首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Src homology containing phosphotyrosine phosphatase 2 (SHP2) is a positive effector of growth factor, cytokine, and integrin signaling. However, neither its physiological substrate nor its mechanism of action in tyrosine kinase signaling has been demonstrated. We reasoned that the identification of physiological substrates of SHP2 would be a stepping stone in elucidating its mechanism of action, and, thus, we constructed a potent trapping mutant of SHP2. Surprisingly, the frequently used Asp to Ala substitution did not give rise to a trapping mutant. However, we were able to develop an efficient trapping mutant of SHP2 by introducing Asp to Ala and Cys to Ser double mutations. The double mutant (DM) protein identified the epidermal growth factor receptor (EGFR), the Grb2 binder 1, and three other, as yet unidentified, phosphotyrosyl proteins as candidate physiological substrates. Given that substrate trapping occurred in intact cells and that the interaction was very specific, it is highly likely that EGFR and Gab1 represent physiological SHP2 substrates. Therefore, the DM protein would serve as an important tool in future SHP2 studies, including identification of p190, p150, and p90.  相似文献   

2.
Noonan syndrome (NS) is a common autosomal dominant congenital disorder which could cause the congenital cardiopathy and cancer predisposition. Previous studies reported that the knock-in mouse models of the mutant D61G of SHP2 exhibited the major features of NS, which demonstrated that the mutation D61G of SHP2 could cause NS. To explore the effect of D61G mutation on SHP2 and explain the high activity of the mutant, molecular dynamic simulations were performed on wild type (WT) of SHP2 and the mutated SHP2-D61G, respectively. The principal component analysis and dynamic cross-correlation mapping, associated with secondary structure, showed that the D61G mutation affected the motions of two regions (residues Asn 58-Thr 59 and Val 460-His 462) in SHP2 from β to turn. Moreover, the residue interaction networks analysis, the hydrogen bond occupancy analysis and the binding free energies were calculated to gain detailed insight into the influence of the mutant D61G on the two regions, revealing that the major differences between SHP2-WT and SHP2-D61G were the different interactions between Gly 61 and Gly 462, Gly 61 and Ala 461, Gln 506 and Ile 463, Gly 61 and Asn 58, Ile 463 and Thr 466, Gly 462 and Cys 459. Consequently, our findings here may provide knowledge to understand the increased activity of SHP2 caused by the mutant D61G.  相似文献   

3.
The Src homology phosphotyrosyl phosphatase, SHP2, is a positive effector of EGFR signaling. However, the molecular mechanism and biological functions of SHP2 regulation are still not completely known. To better understand the cellular processes in which SHP2 participates, we carried out mass spectrometry to find SHP2 binding proteins. FLAG-SHP2 complexes were isolated by affinity purification, and associated proteins were identified by in-gel trypsin digestion followed by LC/MS/MS mass spectrometry. Among the identified proteins, we focus in this report on the heat shock protein 70 (HSP70). Physical interactions of SHP2 with HSP70 were confirmed in vivo. Further experiments demonstrate that EGF does not activate binding of SHP2 with HSP70 rather the binding appears to be constitutive. However, the formation of an HSP70/SHP2 complex affected the binding of SHP2 with EGFR and (or) GAB1. These data suggest that binding of HSP70 with SHP2 regulates to some extent the EGF signaling pathway. In addition, immunostaining experiments indicated that SHP2 and HSP70 co-localized in the cell membrane region after EGF treatment. Our findings propose a possible involvement of HSP70 in the regulation of EGF signaling pathway by SHP2.  相似文献   

4.
The Src homology phosphotyrosyl phosphatase 2 (SHP2) is an essential transducer of mitogenic and cell survival signaling in the epidermal growth factor receptor (EGFR) signaling pathway. However, the role of SHP2 in aberrant EGFR and human EGFR2 (HER2) signaling and cancer, particularly in breast cancer, has not been investigated. Here, we report that SHP2 is required for mitogenic and cell survival signaling and for sustaining the transformation phenotypes of breast cancer cell lines that overexpress EGFR and HER2. Inhibition of SHP2 suppressed EGF-induced activation of the Ras-ERK and the phosphatidylinositol 3 kinase-Akt signaling pathways, abolished anchorage-independent growth, induced epithelial cell morphology and led to reversion to a normal breast epithelial phenotype. Furthermore, inhibition of SHP2 led to upregulation of E-cadherin (epithelial marker) and downregulation of fibronectin and vimentin (mesenchymal markers). These results indicate that SHP2 promotes breast cancer cell phenotypes by positively modulating mitogenic and cell survival signaling, by suppressing E-cadherin expression which is known to play a tumor suppressor role and by sustaining the mesenchymal state as evidenced by the positive impact on fibronectin and vimentin expression. Therefore, SHP2 promotes epithelial to mesenchymal transition, whereas its inhibition leads to mesenchymal to epithelial transition. On the basis of these premises, we propose that interference with SHP2 function might help treat breast cancer.  相似文献   

5.
A major Grb2-associated binder-1 (Gab1) binding partner in epidermal growth factor (EGF)-stimulated cells is protein-tyrosine phosphatase (PTPase) SHP2, which contains tandem SH2 domains. The SHP2 PTPase activity is required for activation of the extracellular signal-regulated kinase (ERK) subfamily of mitogen-activated protein (MAP) kinase by EGF. To investigate the mechanism by which Gab1 and SHP2 mediate ERK activation, we characterized the Gab1-SHP2 interaction. We found that both Tyr-627 and Tyr-659 of Gab1 were required for SHP2 binding to Gab1 and for ERK2 activation by EGF. Far Western blot analysis suggested that the tandem SH2 domains of SHP2 bind to Gab1 in a specific orientation, in which the N-SH2 domain binds to phosphotyrosine (Tyr(P))-627 and the C-SH2 domain binds to Tyr(P)-659. When assayed with peptide substrates, SHP2 PTPase was activated by a bisphosphopeptide containing both Tyr(P)-627 and Tyr(P)-659, but not by monophosphopeptides containing Tyr(P)-627 or Tyr(P)-659 or a mixture of these monophosphopeptides. These results suggest that Tyr(P)-627 and Tyr(P)-659 of Gab1 constitute a bisphosphoryl tyrosine-based activation motif (BTAM) that binds and activates SHP2. Remarkably, while a constitutively active SHP2 (SHP2DeltaN) could not rescue the defect of a SHP2-binding defective Gab1 (Gab1FF) in ERK2 activation, expression of a Gab1FF-SHP2DeltaN chimera resulted in constitutive activation of ERK2 in transfected cells. Thus, physical association of activated SHP2 with Gab1 is necessary and sufficient to mediate the ERK mitogen-activated protein kinase activation. Phosphopeptides derived from Gab1 were dephosphorylated by active SHP2 in vitro. Consistently, substrate-trapping experiments with a SHP2 catalytic inactive mutant suggested that Gab1 was a SHP2 PTPase substrate in the cells. Therefore, Gab1 not only is a SHP2 activator but also is a target of its PTPase.  相似文献   

6.
The Streptomyces K15 penicillin-binding DD-transpeptidase is presumed to be involved in peptide cross-linking during bacterial cell wall peptidoglycan assembly. To gain insight into the catalytic mechanism, the roles of residues Lys38, Ser96, and Cys98, belonging to the structural elements defining the active site cleft, have been investigated by site-directed mutagenesis, biochemical studies, and X-ray diffraction analysis. The Lys38His and Ser96Ala mutations almost completely abolished the penicillin binding and severely impaired the transpeptidase activities while the geometry of the active site was essentially the same as in the wild-type enzyme. It is proposed that Lys38 acts as the catalytic base that abstracts a proton from the active serine Ser35 during nucleophilic attack and that Ser96 is a key intermediate in the proton transfer from the Ogamma of Ser35 to the substrate leaving group nitrogen. The role of these two residues should be conserved among penicillin-binding proteins containing the Ser-Xaa-Asn/Cys sequence in motif 2. Conversion of Cys98 into Asn decreased the transpeptidase activity and increased hydrolysis of the thiolester substrate and the acylation rate with most beta-lactam antibiotics. Cys98 is proposed to play the same role as Asn in motif 2 of other penicilloyl serine transferases in properly positioning the substrate for the catalytic process.  相似文献   

7.
Impaired endothelial barrier function results in a persistent increase in endothelial permeability and vascular leakage. Repair of a dysfunctional endothelial barrier requires controlled restoration of adherens junctions, comprising vascular endothelial (VE)-cadherin and associated β-, γ-, α-, and p120-catenins. Little is known about the mechanisms by which recovery of VE-cadherin–mediated cell–cell junctions is regulated. Using the inflammatory mediator thrombin, we demonstrate an important role for the Src homology 2-domain containing tyrosine phosphatase (SHP2) in mediating recovery of the VE-cadherin–controlled endothelial barrier. Using SHP2 substrate-trapping mutants and an in vitro phosphatase activity assay, we validate β-catenin as a bona fide SHP2 substrate. SHP2 silencing and SHP2 inhibition both result in delayed recovery of endothelial barrier function after thrombin stimulation. Moreover, on thrombin challenge, we find prolonged elevation in tyrosine phosphorylation levels of VE-cadherin–associated β-catenin in SHP2-depleted cells. No disassembly of the VE-cadherin complex is observed throughout the thrombin response. Using fluorescence recovery after photobleaching, we show that loss of SHP2 reduces the mobility of VE-cadherin at recovered cell–cell junctions. In conclusion, our data show that the SHP2 phosphatase plays an important role in the recovery of disrupted endothelial cell–cell junctions by dephosphorylating VE-cadherin–associated β-catenin and promoting the mobility of VE-cadherin at the plasma membrane.  相似文献   

8.
The transmembrane PTPase HPTP beta differs from its related family members in having a single rather than a tandemly duplicated cytosolic catalytic domain. We have expressed the 354-amino acid, 41-kDa human PTP beta catalytic fragment in Escherichia coli, purified it, and assessed catalytic specificity with a series of pY peptides. HPTP beta shows distinctions from the related LAR PTPase and T cell CD45 PTPase domains: it recognizes phosphotyrosyl peptides of 9-11 residues from lck, src, and PLC gamma with Km values of 2, 4, and 1 microM, some 40-200-fold lower than the other two PTPases. With kcat values of 30-205 s-1, the catalytic efficiency, kcat/Km, of the HPTP beta 41-kDa catalytic domain is very high, up to 5.7 x 10(7) M-1 s-1. The peptides corresponding to PLC gamma (766-776) and EGFR (1,167-1,177) phosphorylation sites were used for structural variation to assess pY sequence context recognition by HPTP beta catalytic domain. While exchange of the alanine residue at the +2 position of the PLC gamma (Km of 1 microM) peptide to lysine or aspartic acid showed little or no effect on substrate affinity, replacement by arginine increased the Km 35-fold. Similarly, the high Km value of the EGFR pY peptide (Km of 104 microM) derives largely from the arginine residue at the +2 position of the peptide, since arginine to alanine single mutation at the -2 position of the EGFR peptide decreased the Km value 34-fold to 3 microM. Three thiophosphotyrosyl peptides have been prepared and act as substrates and competitive inhibitors of these PTPase catalytic domains.  相似文献   

9.
Xie L  Zhang YL  Zhang ZY 《Biochemistry》2002,41(12):4032-4039
Although members of the protein tyrosine phosphatase (PTPase) family share a common mechanism of action (hydrolysis of phosphotyrosine), the cellular processes in which they are involved can be both highly specialized and fundamentally important. Identification of cellular PTPase substrates will help elucidate the biological functions of individual PTPases. Two types of substrate-trapping mutants are being used to isolate PTPase substrates. In the first, the active site Cys residue is replaced by a Ser (e.g., PTP1B/C215S) while in the second, the general acid Asp residue is substituted by an Ala (e.g., PTP1B/D181A). Unfortunately, only a limited number of PTPase substrates have been identified with these two mutants, which are usually relatively abundant cellular proteins. Based on mechanistic considerations, we seek to create novel PTPase mutants with improved substrate-trapping properties. Kinetic and thermodynamic characterization of the newly designed PTP1B mutants indicates that PTP1B/D181A/Q262A displays lower catalytic activity than that of D181A. In addition, D181A/Q262A also possesses 6- and 28-fold higher substrate-binding affinity than those of D181A and C215S, respectively. In vivo substrate-trapping experiments indicate that D181A/Q262A exhibits much higher affinity than both D181A and C215S for a bona fide PTP1B substrate, the epidermal growth factor receptor. Moreover, D181A/Q262A can also identify novel, less abundant substrates, that are missed by D181A. Thus, this newly developed and improved substrate-trapping mutant can serve as a powerful affinity reagent to isolate and purify both high- and low-abundant protein substrates. Given that both Asp181 and Gln262 are invariant among the PTPase family, it is predicted that this improved substrate-trapping mutant would be applicable to all members of PTPases for substrate identification.  相似文献   

10.
SAP-1 (stomach cancer-associated protein-tyrosine phosphatase-1) is a transmembrane-type protein-tyrosine phosphatase that is abundant in the brain and certain cancer cell lines. With the use of a "substrate-trapping" approach, p130(cas), a major focal adhesion-associated phosphotyrosyl protein, has now been identified as a likely physiological substrate of SAP-1. Expression of recombinant SAP-1 induced the dephosphorylation of p130(cas) as well as that of two other components of the integrin-signaling pathway (focal adhesion kinase and p62(dok)) in intact cells. In contrast, expression of a substrate-trapping mutant of SAP-1 induced the hyperphosphorylation of these proteins, indicating a dominant negative effect of this mutant. Overexpression of SAP-1 induced disruption of the actin-based cytoskeleton as well as inhibited various cellular responses promoted by integrin-mediated cell adhesion, including cell spreading on fibronectin, growth factor-induced activation of extracellular signal-regulated kinase 2, and colony formation. Finally, the enzymatic activity of SAP-1, measured with an immunocomplex phosphatase assay, was substantially increased by cell-cell adhesion. These results suggest that SAP-1, by mediating the dephosphorylation of focal adhesion-associated substrates, negatively regulates integrin-promoted signaling processes and, thus, may contribute to contact inhibition of cell growth and motility.  相似文献   

11.
Protein tyrosine phosphatases (PTPs) play important, highly dynamic roles in signaling. Currently about 90 different PTP genes have been described. The enzymes are highly regulated at all levels of expression, and it is becoming increasingly clear that substrate specificity of the PTP catalytic domains proper contributes considerably to PTP functionality. To investigate PTP substrate selectivity, we have set up a procedure to generate phage libraries that presents randomized, phosphotyrosine-containing peptides. Phages that expressed suitable substrates were selected by immobilized, substrate-trapping GST-PTP fusion proteins. After multiple rounds of selection, positive clones were confirmed by SPOT analysis, dephosphorylation by wild-type enzyme, and Km determinations. We have identified distinct consensus substrate motifs for PTP1B, Sap-1, PTP-beta, SHP1, and SHP2. Our results confirm substrate specificity for individual PTPs at the peptide level. Such consensus sequences may be useful both for identifying potential PTP substrates and for the development of peptidomimetic inhibitors.  相似文献   

12.
Abstract

Noonan syndrome with multiple lentigines (NSML), formerly known as LEOPARD syndrome (LS), is an autosomal dominant inherited multisystemic disorder. Most patients involve mutation in SHP2 encoded by tyrosine-protein phosphatase non-receptor type 11 (PTPN11) gene. Studies have shown that NSML-associated Y279C mutation exhibited the reduced phosphatase activity, leading to loss-of-function (LOF) of SHP2. However, the effect of the Y279C mutation on the SHP2 at the molecular level is unclear. In this study, molecular dynamics simulations of SHP2 wild-type (SHP2WT) and Y279C mutant (SHP2Y279C) were performed to investigate the structural differences in proteins after Y279C mutation and to find out the reason for loss-of-function of SHP2. Through a series of post-dynamic analyses, it was found that the protein occupied a smaller phase space after Y279C mutation, showing reduced flexibility. Specifically, due to the mutation of Y279C, the secondary structures of these two regions (residues Lys70-Ala72 and Gly462-Arg465) were significantly transformed from Turn to α-helix and β-strand. Furthermore, by calculating the residue interaction network, hydrogen bond occupancy and binding free energy, it was further revealed that the conformational differences between SHP2WT and SHP2Y279C systems were mainly caused by the differences in the interaction between Arg465–Phe469, Ile463–Gly467, Cys279–Lys70, Cys459–Ala72, Gly464–Phe71, Phe71–Ile463, Ile463–Ala505 and Arg465–Glu361. Consequently, this finding is expected to provide a new insight into the reason for loss-of-function of SHP2 caused by Y279C mutation.

Communicated by Ramaswamy H. Sarma  相似文献   

13.
The Src homology 2-containing phosphotyrosine phosphatase (SHP2) is primarily a positive effector of receptor tyrosine kinase signaling. However, the molecular mechanism by which SHP2 effects its biological function is unknown. In this report, we provide evidence that defines the molecular mechanism and site of action of SHP2 in the epidermal growth factor-induced mitogenic pathway. We demonstrate that SHP2 acts upstream of Ras and functions by increasing the half-life of activated Ras (GTP-Ras) in the cell by interfering with the process of Ras inactivation catalyzed by Ras GTPase-activating protein (RasGAP). It does so by inhibition of tyrosine phosphorylation-dependent translocation of RasGAP to the plasma membrane, to its substrate (GTP-Ras) microdomain. Inhibition is achieved through the dephosphorylation of RasGAP binding sites at the level of the plasma membrane. We have identified Tyr992 of the epidermal growth factor receptor (EGFR) to be one such site, since its mutation to Phe renders the EGFR refractory to the effect of dominant-negative SHP2. To our knowledge, this is the first report to outline the site and molecular mechanism of action of SHP2 in EGFR signaling, which may also serve as a model to describe its role in other receptor tyrosine kinase signaling pathways.  相似文献   

14.
We have employed a substrate trapping strategy to identify physiological substrates of the receptor protein-tyrosine phosphatase alpha (RPTPalpha). Here we report that a substrate-trapping mutant of the RPTPalpha membrane proximal catalytic domain (D1), RPTPalpha-D1-C433S, specifically bound to tyrosine-phosphorylated proteins from pervanadate-treated cells. The membrane distal catalytic domain of RPTPalpha (D2) and mutants thereof did not bind to tyrosine-phosphorylated proteins. The pattern of tyrosine-phosphorylated proteins that bound to RPTPalpha-D1-C433S varied between cell lines, but a protein of approximately 130 kDa was pulled down from every cell line. This protein was identified as p130(cas). Tyrosine-phosphorylated p130(cas) from fibronectin-stimulated NIH3T3 cells bound to RPTPalpha-D1-C433S as well, suggesting that p130(cas) is a physiological substrate of RPTPalpha. RPTPalpha dephosphorylated p130(cas) in vitro, and RPTPalpha co-localized with a subpopulation of p130(cas) to the plasma membrane. Co-transfection experiments with activated SrcY529F, p130(cas), and RPTPalpha or inactive, mutant RPTPalpha indicated that RPTPalpha dephosphorylated p130(cas) in vivo. Tyrosine-phosphorylated epidermal growth factor receptor was not dephosphorylated by RPTPalpha under these conditions, suggesting that p130(cas) is a specific substrate of RPTPalpha in living cells. In conclusion, our results provide evidence that p130(cas) is a physiological substrate of RPTPalpha in vivo.  相似文献   

15.
Targeted therapy with inhibitors of epidermal growth factor receptor (EGFR) has produced a noticeable benefit to non-small cell lung cancer (NSCLC) patients whose tumors carry activating mutations (e.g. L858R) in EGFR. Unfortunately, these patients develop drug resistance after treatment, due to acquired secondary gatekeeper mutations in EGFR (e.g. T790M). Given the critical role of SHP2 in growth factor receptor signaling, we sought to determine whether targeting SHP2 could have therapeutic value for EGFR inhibitor resistant NSCLC. We show that SHP2 is required for EGF-stimulated ERK1/2 phosphorylation and proliferation in EGFR inhibitor resistant NSCLC cell line H1975, which harbors the EGFR T790M/L858R double-mutant. We demonstrate that treatment of H1975 cells with II-B08, a specific SHP2 inhibitor, phenocopies the observed growth inhibition and reduced ERK1/2 activation seen in cells treated with SHP2 siRNA. Importantly, we also find that II-B08 exhibits marked anti-tumor activity in H1975 xenograft mice. Finally, we observe that combined inhibition of SHP2 and PI3K impairs both the ERK1/2 and PI3K/AKT signaling axes and produces significantly greater effects on repressing H1975 cell growth than inhibition of either protein individually. Collectively, these results suggest that targeting SHP2 may represent an effective strategy for treatment of EGFR inhibitor resistant NSCLCs.  相似文献   

16.
We have recently reported that human soluble epoxide hydrolase (sEH) is a bifunctional enzyme with a novel phosphatase enzymatic activity. Based on a structural relationship with other members of the haloacid dehalogenase superfamily, the sEH N-terminal phosphatase domain revealed four conserved sequence motifs, including the proposed catalytic nucleophile D9, and several other residues potentially implicated in substrate turnover and/or Mg2+ binding. To enlighten the catalytic mechanism of dephosphorylation, we constructed sEH phosphatase active-site mutants by site-directed mutagenesis. A total of 18 mutants were constructed and recombinantly expressed in Escherichia coli as soluble proteins, purified to homogeneity and subsequently analysed for their kinetic parameters. A replacement of residues D9, K160, D184 or N189 resulted in a complete loss of phosphatase activity, consistent with an essential function for catalysis. In contrast, a substitution of D11, T123, N124 and D185 leads to sEH mutant proteins with altered kinetic properties. We further provide evidence of the formation of an acylphosphate intermediate on D9 by liquid chromatography-tandem mass spectrometry based on the detection of homoserine after NaBH4 reduction of the phosphorylated enzyme, which identifies D9 as the catalytic nucleophile. Surprisingly, we could only show such homoserine formation using the D11N mutant, which strongly suggests D11 to be involved in the acylphosphate hydrolysis. In the D11 mutant, the second catalytic step becomes rate limiting, which then allows trapping of the labile intermediate. Substrate turnover in the presence of 18H2O revealed that the nucleophilic attack during the second reaction step occurs at the acylphosphate phosphorous. Based on these findings, we propose a two-step catalytic mechanism of dephosphorylation that involves the phosphate substrate hydrolysis by nucleophilic attack by the catalytic nucleophile D9 followed by hydrolysis of the acylphosphate enzyme intermediate supported by D11.  相似文献   

17.
The epidermal growth factor receptor (EGFR) is activated by ionizing radiation (IR) in many human carcinomas, mediating a cytoprotective response and subsequent radioresistance. The underlying molecular mechanisms remain to be understood, and we propose here a specific role for the Tyr-992 residue of EGFR and examine its regulation by the phosphatase, SHP2. The -fold increase in phosphorylation of Tyr-992 in response to IR is twice that seen with ligand (EGF) binding. Mutation of Tyr-992 blocked completely IR-induced EGFR phosphorylation and reduced activation of the downstream signaling molecule, phospholipase Cgamma. IR has previously been demonstrated to inhibit activity of protein-tyrosine phosphatases. Following protein-tyrosine phosphatase inhibition by sodium vanadate both EGFR expressing Chinese hamster ovary (CHO) and A431 exhibited up to an 8-fold increase in the basal level of Tyr-992 phosphorylation, significantly higher than that seen with Tyr-1173, Tyr-1068, and total EGFR Tyr. CHO cells expressing a SHP2 mutant also demonstrated up to an 8-fold increase in the basal level of Tyr-992 phosphorylation. In this study we show the unique association of SHP2 with EGFR in response to IR, with up to a 2.5-fold increase in the direct association of endogenous SHP2 with EGFR-wt in response to 2 gray of IR in both CHO and A431 cells. Mutation of Tyr-992 abolished this response. In conclusion we have identified several differentially activated Tyr residues, one of which is not only more sensitive to activation by IR, translating into differential activation of downstream signaling, but uniquely modulated by the phosphatase SHP2.  相似文献   

18.
The extracellular signal-regulated protein kinase 2 (ERK2) plays a central role in cellular proliferation and differentiation. Full activation of ERK2 requires dual phosphorylation of Thr183 and Tyr185 in the activation loop. Tyr185 dephosphorylation by the hematopoietic protein-tyrosine phosphatase (HePTP) represents an important mechanism for down-regulating ERK2 activity. The bisphosphorylated ERK2 is a highly efficient substrate for HePTP with a kcat/Km of 2.6 x 10(6) m(-1) s(-1). In contrast, the kcat/Km values for the HePTP-catalyzed hydrolysis of Tyr(P) peptides are 3 orders of magnitude lower. To gain insight into the molecular basis for HePTP substrate specificity, we analyzed the effects of altering structural features unique to HePTP on the HePTP-catalyzed hydrolysis of p-nitrophenyl phosphate, Tyr(P) peptides, and its physiological substrate ERK2. Our results suggest that substrate specificity is conferred upon HePTP by both negative and positive selections. To avoid nonspecific tyrosine dephosphorylation, HePTP employs Thr106 in the substrate recognition loop as a key negative determinant to restrain its protein-tyrosine phosphatase activity. The extremely high efficiency and fidelity of ERK2 dephosphorylation by HePTP is achieved by a bipartite protein-protein interaction mechanism, in which docking interactions between the kinase interaction motif in HePTP and the common docking site in ERK2 promote the HePTP-catalyzed ERK2 dephosphorylation (approximately 20-fold increase in kcat/Km) by increasing the local substrate concentration, and second site interactions between the HePTP catalytic site and the ERK2 substrate-binding region enhance catalysis (approximately 20-fold increase in kcat/Km) by organizing the catalytic residues with respect to Tyr(P)185 for optimal phosphoryl transfer.  相似文献   

19.
Dual-specificity protein phosphatases (DSPs) dephosphorylate proteins at Ser/Thr and Tyr. FYVE domain is a double zinc finger motif which specifically binds phosphatidylinositol(3)-phosphate. Here, we report a novel dual specificity phosphatase that contains a FYVE domain at the C-terminus. We designate the protein FYVE-DSP1. Molecular cloning yielded three isoforms of the enzyme presumably derived from alternate RNA splicing. Sequence alignment revealed that the catalytic phosphatase domain of FYVE-DSP1 closely resembled that of myotubularin, while its FYVE domain has all the conserved amino acid residues found in other proteins of the same family. Recombinant FYVE-DSP1 is partitioned in both cytosolic and membrane fractions. It dephosphorylates proteins phosphorylated on Ser, Thr, and Tyr residues and low molecular weight phosphatase substrate para-nitrophenylphosphate. It shows typical characteristics of other DSPs and protein tyrosine phosphatases (PTPs). These include inhibition by sodium vanadate and pervanadate, pH dependency, and inactivation by mutation of the key cysteinyl residue at the phosphatase signature motif. Finally, PCR analyses demonstrated that FYVE-DSP1 is widely distributed in human tissues but different spliced forms expressed differently.  相似文献   

20.
The Src homology phosphotyrosyl phosphatase 2 (SHP2) plays a positive role in HER2-induced signaling and transformation, but its mechanism of action is poorly understood. Given the significance of HER2 in breast cancer, defining a mechanism for SHP2 in the HER2 signaling pathway is of paramount importance. In the current report we show that SHP2 positively modulates the Ras-extracellular signal-regulated kinase 1 and 2 and the phospoinositide-3-kinase-Akt pathways downstream of HER2 by increasing the half-life the activated form of Ras. This is accomplished by dephosphorylating an autophosphorylation site on HER2 that serves as a docking platform for the SH2 domains of the Ras GTPase-activating protein (RasGAP). The net effect is an increase in the intensity and duration of GTP-Ras levels with the overall impact of enhanced HER2 signaling and cell transformation. In conformity to these findings, the HER2 mutant that lacks the SHP2 target site exhibits an enhanced signaling and cell transformation potential. Therefore, SHP2 promotes HER2-induced signaling and transformation at least in part by dephosphorylating a negative regulatory autophosphorylation site. These results suggest that SHP2 might serve as a therapeutic target against breast cancer and other cancers characterized by HER2 overexpression.The Src homology phosphotyrosyl phosphatase 2 (SHP2)2 functions as a positive effector of cell growth and survival (14), migration and invasion (58), and morphogenesis and transformation (911). In receptor-tyrosine kinase signaling (1214), SHP2 positively transduces the Ras-extracellular signal-regulated kinase 1 and 2 (ERK1/2) and the phosphoinositide-3-kinase-Akt (or protein kinase B) signaling pathways. SHP2 also promotes cell transformation induced by the constitutively active form of fibroblast growth factor receptor 3 and v-Src (9, 11). The discovery of germline-activating SHP2 mutations in Noonan and LEOPARD syndrome patients (1518) and the subsequent experimental demonstration of these phenotypes in knockin and transgenic mice expressing these mutants (19, 20) has led to the conclusion that disregulation of SHP2 is responsible for these disease states. Furthermore, somatic activating SHP2 mutations were discovered in juvenile myelomonocytic leukemia, acute myelogenous leukemia, and chronic myelomonocytic (18, 21) and are suggested to play a causative role.SHP2 possesses two Src homology 2 (SH2) domains in the N-terminal region that allow the protein to localize to substrate microdomains after tyrosyl phosphorylation of interacting proteins. The phosphotyrosyl phosphatase (PTP) domain in the C-terminal region is responsible for dephosphorylation of target substrates (13, 22). Mutation of the critical Cys residue in the active site of SHP2 abolishes its phosphatase activity, leading to the production of a dominant-negative protein (23). The activity of SHP2 is regulated by an intramolecular conformational switch. SHP2 assumes a “closed conformation” when inactive and an “open conformation” when active. In the closed conformation the N-SH2 domain interacts with the PTP domain, physically impeding the activity of the enzyme. Upon engagement of the SH2 domains with phosphotyrosine, the PTP domain is relieved of autoinhibition and dephosphorylates target substrates (2326). Interaction between specific residues on the N-SH2 and the PTP domains mediates the closed conformation. Mutation of these residues leads to a constitutively active SHP2, and the occurrence of such mutations in humans causes the development of Noonan syndrome and associated leukemia (1618).Recently, we have shown that inhibition of SHP2 in the HER2-positive breast cancer cell lines abolishes mitogenic and cell survival signaling and reverses transformation, leading to differentiation of malignant cells into a normal breast epithelial phenotype (27). Given the significance of HER2 in breast cancer, the finding that SHP2 plays a positive role was very interesting. We, thus, sought to investigate the molecular mechanism that underlies the positive role of SHP2 in HER2-induced signaling and transformation. To do so, it was first necessary to decipher the identity of SHP2 substrates whose dephosphorylation promotes the oncogenic functions of HER2. Using the recently developed substrate-trapping mutant of SHP2 as a reagent (28), we have identified HER2 itself as an SHP2 substrate. We have further shown that SHP2 dephosphorylates an autophosphorylation site on HER2 that serves as a docking site for the SH2 domains of the Ras GTPase-activating protein (Ras-GAP), the down-regulator of Ras. This effect of SHP2 increases the intensity and duration of GTP-Ras levels with the overall impact of enhanced HER2 signaling and cell transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号