首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RAPD genome analysis of 53 species and cultivars of the genusLycopersicon (Tourn.) Mill. revealed their high genetic polymorphism (Tourn.) Mill., based on which their phylogenetic relationships were inferred. In total, 248 polymorphic DNA fragments were amplified. Intraspecific polymorphism was maximum (79%) in L. peruvianum and minimum (9%) in L. parviflorum. In general, genome divergence among cross-pollinating tomato species was substantially higher than in self-pollinating species. An UPGMA dendrogram constructed from the RAPD patterns was consisted with the Lycopersicon phylogeny inferred from the molecular data of RFLP, ISSR, and microsatellite analyses and with a classification based on morphological characters. The relationships of taxa within the genus Lycopersicon are discussed.  相似文献   

2.
Inter-simple sequence repeat (ISSR) analysis was for the first time used to study the genetic diversity and phylogenetic relationships in 54 wild accessions and cultivars of the genus Lycopersicon. Analysis involved 14 ISSR primers homologous to microsatellite repeats and containing additional selective anchor nucleotides. In total, 318 ISSR fragments were amplified for the wild and cultivated tomato genomes. The interspecific polymorphism revealed with the ISSR primers was 95.6%. Species-specific ISSR fragments were detected for each tomato species. The highest number (more than 20) of species-specific fragments were obtained for L. esculentum sensu lato, although the intraspecific variation of ISSR patterns was low. UPGMA cluster analysis was used to construct a dendrogram and to estimate the genetic distances between the species of the genus Lycopersicon; between populations of L. peruvianum, L. pimpinellifolium, and L. esculentum; and between tomato cultivars. The ISSR-based phylogeny was generally consistent with Lycopersicon taxonomy based on morphological and molecular evidence, suggesting the applicability of ISSR analysis for genotyping and phylogenetic studies in tomato.  相似文献   

3.
Species and recombination effects on DNA variability in the tomato genus   总被引:13,自引:0,他引:13  
Baudry E  Kerdelhué C  Innan H  Stephan W 《Genetics》2001,158(4):1725-1735
Population genetics theory predicts that strong selection for rare, beneficial mutations or against frequent, deleterious mutations reduces polymorphism at linked neutral (or weakly selected) sites. The reduction of genetic variation is expected to be more severe when recombination rates are lower. In outbreeding species, low recombination rates are usually confined to certain chromosomal regions, such as centromeres and telomeres. In contrast, in predominantly selfing species, the rarity of double heterozygotes leads to a reduced effective recombination rate in the whole genome. We investigated the effects of restricted recombination on DNA polymorphism in these two cases, analyzing five Lycopersicon species with contrasting mating systems: L. chilense, L. hirsutum, L. peruvianum, L. chmielewskii, and L. pimpinellifolium, of which only the first three species have self-incompatibility alleles. In each species, we determined DNA sequence variation of five single-copy genes located in chromosomal regions with either high or low recombination rate. We found that the mating system has a highly significant effect on the level of polymorphism, whereas recombination has only a weak influence. The effect of recombination on levels of polymorphism in Lycopersicon is much weaker than in other well-studied species, including Drosophila. To explain these observations, we discuss a number of hypotheses, invoking selection, recombination, and demographic factors associated with the mating system. We also provide evidence that L. peruvianum, showing a level of polymorphism (almost 3%) that is comparable to the level of divergence in the whole genus, is the ancestral species from which the other species of the genus Lycopersicon have originated relatively recently.  相似文献   

4.
七种蟋蟀基因组DNA的RAPD多态性研究(直翅目:蟋蟀总科)   总被引:20,自引:6,他引:14  
应用10种随机引物,对西北地区常见的3属7种蟋蟀进行RAPD多态性检测,共筛选出2种引物S142,S8可以对7个种扩增出清晰稳定的多态性片段,多态性片段共计58条,相对分子质量在320bp-2400bp之间。应用UPGMA(非加权配对算术平均法)对多态性片段进行聚类分析,构建树状图,推测系统发生关系。每一种蟋蟀均先各自聚为一类,棺头蟋属与油葫芦属间的遗传距离最小,亲缘关系最近,斗蟋属4个种间的亲缘关系较为复杂,明显分为2个支系,与传统分类并不一致。  相似文献   

5.
We have constructed a tomato genetic linkage map based on an intraspecific cross between two inbred lines of Lycopersicon esculentum and L. esculentum var. cerasiforme. The segregating population was composed of 153 recombinant inbred lines. This map is comprised of one morphological, 132 RFLP (restriction fragment length polymorphism, including 16 known-function genes), 33 RAPD (random amplified polymorphic DNA), and 211 AFLP (amplified fragment length polymorphism) loci. We compared the 3 types of markers for their polymorphism, segregation, and distribution over the genome. RFLP, RAPD, and AFLP methods revealed 8.7%, 15.8%, and 14.5% informative bands, respectively. This corresponded to polymorphism in 30% of RFLP probes, 32% of RAPD primers, and 100% of AFLP primer combinations. Less deviation from the 1:1 expected ratio was obtained with RFLP than with AFLP loci (8% and 18%, respectively). RAPD and AFLP markers were not randomly distributed over the genome. Most of them (60% and 80%, respectively) were grouped in clusters located around putative centromeric regions. This intraspecific map spans 965 cM with an average distance of 8.3 cM between markers (of the framework map). It was compared to other published interspecific maps of tomato. Despite the intraspecific origin of this map, it did not show any increase in length when compared to the high-density interspecific map of tomato.  相似文献   

6.
Syringa species: molecular marking of species and cultivars   总被引:1,自引:0,他引:1  
RAPD analysis was carried out with 22 accessions of the genus Syringa, including six species, one interspecific hybrid, and 15 cultivars. In total, 500 polymorphic fragments were detected; species-specific and cultivar-specific markers were identified. For the first time, genetic polymorphism and genome similarity coefficients were estimated and phylogenetic relationships were established for the genus Syringa.  相似文献   

7.
Random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) markers were used to assess the genetic diversity in 31 species of mangroves and mangrove associates. Four AFLP primer combinations resulted in the amplification of 840 bands with an average of 210 bands per primer combination and 11 RAPD primers yielded 319 bands with an average of 29 bands per primer. The percentage of polymorphism detected was too high indicating the high degree of genetic variability in mangrove taxa both at inter- and intra-generic levels. In the dendrogram, species belonging to a particular family/ genus, taxa inhabiting similar habitats or having similar adaptations tended to be together. There were exceptions too; as many unrelated species of mangroves form clusters. The intrafamilial classification and inter-relationships of genera in the family Rhizophoraceae could be confirmed by molecular analysis. Both the markers RAPD and AFLP were found equally informative and useful for a better understanding of the genetic variability and genome relationships among mangroves and their associated species.  相似文献   

8.
The Genus Syringa: Molecular Markers of Species and Cultivars   总被引:1,自引:0,他引:1  
RAPD analysis was carried out with 22 accessions of the genus Syringa, including six species, one interspecific hybrid, and 15 cultivars. In total, 512 polymorphic fragments were detected; species-specific and cultivar-specific markers were identified. For the first time, genetic polymorphism and genome similarity coefficients were estimated and phylogenetic relationships were established for the genus Syringa.  相似文献   

9.
Mutants were recovered in a population of cybrids formed following protoplast fusion between tomato (Lycopersicon esculentum Mill.) cv UC82 and Lycopersicon pennellii Corr. The cybrids were identified as individuals with recombinant cytoplasmic genomes but only tomato nuclear genomes. The mutants were identified based on two features, a variegated sectoring of light and dark green regions on their leaves, stems, and fruit, and reduced growth in the field. The mutants produced 50% of the shoot fresh weight and 20% of the fruit fresh weight of the parental type, UC82. The variegated sectoring was maternally inherited. The chloroplast genome in the mutants was indistinguishable from the chloroplast genome in UC82, when distribution of restriction endonuclease sites was used as an assay. The mitochondrial genome in the mutants, however, was recombinant, containing genes from UC82 and L. pennellii. Light microscopic analysis of the leaves of the mutants demonstrated an absence of the palisade layer in the variegated sectors. Electron microscopic analysis of these same regions demonstrated an absence of normal inner membranes in the mitochondria of these cells.  相似文献   

10.
仙客来(Cyclamen persicum Mill.)的种质资源RAPD分析   总被引:5,自引:0,他引:5  
利用RAPD技术对20个现今栽培的名优仙客来品种的分类和亲缘关系进行研究,从100个随机引物中筛选出18个用于PCR反应,共在153个位点上扩增出条带,平均每个引物扩增位点8.5个,多态性位点144个,占总带数的94.1%。这种多肽性可以进行品种的鉴定,聚类分析将各品种材料分为4个类群。提出仙客来除目前的观赏性状分类以外,还应具有更科学的以遗传基础为基准的分类方法。也从分子水平揭示了目前栽培的仙客来品种的遗传基础的狭窄性。对RAPD技术在仙客来育种的进一步应用也作了相应的探讨。  相似文献   

11.
Meloidogyne cruciani n. sp. infecting tomato (Lycopersicon esculentum Mill.) in the U.S. Virgin Islands is described and illustrated. M. cruciani is distinguished from other species of the genus by having punctations around the anus of the female and by the second-stage juveniles possessing tri-lobed esophageal glands which are longer than most other species, with their posterier end at about 46.4% of the body length. The esophageal glands of the immature and adult females are contained in five separate lobes.  相似文献   

12.
The multilocus RAPD analysis of intergeneric, inter- and intraspecific nuclear genome polymorphism was used for the first time to assess intergeneric, interspecific, and intraspecific polymorphism in Lemnaceae growing on the territory of Russia. The origin of the chosen accessions overlapped with the natural range of duckweeds in Russia. Seventy-five Lemnaceae accessions representing eight species (L. minor, L. gibba, L. turionifera, L. japonica. L. trisulca, L. aequinoctialis, S. polyrhiza, and L. punctata) from three genera (Lemna, Spirodela, and Landoltia), were analyzed. The highest variability levels were revealed in L. minor accessions (0.03-0.20). Species L. trisulca and S. polyrhiza were characterized by values of genetic distance 0.01-0.18 and 0.03-0.16, respectively. The lowest polymorphism levels were detected for L. turionifera (0.01-0.11). The dendrogram based on RAPD data showed that L. aequinoctialis was the most genetically distant species of the genus Lemna. Accessions of species L. turionifera and L. japonica, as well as L. minor and L. gibba, did not form separate species-specific subclusters; rather, they fell into clusters with L. japonica/L. turionifera and L. minor/L. gibba. Accessions of the genera Spirodela and Landoltia formed two separate clusters combined into one group.  相似文献   

13.
Retrotransposons are mobile genetic elements that amplify throughout the genome and may be important contributors of genetic diversity. Their distribution is influenced by element behaviour and host-driven controls. We analysed the distribution of three copia-type retrotransposons, ToRTL1, T135 and Tnt1 using sequence-specific amplification polymorphism in self-compatible (SC) and incompatible (SI) species of Solanum subsection Lycopersicon, and genetically mapped polymorphic insertions in S. lycopersicum (tomato). The majority of polymorphic insertions (61%) are located in centromeric regions of the tomato genome. A significant positive relationship was detected between insertion polymorphisms and mating system, independent of selection as most insertions were found to be neutral. As insertion patterns successfully inferred interspecific relationships of Solanum subsection Lycopersicon, our results suggest that the distribution of ToRTL1, T135 and Tnt1 may essentially be determined by selection removing strongly deleterious insertions, with genetic drift and mating system, but not recombination rate, playing important roles.  相似文献   

14.
Random Amplified Polymorphic DNA (RAPD) markers were used to measure genetic diversity within and divergence among species of Dendroseris (Asteraceae: Lactuceae), a genus endemic to the Juan Fernandez Islands, Chile. Results were compared to previous studies employing allozymes. For five of the species, RAPD banding patterns distinguished all individuals examined, and different mutilocus genotypes were found even in species exhibiting no allozyme diversity. RAPD band diversities ranged from 0.003 to 0.022 within species; >90% of total diversity was among species and <10% within them. Relative levels of allozyme and RAPD diversity were similar for some species, particularly those with highest and lowest diversities, but overall there was no significant correlation. Relationships inferred from a neighbor-joining tree generated from RAPD bands were similar to results obtained from morphology, chloroplast DNA (cpDNA) restriction site mutations, and sequences from the internal transcribed spacer regions of nuclear ribosomal DNA (ITS), but somewhat better resolution was achieved. Relationships shown by allozymes differed from trees based on other data; this ostensibly is a result of the sharing of ancestral alleles and the absence of alleles generated subsequent to speciation. Dendroseris represents an example where RAPD markers, because of their greater variability, provide a useful alternative to allozymes for assessing diversity in rare species endemic to oceanic islands and for resolving relationships among the species.  相似文献   

15.
G L Sun  B Salomon  R Bothmer 《Génome》1997,40(6):806-814
An analysis of Amplification fragment polymorphism of DNA from 27 accessions of 19 tetraploid Elymus species was carried out using 18 wheat microsatellite (WMS) primer pairs and 10 decamer primers. Ten WMS primer pairs produced multiple polymorphism on all accessions tested. Two independent phenograms, one based on WMS-PCR and one on RAPDs, separated the 19 tetraploid species into two main groups, viz., the SH genome species group and the SY genome species group. The results coincide with the genomic classification of these species and hence support previous studies showing that Elymus is not a monophyletic genus. The assays indicated that accessions within a species cluster together, which concurs with the morphological classification. Interspecific and intraspecific polymorphisms were detected by the WMS-PCR and RAPD analyses. Variation was observed among accessions of Elymus caninus. The WMS-PCR detected a much higher level of polymorphism than the RAPD analysis. WMSs seem to be more efficient markers than RAPD markers for studying the population diversity of Elymus species. The potential of cross-species amplification of microsatellite markers as an additional source for genetic analysis and applications in Elymus is discussed in the context of these results.  相似文献   

16.
In this study, a direct comparison was made of the ability of four selected random amplified polymorphic DNA (RAPD) primers and a GACA-containing microsatellite probe to detect genetic variation in Lycopersicon. Of the 89 RAPD primers initially tested, 85 showed differences between a representative of Lycopersicon pennellii and L. esculentum, but only 4 distinguished among three L. esculentum cultivars. These four primers were subsequently tested on representatives of six Lycopersicon species. In pairwise comparisons of species, all or 14 of the 15 combinations could be distinguished by single primers. When the primers were tested on 15 L. esculentum cultivars, 90 of the 105 combinations could be distinguished by the four primers together. Finally, none of 118 tested primers showed reproducible differences among calli or progeny of régénérants from tissue culture, although some of the plants had inherited morphological mutations. The probe pWVA16, which detects GACA-containing microsatellites, could distinguish in TaqI-digested DNA the representatives of Lycopersicon species as well as all the L. esculentum cultivars tested. The probe was unable to detect polymorphisms among calli and the progeny of regenerants from tissue culture. An analysis of the results showed that the four selected RAPD primers were able to detect polymorphic bands among species at a frequency of 80%, and among cultivars at a frequency of 44%. In contrast, the microsatellite probe detected polymorphic bands at a frequency of 100 and 95%, respectively. The GACA-containing probe did not detect any common bands among the representatives of the six species, while band sharing with RAPDs was 48%. These results indicate that the two methods detect two types of DNA that differ in their degree of variability.  相似文献   

17.
Random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) markers were used to study the genomic relationship among 11 members of Indian Rhizophoraceae represented by nine true mangroves and two non-mangrove species. The AFLP and RAPD bands were scored and analyzed for genetic similarities and cluster analysis was done which separated the 11 species studied into two main groups, the true mangroves and the non-mangroves. The polymorphism observed for these markers showed a high degree of genetic diversity among the constituent taxa of the family. The phylogenetic relationship inferred from molecular marker systems supported the traditional taxonomic classification of the family Rhizophoraceae based on morphological characters at the levels of tribe, phylogeny and delimitation of genera and species, except the intra-generic classification of the genus Bruguiera and the placement of Rhizophora in the family Rhizophoraceae.  相似文献   

18.
 The most important commercial species of coffee, Coffea arabica, which produces 73% of the world's coffee crop and almost all of the coffee in Latin America, is the only tetraploid (allotetraploid, 2n=4x=44) species known in the genus. High-frequency somatic embryogenesis, plant regeneration and plant recovery were achieved from leaf explants of a mature, elite plant of C. arabica cv. Cauvery (S-4347) using a two-step culture method. To assess the genetic integrity of the nuclear, mitochondrial and chloroplast genomes among the hardened regenerants, we employed multiple DNA markers (RFLP, RAPD, ISSR) for sampling various regions of the genome. Although the nuclear and mitochondrial genomes of the mother plant and five ramets derived from the mother ortet were similar in organization, this was not so in the somatic embryo-derived plants where both nuclear and mitochondrial genomes changed in different, characteristic ways and produced novel genome organizations. A total of 480 genetic loci, based on the data obtained from a total of 16 nuclear, mitochondrial and chloroplast gene probes, in combination with nine restriction enzyme digests, 38 RAPD and 17 SSR primers, were scored in 27 somatic embryo-derived plants and the single control. Among these, 44 loci were observed to be polymorphic. A relatively low level of polymorphism (4.36%) was found in the nuclear genome, while polymorphism in the mitochondrial genome (41%) was much higher. No polymorphism was detected in the chloroplast genome. The polymorphism in the mitochondrial genome was found in only 4 plants. Such selective polymorphism was not true for the nuclear genome. Thus, this in-depth and comprehensive study demonstrates, for the first time, the presence of subtle genetic variability and novel genome organizations in the commercially well-established somatic embryogenesis-derived plants of this important coffee species. Received: 2 July 1999 / Revision received: 1 February 2000 / Accepted: 17 February 2000  相似文献   

19.
A segment of DNA 5' to the transcribed region of an auxin-regulated gene, ARPI, from Lycopersicon esculentum Mill. cv. VFN8 contains a sequence with the structural characteristics of a transposable element. The putative element (Lyt1) is 1340 bp long, has terminal inverted repeats of approximately 235 bp and is flanked by 9-bp direct repeats. Lyt1 has a structure similar to the Robertson's Mutator (Mu) family from maize. The terminal inverted repeats are 80% AT-rich, are 96.6% identical, and define a larger family of repetitive elements. Southern analysis and genomic dot-blot reconstructions detected at least 41 copies of Lyt1-hybridizing sequences in red-fruited Lycopersicon spp. (L. esculentum, L. pimpinellifolium and L. cheesmanii), and 2-8 copies in the green-fruited species (L. hirsutum, L. pennellii, L. peruvianum, L. chilense and L. chmielewskii). There were two to four copies in the Solanum spp. closely allied with the genus Lycopersicon (S. lycopersicoides, S. ochranthum and S. juglandifolium), while the more distantly related Solanum spp. showed little (one to two copies in S. tuberosum) to no (S. quitoense) detectable hybridization under stringent conditions. Linkage analysis in the F(2) progeny of a cross between L. esculentum and L. cheesmanii indicated that at least six loci that hybridize to the Lyt1 sequence are dispersed in the genome. Polymerase chain reaction and Southern analyses revealed that some red-fruited accessions and L. chmielewskii lacked Lyt1 5' to the transcribed region of ARPI. Subsequent sequence analysis indicated that only one copy of the 9-bp direct repeat (target site) was present, suggesting that transposition of the element into the ARPI gene occurred after the divergence of the red-fruited and green-fruited Lycopersicon species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号