% glycerol/25% ethylene glycol. After warming and dilution, they were co-cultured either on Buffalo rat liver cells (BRL CC cell line) or on granulosa cells (GR CC primary culture) in TCM 199 supplemented with 10% FCS and under an atmosphere of 5% or 20% O2. Surviving and hatching rates were recorded at 24 h intervals for 3 days. After 72 h of culture, surviving blastocysts were treated for differential counting of inner cell mass (ICM) and trophectoderm cells. Blastocyst survival rates were higher when BRL and granulosa co-culture were performed under 20% oxygen as compared to 5% oxygen (20% O2: 62% vs. 5% O2: 25%, P<0.0001). However, the quality of blastocysts surviving in the granulosa co-culture condition was lower under 20% O2 than under 5% O2 as indicated by lower total and trophectoderm cell numbers (respectively 79±6 and 56±6 at 20% O2 vs. 100±10 and 74±10 at 5% O2, P<0.05), by an altered ICM/trophectoderm ratio (20% O2: 28% vs. 5% O2: 23%, P<0.05), by a higher total nuclear fragmentation (20% O2: 3.7% vs. 5% O2: 1.5%, P<0.05) and a trend to decreased hatching (20% O2: 32% vs. 5% O2: 81%, P=0.07). Whereas, for BRL co-culture, 20% O2 yielded higher quality blastocysts than 5% O2 as evaluated by higher ICM and trophectoderm cell numbers (19±1 and 71±5 at 20% O2 vs. 15±2 and 48±9 at 5% O2, respectively, P<0.05), by lower nuclear fragmentation in the ICM (20% O2: 2.2% vs. 5% O2: 6.7%, P<0.05). In conclusion, co-culture conditions may influence blastocysts survival and quality after cryopreservation. In our conditions, co-culture with BRL cells under 20% O2 seems to be the best combination to evaluate blastocyst survival and quality after vitrification.  相似文献   

11.
Summary Hemicyst formation is considered a manifestation of either transepithelial solute and fluid movement or secretory activity in culture. This study shows that hemicyst formation in postconfluent monolayers of rhesus monkey kidney (LLC-MK2) cells is modulated by the dissolved oxygen concentration (PO2) of the culture medium. Either daily replacement of serum-free medium or displacement of the gas phase with 18% vol/vol O2 (initial medium PO2=125 to 135 mm Hg) enhances formation of hemicysts. Use of 30% O2 (medium PO2≊175 mm Hg) does not further increase the incidence, but neither 10% O2 (medium PO2=90 to 95 mm Hg) nor 1% O2 (medium PO2=35 to 50 mm Hg), the approximate range of dissolved oxygen values in blood, supports hemicyst formation unless cultures are gently rocked to disrupt diffusion gradients. Phase photomicrography of living cultures shows that the surface of a turgid hemicyst is furrowed, and cinephoto-micrography reveals that the walls vibrate subtly. When hypoxic conditions (0 to 1% O2) are introduced this vibration ceases within 2 to 3 h, whereas collapse and disappearance of turgid hemicysts requires 18 to 20 h, seems virtually synchronous, and is reversible. Hemicysts form in a broad osmotic range, and increased electrolyte concentration increases the incidence. Hemicysts persist in localyy dense areas when cell-free strips are etched in the postconfluent monolayer; no DNA synthesis is detected under these conditions, but two-dimensional cell spreading into the denuded area is seen along the edge of the wound. We conclude that the dissolved oxygen supply in the cellular microenvironment modulates functional expression by differentiated kidney epithelial cells in culture and that increased electrolyte concentration also enhances expression of this phenotypic marker.  相似文献   

12.
Oxygen enhances in vivo myocardial synthesis of poly(ADP-ribose)   总被引:1,自引:0,他引:1  
In vivo synthesis of poly(ADP-ribose) is demonstrated in cultured chick embryo heart cells. Cells grown with (14C) ribose incorporate 28 – 31% more radioactivity into poly(ADP-ribose) in 20% O2 (in which they divide more slowly) than in 5% O2. Reaction product was identified as poly(ADP-ribose) by its insensitivity to various enzymes and by its digestion with snake venom phosphodiesterase to phosphoribosyl-AMP and AMP. Poly(ADP-ribose) glycohydrolase activity was similar in 20% and 5% O2. Thus, both poly(ADP-ribose) polymerase activity (shown in an earlier study) and poly(ADP-ribose) increase in cells growing more slowly in 20% vs 5% O2. These data suggest that poly(ADP-ribose) metabolism participates in the regulation of heart cell division by O2.  相似文献   

13.
14.
15.
Exposure of cultured bovine pulmonary artery endothelial cells to varying levels of hypoxia (10% or 0% O2) for 4 hours resulted in a significant dose-dependent inhibition in endothelial prostacyclin synthesis (51% and 98%, at the 10% and 0% O2 levels respectively, p <0.05, compared to 21% O2 exposure values). Release of 3H-arachidonic acid from cellular pools was not altered by hypoxia. Some of the cells were incubated with arachidonic acid (20 μM for 5 min) or PGH2 (4 μM for 2 min) immediately after exposure. Endothelium exposed to 0% O2, but not to 10% O2, produced significantly less prostacyclin after addition of either arachidonic acid (25 ± 5% of 21% O2 exposure values, n=6, p <0.01) or PGH2 (31 ± 3% of 21% O2 exposure values, n=6, p <0.05). These results suggest that hypoxia inhibits cyclooxygenase at the 10% O2 level and both cyclooxygenase and prostacyclin synthetase enzymes at the 0% O2 exposure levels. Exposure of aortic endothelial cells resulted in a 44% inhibition of prostacyclin at the 0% exposure level. No significant alteration in prostacyclin production was found in pulmonary vascular smooth muscle cells exposed to hypoxia. These data suggest that the increased prostacyclin production reported in lungs exposed to hypoxia is not due to a direct effect of hypoxia on the main prostacyclin producing cells of the pulmonary circulation.  相似文献   

16.
Summary Primary cultures of vascular smooth muscle cells, isolated from rat aorta, were grown under normoxic (20% O2) and mildly hypoxic (5 % O2) conditions. Cells from both conditions were compared for growth characteristics, morphology, protein synthesis, lysosomal enzyme activity, and oxygen consumption. In no case was a consistently significant difference observed. These observations indicate that these cells can adapt or are adapted to mildly hypoxic conditions. Moreover, these results may indicate that the culture of vascular smooth muscle cells in mild hypoxia represents a closer approximation of in vivo growth conditions for these cells.Supported by HL19242  相似文献   

17.
During soil waterlogging, plants experience O2 deficits, elevated ethylene, and high CO2 in the root‐zone. The effects on chickpea (Cicer arietinum L.) and faba bean (Vicia faba L.) of ethylene (2 μL L?1), CO2 (2–20% v/v) or deoxygenated stagnant solution were evaluated. Ethylene and high CO2 reduced root growth of both species, but O2 deficiency had the most damaging effect and especially so for chickpea. Chickpea suffered root tip death when in deoxygenated stagnant solution. High CO2 inhibited root respiration and reduced growth, whereas sugars accumulated in root tips, of both species. Gas‐filled porosity of the basal portion of the primary root of faba bean (23%, v/v) was greater than for chickpea (10%), and internal O2 movement was more prominent in faba bean when in an O2‐free medium. Ethylene treatment increased the porosity of roots. The damaging effects of low O2, such as death of root tips, resulted in poor recovery of root growth upon reaeration. In conclusion, ethylene and high CO2 partially inhibited root extension in both species, but low O2 in deoxygenated stagnant solution had the most damaging effect, even causing death of root tips in chickpea, which was more sensitive to the low O2 condition than faba bean.  相似文献   

18.
We analyzed growth data from model aspen (Populus tremuloides Michx.) forest ecosystems grown in elevated atmospheric carbon dioxide ([CO2]; 518 μL L?1) and ozone concentrations ([O3]; 1.5 × background of 30–40 nL L?1 during daylight hours) for 7 years using free‐air CO2 enrichment technology to determine how interannual variability in present‐day climate might affect growth responses to either gas. We also tested whether growth effects of those gasses were sustained over time. Elevated [CO2] increased tree heights, diameters, and main stem volumes by 11%, 16%, and 20%, respectively, whereas elevated ozone [O3] decreased them by 11%, 8%, and 29%, respectively. Responses similar to these were found for stand volume and basal area. There were no growth responses to the combination of elevated [CO2+O3]. The elevated [CO2] growth stimulation was found to be decreasing, but relative growth rates varied considerably from year to year. Neither the variation in annual relative growth rates nor the apparent decline in CO2 growth response could be explained in terms of nitrogen or water limitations. Instead, growth responses to elevated [CO2] and [O3] interacted strongly with present‐day interannual variability in climatic conditions. The amount of photosynthetically active radiation and temperature during specific times of the year coinciding with growth phenology explained 20–63% of the annual variation in growth response to elevated [CO2] and [O3]. Years with higher photosynthetic photon flux (PPF) during the month of July resulted in more positive growth responses to elevated [CO2] and more negative growth responses to elevated [O3]. Mean daily temperatures during the month of October affected growth in a similar fashion the following year. These results indicate that a several‐year trend of increasingly cloudy summers and cool autumns were responsible for the decrease in CO2 growth response.  相似文献   

19.
Two cultivars of spring wheat (Triticum aestivum L. cvs. Alexandria and Hanno) and three cultivars of winter wheat (cvs. Riband, Mercia and Haven) were grown at two concentrations of CO2 [ambient (355 pmol mol?1) and elevated (708 μmol mol?1)] under two O3 regimes [clean air (< 5 nmol mol?1 O3) and polluted air (15 nmol mol?1 O3 at night rising to a midday maximum of 75 nmol mol?1)] in a phytotron at the University of Newcastle-upon-Tyne. Between the two-leaf stage and anthesis, measurements of leaf gas-exchange, non-structural carbohydrate content, visible O3 damage, growth, dry matter partitioning, yield components and root development were made in order to examine responses to elevated CO2 and/or O3. Growth at elevated CO2 resulted in a sustained increase in the rate of CO2 assimilation, but after roughly 6 weeks' exposure there was evidence of a slight decline in the photosynthetic rate (c.-15%) measured under growth conditions which was most pronounced in the winter cultivars. Enhanced rates of CO2 assimilation were accompanied by a decrease in stomatal conductance which improved the instantaneous water use efficiency of individual leaves. CO2 enrichment stimulated shoot and root growth to an equivalent extent, and increased tillering and yield components, however, non-structural carbohydrates still accumulated in source leaves. In contrast, long-term exposure to O3 resulted in a decreased CO2 assimilation rate (c. -13%), partial stomatal closure, and the accumulation of fructan and starch in leaves in the light. These effects were manifested in decreased rates of shoot and root growth, with root growth more severely affected than shoot growth. In the combined treatment growth of O3-treated plants was enhanced by elevated CO2, but there was little evidence that CO2 enrichment afforded additional protection against O3 damage. The reduction in growth induced by O3 at elevated CO2 was similar to that induced by O3 at ambient CO2 despite additive effects of the individual gases on stomatal conductance that would be expected to reduce the O3 flux by 20%, and also CO2-induced increases in the provision of substrates for detoxification and repair processes. These observations suggest that CO2 enrichment may render plants more susceptible to O3 damage at the cellular level. Possible mechanisms are discussed.  相似文献   

20.
In this study, we examined the impact of 3-day hypoxia of different degrees on the viability, proliferation, and secretory activity of endothelial cells from human umbilical vein (HUVEC). A gas mixture of three components was used (%): 1) 10 O2, 5 CO2, and 85 Ar; 2) 5 O2, 5 CO2, and 80 Ar; and 3) 1 O2, 5 CO2, and 94 Ar. Cells cultivated in a CO2 incubator in atmospheric oxygen (21% O2) served as control. It was found that 3-day HUVEC cultivation at 1% O2 increased NO synthesis; enhanced secretion of endothelin-1, IL-6, IL-8, TNF-alpha, sVCAM-1, sE-cadherin, sE-selectin, VEGF-A, and bFGF; and inhibited proliferation. HUVEC cultivated under 10% O2 and 5% O2 exhibited the lowest level of basal secretion of these substances and increased proliferative activity. These cells cultivated under conditions of atmospheric oxygen for 3 days displayed activated secretion of NO, IL-6, IL-8, and von Willebrand factor; the activation was higher than at 10% O2 and 5% CO2. Thus, the gaseous medium with reduced oxygen content (5%) is a more physiological condition for HUVEC cultivation. An increase in the amount of oxygen up to the atmospheric level causes endotheliocyte activation; the cells exhibit the features of endothelial dysfunction. Oxygen content reduced to 1% induces endothelial dysfunction and reduced proliferative potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号