首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
From literature sources we compiled the data on carbon-based-secondary compounds CBSC (phenolics and terpenoids) and biomass of 17 plant species grown at different CO2 concentrations under low and high nutrient availabilities. With a low nutrient availability a possible inverse correlation was found between the biomass and CBSC changes. On the contrary, under a high nutrient availability, both the CBSC and biomass increased with elevated CO2. The wide variation in the CBSC production among species and compounds (larger responses in phenolics than in terpenoids) indicates that the allocation to CBSC may not completely be governed by changes in CO2 and nutrient availabilities per se. Yet the comparison shows that elevated CO2 generally loads the carbon into CBSC [their leaf concentration increased an overall average of 14 % at 700 umol(CO2) mol-r] which may improve our understanding of the carbon storage and cycling in ecosystems under the “global change” of climate. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Elevated CO2 increases belowground respiration in California grasslands   总被引:1,自引:0,他引:1  
This study was designed to identify potential effects of elevated CO2 on belowground respiration (the sum of root and heterotrophic respiration) in field and microcosm ecosystems and on the annual carbon budget. We made three sets of respiration measurements in two CO2 treatments, i.e., (1) monthly in the sandstone grassland and in microcosms from November 1993 to June 1994; (2) at the annual peak of live biomass (March and April) in the serpentine and sandstone grasslands in 1993 and 1994; and (3) at peak biomass in the microcosms with monocultures of seven species in 1993. To help understand ecosystem carbon cycling, we also made supplementary measurements of belowground respiration monthly in sandstone and serpentine grasslands located within 500 m of the CO2 experiment site. The seasonal average respiration rate in the sandstone grassland was 2.12 mol m-2 s-1 in elevated CO2, which was 42% higher than the 1.49 mol m-2 s-1 measured in ambient CO2 (P=0.007). Studies of seven individual species in the microcosms indicated that respiration was positively correlated with plant biomass and increased, on average, by 70% with CO2. Monthly measurements revealed a strong seasonality in belowground respiration, being low (0–0.5 mol CO2 m-2 s-1 in the two grasslands adjacent to the CO2 site) in the summer dry season and high (2–4 mol CO2 m-2 s-1 in the sandstone grassland and 2–7 mol CO2 m-2 s-1 in the microcosms) during the growing season from the onset of fall rains in November to early spring in April and May. Estimated annual carbon effluxes from the soil were 323 and 440 g C m-2 year-1 for the sandstone grasslands in ambient and elevated CO2. That CO2-stimulated increase in annual soil carbon efflux is more than twice as big as the increase in aboveground net primary productivity (NPPa) and approximately 60% of NPPa in this grassland in the current CO2 environment. The results of this study suggest that below-ground respiration can dissipate most of the increase in photosynthesis stimulated by elevated CO2.CIWDPB Publication # 1271  相似文献   

5.
6.
Elevated CO2 alters belowground exoenzyme activities in tussock tundra   总被引:9,自引:0,他引:9  
Moorhead  Daryl L.  Linkins  A.E. 《Plant and Soil》1997,189(2):321-329
A three-year exposure to a CO2 concentration of 680 mol mol-1 altered the enzymic characteristics of root surfaces, associated ectomycorrhizae, and in soils surrounding roots in a tussock tundra ecosystem of north Alaska, USA. At elevated CO2, phosphatase activity was higher on Eriophorum vaginatum root surfaces, ectomycorrhizal rhizomorphs and mantles associated with Betula nana roots, and in Oe and Oi soil horizons associated with plant roots. Also, endocellulase and exocellulase activities at elevated CO2 were higher in ectomycorrhizal rhizomorphs and lower in Oe and Oi soil horizons associated with roots. These results suggest that arctic plants respond to raised CO2 by increasing activities associated with nutrient acquisition, e.g. higher phosphatase activities on surfaces of roots and ectomycorrhizae, and greater cellulase activity in ectomycorrhizae. Changes in enzyme activities of surrounding soils are consistent with an increase in carbon exudation from plant roots, which would be expected to inhibit cellulase activities and stimulate phosphatase activities of soil microflora. These data were used to modify existing simulation models describing tussock phosphatase activities and litter decay. Model projections suggest that observed increases in phosphatase activities at 680 mol mol-1 CO2 could augment total annual phosphorus release within tussocks by more than 40%, at present levels of root and ectomycorrhizae biomass. This includes a nearly three-fold increase in potential phosphatase activity of E. vaginatum roots, per unit of surface area. Observed reductions in cellulase activities could diminish cellulose turnover by 45% in soils within rooting zones, which could substantially increase mineral nitrogen availability in soils due to lowered microbial immobilization.  相似文献   

7.
Elevated CO2 affects porewater chemistry in a brackish marsh   总被引:1,自引:0,他引:1  
As atmospheric CO2 concentrations continue to rise and impact plant communities, concomitant shifts in belowground microbial processes are likely, but poorly understood. We measured monthly porewater concentrations of sulfate, sulfide, methane (CH4), dissolved inorganic carbon and dissolved organic carbon over a 5-year period in a brackish marsh. Samples were collected using porewater wells (i.e., sippers) in a Schoenoplectus americanus-dominated (C3 sedge) community, a Spartina patens-dominated (C4 grass) community and a mixed (C3 and C4) community within the marsh. Plant communities were exposed to ambient and elevated (ambient + 340 ppm) CO2 levels for 15 years prior to porewater sampling, and the treatments continued over the course of our sampling. Sulfate reduction was stimulated by elevated CO2 in the C3-dominated community, but not in the C4-dominated community. Elevated CO2 also resulted in higher porewater concentrations of CH4 and dissolved organic carbon in the C3-dominated system, though inhibition of CH4 production by sulfate reduction appears to temper the porewater CH4 response. These patterns mirror the typical divergent responses of C3 and C4 plants to elevated CO2 seen in this ecosystem. Porewater concentrations of nitrogen (as ammonium) and phosphorus did not decrease despite increased plant biomass in the C3-dominated community, suggesting nutrients do not strongly limit the sustained vegetation response to elevated CO2. Overall, our data demonstrate that elevated CO2 drives changes in porewater chemistry and suggest that increased plant productivity likely stimulates microbial decomposition through increases in dissolved organic carbon availability.  相似文献   

8.
Temperature Effects on Rice at Elevated CO2 Concentration   总被引:1,自引:0,他引:1  
The continuing increase in atmospheric carbon dioxide concentration([CO2]) and projections of possible future increases in globalairtemperatures have stimulated interest in the effects of theseclimate variables on agriculturally important food crops. Thisstudywas conducted to determine the effects of [CO2] and temperatureon rice (Oryza sativa L., cv. IR–30). Rice plants weregrownseason-long in outdoor, naturally sunlit, controlled-environment,plant growth chambers in temperature regimes ranging from 25/18/21°Cto 37/30/34°C (daytime dry bulb air temperature/night-timedry bulb air temperature/paddy water temperature)and [CO2] of660 µmol CO2 mol1 air. An ambient chamber was maintainedat a [CO2] of 330 µmol mol–1 and temperature regimesof 28/21/25°C. Carbon dioxide enrichment at 28/21/25°Cincreased both biomass accumulation and tillering and increasedgrain yield by 60%. In the 660 µmol mol–1 [CO2]treatment, grain yield decreased from 10.4 to 1.0 Mg ha–1with increasing temperature from 28/21/25°C to the 37/30/34°Ctemperature treatment. Across this temperature range, the numberof panicles plant–1 nearly doubled while the number ofseeds panicle–1 declined sharply. These results indicatethat while future increases in atmospheric [CO2] are likelyto be beneficial to rice growth and yield, potentially largenegative effects on rice yield are possible if air temperaturesalso rise. Key words: Oryza sativa, CO2, temperature, growth, yield  相似文献   

9.
Recent research has shown that exposure to elevated carbon dioxide (CO2) affects how fishes perceive their environment, affecting behavioral and cognitive processes leading to increased prey mortality. However, it is unclear if increased mortality results from changes in the dynamics of predator-prey interactions or due to prey increasing activity levels. Here we demonstrate that ocean pCO2 projected to occur by 2100 significantly effects the interactions of a predator-prey pair of common reef fish: the planktivorous damselfish Pomacentrus amboinensis and the piscivorous dottyback Pseudochromis fuscus. Prey exposed to elevated CO2 (880 µatm) or a present-day control (440 µatm) interacted with similarly exposed predators in a cross-factored design. Predators had the lowest capture success when exposed to elevated CO2 and interacting with prey exposed to present-day CO2. Prey exposed to elevated CO2 had reduced escape distances and longer reaction distances compared to prey exposed to present-day CO2 conditions, but this was dependent on whether the prey was paired with a CO2 exposed predator or not. This suggests that the dynamics of predator-prey interactions under future CO2 environments will depend on the extent to which the interacting species are affected and can adapt to the adverse effects of elevated CO2.  相似文献   

10.
曾青  朱建国 《应用生态学报》2002,13(10):1339-1343
CO2浓度升高对植物的光合作用、呼吸作用和水分利用等生理过程产生直接影响,进而影响植物的生长繁殖,CO2浓度升高对于具有C3光合途径的植物较具C4光合途径的植物更为有益,由于许多重要的杂草是C4植物,而许多重要的作用是C3植物,CO2浓度升高对杂草/作物的相互关系将有重要影响,本文就全球CO2浓度升高和气候变化对杂草/作物之间竞争关系影响进行综述,同时针对目前研究现状和可持续农业的需要,提出CO2学浓度升高条件下杂草/作物之间竞争关系及未来农田杂草治理方面理论与实践中有待解决的问题。  相似文献   

11.
12.
CO2 浓度升高对两种沈阳城市森林树种光合特性的影响   总被引:1,自引:0,他引:1  
利用开顶式气室, 研究了CO2浓度升高条件下城市森林主要树种油松(Pinus tabulaefomis)和银杏(Ginkgo biloba)主要光合特性的变化。结果表明, 整个生长季, CO2浓度升高(700 mmol.mol-1)条件下2树种叶片的净光合速率、可溶性糖、淀粉和可溶性蛋白含量均接近或高于相应对照(自然CO2浓度)值, 但不同树种增加的幅度不同; 而2树种的叶绿素含量和Chl a/Chl b值对CO2浓度升高反应不一, 表现为CO2浓度升高条件下油松的叶绿素含量较对照值高, Chl a/Chl b值降低, 银杏的叶绿素含量为前期升高, 后期降低, Chl a/Chl b值变化与之正好相反, 说明城市森林组成树种对CO2浓度升高的响应具有复杂性。CO2浓度升高条件下, 两树种均未发生光合适应现象。  相似文献   

13.
The effect of CO2 concentration elevated to 575 – 620 µmol mol–1 on growth, tillering, grain yield, net photosynthetic rate, dark respiration rate, stomatal conductance, sugar content and protein profile of two rice (Oryza sativa L.) cultivars Pusa Basmati-1 and Pusa-677 at flowering stage was studied using open top chambers. The cultivar Pusa Basmati-1 responded more markedly for most of the growth and physiological parameters compared to Pusa-677. The increase in grain yield in Pusa Basmati-1 attributed largely to increased grain number. The increased net photosynthetic rate and greater accumulation of sugar contributed significantly to the accelerated development of leaves and tillers in both the cultivars. The reduction in the low molecular mass proteins including Rubisco and increase in high molecular mass photosystem 2 proteins was observed in both the cultivars. Additional sugars may possibly help in balancing the profile of photosynthetic proteins and sustain greater growth and productivity in rice cultivars.  相似文献   

14.
Although numerous studies indicate that increasing atmospheric CO2 or temperature stimulate soil CO2 efflux, few data are available on the responses of three major components of soil respiration [i.e. rhizosphere respiration (root and root exudates), litter decomposition, and oxidation of soil organic matter] to different CO2 and temperature conditions. In this study, we applied a dual stable isotope approach to investigate the impact of elevated CO2 and elevated temperature on these components of soil CO2 efflux in Douglas-fir terracosms. We measured both soil CO2 efflux rates and the 13C and 18O isotopic compositions of soil CO2 efflux in 12 sun-lit and environmentally controlled terracosms with 4-year-old Douglas fir seedlings and reconstructed forest soils under two CO2 concentrations (ambient and 200 ppmv above ambient) and two air temperature regimes (ambient and 4 °C above ambient). The stable isotope data were used to estimate the relative contributions of different components to the overall soil CO2 efflux. In most cases, litter decomposition was the dominant component of soil CO2 efflux in this system, followed by rhizosphere respiration and soil organic matter oxidation. Both elevated atmospheric CO2 concentration and elevated temperature stimulated rhizosphere respiration and litter decomposition. The oxidation of soil organic matter was stimulated only by increasing temperature. Release of newly fixed carbon as root respiration was the most responsive to elevated CO2, while soil organic matter decomposition was most responsive to increasing temperature. Although some assumptions associated with this new method need to be further validated, application of this dual-isotope approach can provide new insights into the responses of soil carbon dynamics in forest ecosystems to future climate changes.  相似文献   

15.

Aim

Effects of elevated CO2 on N relations are well studied, but effects on other nutrients, especially micronutrients, are not. We investigated effects of elevated CO2 on response to variation in boron (B) availability in three unrelated species: seed geranium (Pelargonium x hortorum), barley (Hordeum vulgare), and water fern (Azolla caroliniana).

Methods

Plants were grown at two levels of CO2 (370, 700?ppm) and low, medium, and high B. Treatment effects were measured on biomass, net photosynthesis (Pn) and related variables, tissue nutrient concentrations, and B transporter protein BOR1.

Results

In geranium, there were interactive effects (P?<?0.05) of B and CO2 on leaf, stem, and total plant mass, root:shoot ratio, leaf [B], B uptake rate, root [Zn], and Pn. Elevated CO2 stimulated growth at 45?μM B, but decreased it at 450?μM B and did not affect it at 4.5?μM B. Pn was stimulated by elevated CO2 only at 45?μM B and chlorophyll was enhanced only at 450?μM B. Soluble sugars increased with high CO2 only at 4.5 and 45?μM B. High CO2 decreased leaf [B] and B uptake rate, especially at 450?μM B. Though CO2 and B individually affected the concentration of several other nutrients, B x CO2 interactions were evident only for Zn in roots, wherein [Zn] decreased under elevated CO2. Interactive effects of B and CO2 on growth were confirmed in (1) barley grown at 0, 30, or 1,000?μM B, wherein growth at high CO2 was stimulated more at 30?μM B, and (2) Azolla grown at 0, 10, and 1,000?μM B, wherein growth at high CO2 was stimulated at 0 and 10?μM B.

Conclusion

Thus, low and high B both may limit growth stimulation under elevated vs. current [CO2], and B deficiency and toxicity, already common, may increase in the future.  相似文献   

16.
17.
Previous reports suggest that fungivorous nematodes are the only trophic group in forest soils affected by elevated CO2. However, there can be ambiguity within trophic groups, and we examined data at a genus level to determine whether the conclusion remains similar. Nematodes were extracted from roots and soil of loblolly pine (Pinus taeda) and sweet gum (Liquidambar styraciflua) forests fumigated with either ambient air or CO2-enriched air. Root length and nematode biomass were estimated using video image analysis. Most common genera included Acrobeloides, Aphelenchoides, Cephalobus, Ditylenchus, Ecphyadorphora, Filenchus, Plectus, Prismatolaimus, and Tylencholaimus. Maturity Index values and diversity increased with elevated CO2 in loblolly pine but decreased with elevated CO2 in sweet gum forests. Elevated CO2 treatment affected the occurrence of more nematode genera in sweet gum than loblolly pine forests. Numbers were similar but size of Xiphinema decreased in elevated CO2. Abundance, but not biomass, of Aphelenchoides was reduced by elevated CO2. Treatment effects were apparent at the genus levels that were masked at the trophic level. For example, bacterivores were unaffected by elevated CO2, but abundance of Cephalobus was affected by CO2 treatment in both forests.  相似文献   

18.
Annual carbon budgets of ecosystems are central to our understanding of the biotic control of atmospheric composition, but they are not available under elevated CO2 for most vegetation types. Using gas exchange techniques, we assessed carbon fluxes of four early successional Mediterranean model communities, consisting of grasses, legumes and composites. The assemblages were grown on the same monoliths for three consecutive years in greenhouses tracking field conditions except for CO2 maintained at ambient (370 μmol mol?1) or elevated (700 μmol mol?1) concentration. During the third year of study, CO2 enrichment consistently shifted the annual carbon balance towards lower efflux, with displacements between 4.3 and 26.2 mol m?2 y?1 (one assemblage became a net CO2 sink, another just reached equilibrium, and the remaining two remained as a CO2 source). At least 50% of the shift under elevated CO2 originated from a decrease in belowground respiration. This indicates that, during this year, CO2 enrichment did not predominantly enhance C‐cycling, but on the contrary inhibited root respiration or microbial C‐utilization. Although elevated‐CO2‐grown systems acted as a net CO2 sink during a longer period of the year (4–7 months) compared with ambient‐CO2‐grown systems (3–3.5 months), gross canopy photosynthesis was modified only to a limited extent (between ?5.9 and + 14.8%). Interaction between the carbon and the water cycle was apparently responsible for this weak stimulation. In particular, reduced evapotranspiration under elevated CO2 coincided with inhibited canopy photosynthesis in early spring, most likely resulting from water saturation of the soil. In addition, only the earliest‐planted assemblages had an increased gross canopy photosynthesis during late autumn and early winter. This suggests that a longer summer drought, by delaying the establishment of such an annual type of vegetation, would reduce the positive impact of elevated CO2 on productivity. Water regime appears to strongly govern the influence of CO2 on the carbon fluxes in Mediterranean ecosystems with annual herbaceous vegetation.  相似文献   

19.
Increasing the belowground translocation of assimilated carbon by plants grown under elevated CO2 can cause a shift in the structure and activity of the microbial community responsible for the turnover of organic matter in soil. We investigated the long‐term effect of elevated CO2 in the atmosphere on microbial biomass and specific growth rates in root‐free and rhizosphere soil. The experiments were conducted under two free air carbon dioxide enrichment (FACE) systems: in Hohenheim and Braunschweig, as well as in the intensively managed forest mesocosm of the Biosphere 2 Laboratory (B2L) in Oracle, AZ. Specific microbial growth rates (μ) were determined using the substrate‐induced respiration response after glucose and/or yeast extract addition to the soil. For B2L and both FACE systems, up to 58% higher μ were observed under elevated vs. ambient CO2, depending on site, plant species and N fertilization. The μ‐values increased linearly with atmospheric CO2 concentration at all three sites. The effect of elevated CO2 on rhizosphere microorganisms was plant dependent and increased for: Brassica napus=Triticum aestivum<Beta vulgaris<Populus deltoides. N deficiency affected microbial growth rates directly (N limitation) and indirectly (changing the quantity of fine roots). So, 50% decrease in N fertilization caused the overall increase or decrease of microbial growth rates depending on plant species. The μ‐value increase was lower for microorganisms growing on yeast extract then for those growing on glucose, i.e. the effect of elevated CO2 was smoothed on rich vs. simple substrate. So, the r/K strategies ratio can be better revealed by studying growth on simple (glucose) than on rich substrate mixtures (yeast extract). Our results clearly showed that the functional characteristics of the soil microbial community (i.e. specific growth rates) rather than total microbial biomass amount are sensitive to increased atmospheric CO2. We conclude that the more abundant available organics released by roots at elevated CO2 altered the ecological strategy of the soil microbial community specifically a shift to a higher contribution of fast‐growing r‐selected species was observed. These changes in functional structure of the soil microbial community may counterbalance higher C input into the soil under elevated atmospheric CO2 concentration.  相似文献   

20.
Photosynthesis and Plant Growth at Elevated Levels of CO2   总被引:5,自引:0,他引:5  
In this review, we discuss the effects of elevated CO2 levelson photosynthesis in relation to the whole plant growth in terrestrialhigher C3 plants. Short-term CO2 enrichment stimulates the rateof photosynthesis. Plant mass is also enhanced by CO2 enrichment.However, the effects of long-term CO2 enrichment on photosynthesisare variable. Generally, the prolonged exposure to CO2 enrichmentreduces the initial stimulation of photosynthesis in many species,and frequently suppresses photosynthesis. These responses areattributed to secondary responses related to either excess carbohydrateaccumulation or decreased N content rather than direct responsesto CO2. Accumulation of carbohydrates in leaves may lead tothe repression of photosynthetic gene expression and excessstarch seems to hinder CO2 diffusion. Therefore, the specieswhich have the sink organs for carbohydrate accumulation donot show the suppression of photosynthesis. The suppressionof photosynthesis by CO2 enrichment is always associated withdecreases in leaf N and Rubisco contents. These decreases arenot due to dilution of N caused by a relative increase in theplant mass but are the result of a decrease in N allocationto leaves at the level of the whole plant, and the decreasein Rubisco content is not selective. Leaf senescence and plantdevelopment are also accelerated by CO2 enrichment. However,they are independent of each other in some species. Thus, variousresponses to CO2 observed at the level of a single leaf resultfrom manifold responses at the level of the whole plant grownunder conditions of CO2 enrichment. (Received July 8, 1999; Accepted August 12, 1999)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号