首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymorphonuclear leukocytes (PMN) have been identified as preferred target cells for Escherichia coli hemolysin in human blood (Bhakdi, S., Greulich, S., Muhly, M., Ebersp?cher, B., Becker, H., Thiele, A., and Hugo, F. (1989) J. Exp. Med. 169, 737-754). Leukotriene and 5-hydroxyeicosatetraenoic acid generation was investigated in human PMN challenged with E. coli hemolysin in the absence or presence of free arachidonic acid or eicosapentaenoic acid (EPA). In the absence of exogenous free fatty acids, E. coli hemolysin (0.01-10 hemolytic units/ml) induced moderate generation of leukotriene B4 (LTB4) and its omega-oxidation products. The presence of free arachidonic acid (10 microM) during E. coli hemolysin (0.1 hemolytic unit/ml) challenge evoked the generation of large quantities of these products (greater than 100 pmol/1.5 x 10(7) PMN). In parallel, large amounts of 5-hydroxyeicosatetraenoic acid and nonenzymatic LTA4 hydrolysis products appeared. Product release peaked or plateaued 5-10 min after E. coli hemolysin challenge. The presence of exogenous EPA upon E. coli hemolysin challenge resulted in the exclusive generation of LTB5 and metabolites, LTA5 decay products and 5-hydroxyeicosapentaenoic acid. Dose and time dependences corresponded to those with arachidonic acid provision, and the total of EPA-derived products surpassed that of arachidonic acid metabolites in corresponding experiments approximately 2-fold. Increasing the time between free fatty acid provision and E. coli hemolysin challenge resulted in a rapid decline in the generation of arachidonic acid or EPA metabolites. Thus, subhemolytic doses of E. coli hemolysin evoke marked PMN eicosanoid generation that is dependent on exogenous free fatty acid supply, with total amounts approximating those found in calcium ionophore-stimulated neutrophils.  相似文献   

2.
Dietary intake of omega-3 fatty acids has been positively correlated with cardiovascular and neuropsychiatric health in several studies. The high seafood intake by the Japanese and Greenland Inuit has resulted in low ratios of the omega-6 fatty acid arachidonic acid (AA, 20:4n-6) to eicosapentaenoic acid (EPA, 20:5n-3), with the Japanese showing AA:EPA ratios of approximately 1.7 and the Greenland Eskimos showing ratios of approximately 0.14. It was the objective of this study to determine the effect of supplementation with high doses (60 g) of flax and fish oils on the blood phospholipid (PL) fatty acid status, and AA/EPA ratio of individuals with Attention Deficit Hyperactivity Disorder (ADHD), commonly associated with decreased blood omega-3 fatty acid levels. Thirty adults with ADHD were randomized to 12 weeks of supplementation with olive oil (< 1% omega-3 fatty acids), flax oil (source of alpha-linolenic acid; 18:3n-3; alpha-LNA) or fish oil (source of EPA and docosahexaenoic acid; 22:6n-3; DHA). Serum PL fatty acid levels were determined at baseline and at 12 weeks. Flax oil supplementation resulted in an increase in alpha-LNA and a slight decrease in the ratio of AA/EPA, while fish oil supplementation resulted in increases in EPA, DHA and total omega-3 fatty acids and a decrease in the AA/EPA ratio to values seen in the Japanese population. These data suggest that in order to increase levels of EPA and DHA in adults with ADHD, and decrease the AA/EPA ratio to levels seen in high fish consuming populations, high dose fish oil may be preferable to high dose flax oil. Future study is warranted to determine whether correction of low levels of long-chain omega-3 fatty acids is of therapeutic benefit in this population.  相似文献   

3.
Diets that are enriched with fish oil have been shown to alter arachidonic acid metabolism via the cyclooxygenase pathway. Recently it has been shown that one of the major component fatty acids of fish oil, eicosapentaenoate (EPA), is a substrate for the leukotriene B (LTB) pathway when added exogenously to human neutrophils in vitro. We fed a diet that contained 8-10gm/day of EPA to four human subjects for three weeks and compared the arachidonate metabolism of their neutrophils to the same functions while the subjects were on their usual diet. The fish oil-supplementation increased neutrophil EPA content from undetectable levels to 7.4 +/- 2.4% (p less than 0.01, expressed as % of total fatty acid), and decreased arachidonate from 15.4 +/- 2.3% to 12.8 +/- 2.3% (p less than 0.05). Leukotriene B5 was identified as a metabolite during the fish oil-diet by its chromatographic profile and mass spectrum. During the experimental diet LTB4, decreased from 160 +/- 37 ng/10(7) neutrophils to 120 +/- 12 (p less than 0.05), and LTB5 increased from 0 to 39 +/- 9 ng/10(7) neutrophils (p less than 0.005). The diet had no effect on neutrophil aggregation or adherence to nylon fibers.  相似文献   

4.
The anti-inflammatory properties of n-3 polyunsaturated fatty acids (n-3 PUFA) have suggested a potential role of these nutrients in dietary modification for prevention of allergic disease in early life. As oxidative stress is known to modify antigen presenting cell (APC) signalling and resulting immune responses, we examined the effects of maternal n-3 PUFA supplementation in pregnancy on markers of oxidative stress and APC function in neonates at high risk of allergy. Eighty-three pregnant atopic women were randomised to receive 4 g daily of either fish oil (n = 40) or olive oil (n = 43) capsules in a controlled trial from 20 weeks gestation until delivery. Plasma (cord blood) and urinary F2-isoprostanes were measured as markers of lipid peroxidation. Cord erythrocyte fatty acids and markers of APC function (HLA-DR expression and cytokine responses) were measured and related to levels of plasma F2-isoprostanes. Maternal fish oil supplementation lowered plasma (p < 0.0001) and urinary (p = 0.06) F2-isoprostanes. HLA-DR expression on APC was not different between the groups. In multiple regression analysis, 28.8% of the variance in plasma F2-isoprostanes was explained by positive relationships with erythrocyte arachidonic acid (AA) and monocyte HLA-DR expression and a negative relationship with erythrocyte eicosapentaenoic acid (EPA). This study shows that maternal supplementation with fish oil can attenuate neonatal lipid peroxidation. Clinical follow-up of these infants will help to determine if there are sustained effects on postnatal oxidative stress and expression of allergic disease.  相似文献   

5.
Recent studies have shown that ingestion of eicosapentaenoic acid (EPA) in man results in the formation of 'trienoic' prostanoids which amy partly explain the potent antithrombotic/antiatherogenic properties of long-chain polyunsaturated n-3 fatty acids (PUFAs). However, endogenous formation of cyclooxygenase metabolites of EPA has not been demonstrated in an animal model, and in vitro studies indicate a clear species difference in the conversion of EPA to PGI3. Thus, in the present study, the in vivo formation of PGI3 following long-term dietary tuna fish oil supplementation was investigated in a small non-human primate - the marmoset monkey (Callithrix jacchus). The excretion of major urinary metabolites 2,3-dinor-6-keto-PGF1 alpha (PGI2-M) and delta 17-2,3-dinor-6-keto-PGF1 alpha (PGI3-M) was estimated as an index of total body synthesis of PGI2 and PGI3, respectively. Following extraction, dinor prostanoid metabolites were separated by capillary gas chromatography and identified by negative ion chemical ionization mass spectrometry. Supplementation of the standard (reference) diet with either sheep fat or sunflower seed oil did not alter the body production of PGI2-M. However, following the tuna fish oil-enriched diet, there occurred not only an increase in urinary PGI2-M (reference 70.7 +/- 9.0; tuna fish oil 115.5 +/- 12.1 ng/g creatinine, P less than 0.05), but also a considerable formation of PGI3-M (62.9 +/- 5.3 ng/g creatinine), which was not seen in any other dietary group; in addition, the urinary level of immmunoreactive 2,3-dinor-thromboxane B2/3 was reduced after ingestion of tuna fish oil. These urinary changes were accompanied by a rise in plasma phospholipid-bound EPA and docosahexaenoic acid (DHA). In addition, tuna fish oil supplementation resulted in a significant reduction in plasma cholesterol (53%) and triacylglycerols (44%). The present study provides for the first time experimental evidence for the in vivo formation of PGI3 in an animal model and also confirms the earlier observations in man following dietary fish oil supplementation.  相似文献   

6.
Potential impact of omega-3 fatty acids, as contained in fish oil, on immunological function has been suggested because observations of reduced inflammatory diseases in Greenland Inuit were published. A fish oil-based lipid emulsion has recently been approved for parenteral nutrition in many countries. We investigated the influence of a short infusion course of fish oil-based (omega-3) vs conventional (omega-6) lipid emulsion on monocyte function. In a randomized design, twelve healthy volunteers received omega-3 or omega-6 lipid infusion for 48 h, with cross-over repetition of the infusion course after 3 mo. Fatty acid profiles, monocyte cytokine release and adhesive monocyte-endothelium interaction were investigated. Resultant omega-6 lipid emulsion increased plasma-free fatty acids including arachidonic acid, whereas the omega-3/omega-6 fatty acid ratio in monocyte membranes remained largely unchanged. It also caused a tendency toward enhanced monocyte proinflammatory cytokine release and adhesive monocyte-endothelium interaction. In contrast, omega-3 lipid emulsion significantly increased the omega-3/omega-6 fatty acid ratio in the plasma-free fatty acid fraction and in monocyte membrane lipid pool, markedly suppressing monocyte generation of TNF-alpha, IL-1, IL-6, and IL-8 in response to endotoxin. In addition, it also significantly inhibited both monocyte-endothelium adhesion and transendothelial monocyte migration, although monocyte surface expression of relevant adhesive molecules (CD11b, CD18, CD49 days, CCR2) was unchanged. Although isocaloric, omega-3 and omega-6 lipid emulsions exert differential impact on immunological processes in humans. In addition to its nutritional value, fish oil-based omega-3 lipid emulsion significantly suppresses monocyte proinflammatory cytokine generation and features of monocyte recruitment.  相似文献   

7.
We have studied the effects of semisynthetic diets containing 5% by weight (12% of the energy) of either olive oil (70% oleic acid, OA) or corn oil (58% linoleic acid), or fish oil (Max EPA, containing about 30% eicosapentaenoic, EPA C 20:5 n-3, plus docosahexaenoic, DHA C 22:6 n-3, acids, and less than 2% linoleic acid), fed to male rabbits for a period of five weeks, on plasma and platelet fatty acids and platelet thromboxane formation. Aim of the study was to quantitate the absolute changes of n-6 and n-3 fatty acid levels in plasma and platelet lipid pools after dietary manipulations and to correlate the effects on eicosanoid-precursor fatty acids with those on platelet thromboxane formation. The major differences were found when comparing the group fed fish oil and depleted linoleic acid vs the other groups. The accumulation of n-3 fatty acids in various lipid classes was associated with modifications in the distribution of linoleic acid and arachidonic acid in different lipid pools. In platelets maximal incorporation of n-3 fatty acids occurred in phosphatidyl ethanolamine, which also participated in most of the total arachidonic acid reduction occurring in platelets, and linoleic acid, more than archidonic acid, was replaced by n-3 fatty acids in various phospholipids. The archidonic acid content of phosphatidyl choline was unaffected and that of phosphatidyl inositol only marginally reduced. Thromboxane formation by thrombin stimulated platelets did not differ among the three groups, and this may be related to the minimal changes of arachidonic acid in phosphatidyl choline and phosphatidyl inositol.  相似文献   

8.
Monocyte-endothelium interaction is a fundamental process in many acute and chronic inflammatory diseases. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are fish oil-derived alternative (omega-3) precursor fatty acids implicated in the suppression of inflammatory events. We investigated their influence on rolling and adhesion of monocytes to human umbilical vein endothelial cells (HUVEC) under laminar flow conditions in vitro. Exposure of HUVEC to tumor necrosis factor (TNF-alpha) strongly increased 1) surface expression of intercellular adhesion molecule (ICAM-1), vascular cell adhesion molecule (VCAM-1), and E-selectin, 2) platelet-activating factor (PAF) synthesis as assessed by thrombin challenge, and 3) rate of rolling and adhesion of monocytes. Preincubation of HUVEC with EPA or DHA markedly suppressed PAF synthesis, monocyte rolling, and adherence, whereas expression of endothelial adhesion molecules was unchanged. Also, PAF receptor antagonists markedly suppressed the adhesion rate of monocytes, and EPA or DHA revealed no additional inhibitory capacity. In contrast, arachidonic acid partially reversed the effect of the antagonist. We conclude that omega-3 fatty acids suppress rolling and adherence of monocytes on activated endothelial cells in vitro by affecting endothelial PAF generation.  相似文献   

9.
In the present study, we changed the fatty acid profile in blood and platelet membranes by dietary manipulation, and examined the effect on platelet aggregation in rats. Fifty-five rats were divided into five groups and fed for 56 days with 1% cholesterol and different types of fatty acid-rich diets: basal, lard, lard + fish oil, soybean oil, and soybean oil + fish oil. a decrease in serum arachidonic acid (20:4, omega-6, AA) and an increase in serum eicosapentaenoic acid (20:5, omega-3, EPA) were found in all experimental dietary groups fed with refined fish oil. Similar changes in the polyunsaturated fatty acids were also found in the platelet membrane phospholipids. Platelet aggregation, quantitated by the slope and height of the aggregation curve induced by different concentrations of ADP in a platelet aggregometer, was inhibited in all groups fed with refined fish oil. This inhibition of platelet aggregation may be related to an increase in the ratio of EPA and AA in the platelet membrane phospholipids after dietary manipulation. The differences in the platelet aggregation and thromboxane B2 (TXB2) concentration between the lard and the lard + fish oil groups were more profound than that between the soybean oil and the soybean oil + fish oil group. However, the malondialdehyde (MDA) concentration revealed no significant differences between the five groups.  相似文献   

10.
It has been demonstrated that the alkenylacyl class of ethanolamine phospholipid (PE) represents one of the major forms of eicosapentaenoic acid (EPA)-containing phospholipid in the circulating platelets isolated from human subjects consuming a fish oil concentrate. Since the alkenylacyl PE from human platelets is enriched in the eicosanoid precursor arachidonic acid (AA) and the n-6 polyunsaturate adrenic acid (AdA), it was of interest to study changes in alkenylacyl PE fatty acid composition upon fish oil supplementation. Healthy volunteers were given 20 capsules of MaxEPA daily (3.6 g of EPA plus 2.4 g of docosahexaenoic acid, DHA) for 6 weeks followed by a 6-week recovery period. Washed platelet suspensions were prepared and the fatty acid compositions of the phospholipid components were evaluated by thin-layer and gas-liquid chromatography at weeks 0, 3, 6, 9, and 12. Fatty acid composition changes were more pronounced in the alkenylacyl PE than in other platelet phospholipids as a result of fish oil consumption. The alkenylacyl PE exhibited a greater drop (by 20.3 mol%, i.e., from 72.0 to 51.7 mol%) in AA than diacyl PE (by 1.6 mol%) or total (predominantly diacyl) choline phospholipids (PC) (by 4.5 mol%). In alkenylacyl PE, the predominant reservoir of AdA in human platelet phospholipid, a dramatic reduction in the level of AdA also resulted with MaxEPA supplementation (from 7.9 to 3.1 mol%); diacyl PE and total PC decreased by 0.6 and 0.3 mol%, respectively. With respect to the n-3 fatty acids, EPA rose by 12.5 mol% in alkenylacyl PE, compared to only 3.8 and 2.5 mol% in diacyl PE and total PC, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Epidemiological evidence suggests that dietary consumption of the long chain omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), commonly found in fish or fish oil, may modify the risk for certain neuropsychiatric disorders. As evidence, decreased blood levels of omega-3 fatty acids have been associated with several neuropsychiatric conditions, including Attention Deficit (Hyperactivity) Disorder, Alzheimer's Disease, Schizophrenia and Depression. Supplementation studies, using individual or combination omega-3 fatty acids, suggest the possibility for decreased symptoms associated with some of these conditions. Thus far, however, the benefits of supplementation, in terms of decreasing disease risk and/or aiding in symptom management, are not clear and more research is needed. The reasons for blood fatty acid alterations in these disorders are not known, nor are the potential mechanisms by which omega-3 fatty acids may function in normal neuronal activity and neuropsychiatric disease prevention and/or treatment. It is clear, however, that DHA is the predominant n-3 fatty acid found in the brain and that EPA plays an important role as an anti-inflammatory precursor. Both DHA and EPA can be linked with many aspects of neural function, including neurotransmission, membrane fluidity, ion channel and enzyme regulation and gene expression. This review summarizes the knowledge in terms of dietary omega-3 fatty acid intake and metabolism, as well as evidence pointing to potential mechanisms of omega-3 fatty acids in normal brain functioning, development of neuropsychiatric disorders and efficacy of omega-3 fatty acid supplementation in terms of symptom management.  相似文献   

12.
Summary Small amounts of dietary n-3 fatty acids can have dramatic physiological effects, including the reduction of plasma triglycerides and an elevation of cellular eicosapentanoic (EPA) and docosahexanoic acids (DHA) at the expense of arachidonic acid (AA). We investigated the effects of alterations in the fatty acid compositions of cardiac sarcoplasmic reticulum (CSR) produced by dietary manipulation on the calcium pump protein that is required for energy dependent calcium transport. CSR was isolated from rats fed menhaden oil, which is rich in n-3 fatty acids, and from control animals that were given corn oil. Relative to control membranes, those isolated from rats fed menhaden oil, had a lower content of saturated phospholipids, an increased DHA/AA ratio, and an increased ratio of n-3 to n-6 fatty acids. These changes were associated with a 30% decrease in oxalate-facilitated, ATP-dependent calcium uptake and concomitant decreased Ca-ATPase activity in the membranes from the animals fed menhaden oil. In contrast, there was no alteration in active pump sites as measured by phosphoenzyme formation. Thus, the CSR Ca-ATPase function can be altered by dietary interventions that change the composition, and possibly structure, of the phospholipid membranes thereby affecting enzyme turnover.  相似文献   

13.
The effect of dietary polyunsaturated fatty acids and alpha-tocopherol supplementation on erythrocyte lipid peroxidation and immunocompetent cells in mice was studied comparatively using seven dietary oils (15% oil/diet, w/w) including fish oil rich in eicosapentaenoic acid (EPA, 20:5, n-3) and docosahexaenoic acid (DHA, 22:6, n-3). A 43% increase in spleen weight, about twice as many spleen cells and no change in the subpopulations of spleen cells, as well as a significant depression of mitogen-induced blastogenesis of both T and B cells in the spleen were observed in mice fed fish oil for 30 days in comparison with soybean oil diet-fed mice. In the fish oil diet-fed mice, membranous lipid hydroperoxide (hydroperoxides of phosphatidylcholine and phosphatidylethanolamine) accumulation as a marker of oxidative senescence in red blood cells (RBC) was 2.7-3.5 times higher than that in mice fed soybean oil, although there was no difference in the plasma phosphatidylcholine hydroperoxide concentration. In spite of the supplementation of alpha-tocopherol to up to 10 times the level in the basal diet, the degeneration of spleen cells and the stimulated oxidative senescence of RBC found by the fish oil feeding could not be prevented. The results suggest that oral intake of excess polyunsaturated fatty acids, i.e. EPA and DHA, in a fish oil diet can lead to acceleration of membrane lipid peroxidation resulting in RBC senescence linked to the lowering of immune response of spleen cells, and that supplementation of alpha-tocopherol as antioxidant does not always effectively prevent such oxidative degeneration as observed in spleen cells and RBC in vivo.  相似文献   

14.
Eicosapentaenoic acid (EPA, C20:5, omega-3) is the most abundant polyunsaturated fatty acid (PUFA) in fish oil. Recent studies suggest that the beneficial effects of fish oil are due, in part, to the generation of various free radical-generated non-enzymatic bioactive oxidation products from omega-3 PUFAs, although the specific molecular species responsible for these effects have not been identified. Our research group has previously reported that pro-inflammatory prostaglandin F2-like compounds, termed F2-isoprostanes (IsoPs), are produced in vivo by the free radical-catalyzed peroxidation of arachidonic acid and represent one of the major products resulting from the oxidation of this PUFA. Based on these observations, we questioned whether F2-IsoP-like compounds (F3-IsoPs) are formed from the oxidation of EPA in vivo. Oxidation of EPA in vitro yielded a series of compounds that were structurally established to be F3-IsoPs using a number of chemical and mass spectrometric approaches. The amounts formed were extremely large (up to 8.7 + 1.0 microg/mg EPA) and greater than levels of F2-IsoPs generated from arachidonic acid. We then examined the formation of F3-IsoPs in vivo in mice. Levels of F3-IsoPs in tissues such as heart are virtually undetectable at baseline, but supplementation of animals with EPA markedly increases quantities up to 27.4 + 5.6 ng/g of heart. Interestingly, EPA supplementation also markedly reduced levels of pro-inflammatory arachidonate-derived F2-IsoPs by up to 64% (p < 0.05). Our studies provide the first evidence that identify F3-IsoPs as novel oxidation products of EPA that are generated in vivo. Further understanding of the biological consequences of F3-IsoP formation may provide valuable insights into the cardioprotective mechanism of EPA.  相似文献   

15.
Increased intake of fish oil rich in the omega-3 fatty acids eicosapentaenoic acid (EPA, C20:5 omega-3) and docosahexaenoic acid (DHA, C22:6 omega-3) reduces the incidence of human disorders such as atherosclerotic cardiovascular disease. However, mechanisms that contribute to the beneficial effects of fish oil consumption are poorly understood. Mounting evidence suggests that oxidation products of EPA and DHA may be responsible, at least in part, for these benefits. Previously, we have defined the free radical-induced oxidation of arachidonic acid in vitro and in vivo and have proposed a unified mechanism for its peroxidation. We hypothesize that the oxidation of EPA can be rationally defined but would be predicted to be significantly more complex than arachidonate because of the fact that EPA contains an addition carbon-carbon double bond. Herein, we present, for the first time, a unified mechanism for the peroxidation of EPA. Novel oxidation products were identified employing state-of-the-art mass spectrometric techniques including Ag(+) coordination ionspray and atmospheric pressure chemical ionization mass spectrometry. Predicted compounds detected both in vitro and in vivo included monocylic peroxides, serial cyclic peroxides, bicyclic endoperoxides, and dioxolane-endoperoxides. Systematic study of the peroxidation of EPA provides the basis to examine the role of specific oxidation products as mediators of the biological effects of fish oil.  相似文献   

16.
Fish oil omega-3 fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) protect against arrhythmia and sudden cardiac death by largely unknown mechanisms. Recent in vitro and in vivo studies demonstrate that arachidonic acid (AA) metabolizing cytochrome P450-(CYP) enzymes accept EPA and DHA as efficient alternative substrates. Dietary EPA/DHA supplementation causes a profound shift of the cardiac CYP-eicosanoid profile from AA- to EPA- and DHA-derived epoxy- and hydroxy-metabolites. CYP2J2 and other CYP epoxygenases preferentially epoxidize the ω-3 double bond of EPA and DHA. The corresponding metabolites, 17,18-epoxy-EPA and 19,20-epoxy-DHA, dominate the CYP-eicosanoid profile of the rat heart after EPA/DHA supplementation. The (ω-3)-epoxyeicosanoids show highly potent antiarrhythmic properties in neonatal cardiomyocytes, suggesting that these metabolites may specifically contribute to the cardioprotective effects of omega-3 fatty acids. This hypothesis is discussed in the context of recent findings that revealed CYP-eicosanoid mediated mechanisms in cardiac ischemia-reperfusion injury and maladaptive cardiac hypertrophy.  相似文献   

17.
We examined the influence of various dietary oils, including linseed and fish oil on the relative rates of leukotriene B4 (LTB4) and LTB5 production by rat peritoneal exudate cells in five rat strains. While there was an association between the membrane phospholipid levels of the fatty acid precursors (arachidonic acid (AA) and eicosapentaenoic acid (EPA)) and the rate of synthesis of their respective 5-lipoxygenase products (LTB4 and LTB5), the rate of LTB4 synthesis was a combined function of both AA and EPA levels. We observed a strong linear relationship (correlation coefficient = 0.99) between the ratio of EPA/AA in the cell membrane phospholipids and the ratio of LTB5/LTB4 produced by these cells in vitro; this association was independent of genetic (strain) variability and was independent of the source of EPA (dietary EPA or EPA endogenously synthesized from dietary alpha-linolenic acid).  相似文献   

18.
The effect of dietary polyunsaturated fatty acids and α-tocopherol supplementation on erythrocyte lipid peroxidation and immunocompetent cells in mice was studied comparatively using seven dietary oils (15% oil/diet, w/w) including fish oil rich in eicosapentaenoic acid (EPA, 20:5, n–3) and docosahexaenoic acid (DHA, 22:6, n–3). A 43% increase in spleen weight, about twice as many spleen cells and no change in the subpopulations of spleen cells, as well as a significant depression of mitogen-induced blastogenesis of both T and B cells in the spleen were observed in mice fed fish oil for 30 days in comparison with soybean oil diet-fed mice. In the fish oil diet-fed mice, membranous lipid hydroperoxide (hydroperoxides of phosphatidylcholine and phosphatidylethanolamine) accumulation as a marker of oxidative senescence in red blood cells (RBC) was 2.7–3.5 times higher than that in mice fed soybean oil, although there was no difference in the plasma phosphatidylcholine hydroperoxide concentration. In spite of the supplementation of α-tocopherol to up to 10 times the level in the basal diet, the degeneration of spleen cells and the stimulated oxidative senescence of RBC found by the fish oil feeding could not be prevented. The results suggest that oral intake of excess polyunsaturated fatty acids, i.e. EPA and DHA, in a fish oil diet can lead to acceleration of membrane lipid peroxidation resulting in RBC senescence linked to the lowering of immune response of spleen cells, and that supplementation of α-tocopherol as antioxidant does not always effectively prevent such oxidative degeneration as observed in spleen cells and RBC in vivo.  相似文献   

19.
The effect of dietary lipid on the fatty acid composition of muscle, testis and ovary of cultured sweet smelt, Plecoglossus altivelis, was investigated and compared with that of wild sweet smelt. Cultured fish were fed three different diets for 12 weeks: a control diet rich in docosahexaenoic acid (DHA, 22:6n-3) and eicosapentaenoic acid (EPA, 20:5n-3) (CO group); a diet deficient in DHA and EPA (DP group); and a diet rich in alpha-linolenic acid (ALA, 18:3n-3), but deficient in DHA and EPA (LP group). The fatty acid composition of muscle and gonad lipids was related with dietary fatty acids. Despite the difference in DHA and EPA content in the diets, muscles and gonads, respectively, contained almost equal levels of DHA and EPA in each CO and DP group. However, the muscle and gonad of the LP group showed a lower level of DHA than other groups, due to having the highest level of ALA. In the wild fish muscle, the DHA content was similar to that of CO and DP groups, but the EPA content showed the highest level in all groups. There was no difference in the muscle fatty acid proportions between male and female. On the other hand, the testes of cultured and wild fish were rich in DHA, EPA, docosapentaenoic acid and arachidonic acid, while ovaries were rich in oleic, palmitoleic, linoleic acids and ALA. Moreover, of all the groups, the fish fatty acid composition of the LP group was closest to that of wild fish. These results indicate that in the sweet smelt, tissue n-3 polyunsaturated fatty acids (PUFAs) greater than C20 can be synthesized from dietary precursors and special fatty acids are preferentially accumulated to the testis or ovary, respectively, to play different physiological functions.  相似文献   

20.
The objective was to determine the effect of long-term dietary supplementation of two types of fish oil on lipid composition and steroidogenesis in adult pig testis. Twenty-four Duroc boars, aged 204.5 ± 9.4 d (body weight 128.1 ± 16.7 kg) received daily 2.5 kg of an iso-caloric basal diet supplemented with: 1) 62 g of hydrogenated animal fat (AF); 2) 60 g of menhaden oil (MO) containing 16% of eicosapentaenoic acid (EPA) and 18% of docosahexaenoic acid (DHA); or 3) 60 g of tuna oil (TO) containing 7% of EPA and 33% of DHA. After these diets were consumed for 7 mo, testicular hormones, phospholipid content, and fatty acid composition of individual phospholipids in testis were determined. Body and reproductive organ weights were not significantly affected by dietary treatments. Testicular tissue from boars fed a TO diet, followed by those receiving MO and AF diets, had the lowest level of phosphatidylethanolamine (TO < MO < AF; P < 0.01) but the highest sphingomyelin (TO > MO > AF; P < 0.01). For each phospholipid, boars fed either the MO or TO diet had increased total omega-3 fatty acids, particularly DHA (P < 0.01), by reciprocal replacement of total omega-6 fatty acids (20:4n-6, 22:5n-6). The MO diet increased EPA more than the other diets. Testicular concentrations of testosterone and estradiol were lower in boars fed a TO diet than a MO diet (P < 0.02). In conclusion, long-term dietary supplementation of fish oil, regardless of the EPA/DHA ratio, modified the fatty acid compositions in testis and affected steroid production of healthy adult boars, which may represent a promising models for future studies on fertility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号