首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in the anionic charge distribution at the luminal face of the endothelium of the sinusoids of the bone marrow have been studied at sites of endocytosis by large bristle coated vesicles and at the sites of molecular permeability through diaphragmed fenestrae. The anionic charge distribution has also been studied at the abluminal aspect of these vessels at sites of transmural blood cell passage. Cationic surface markers such as colloidal iron, native ferritin and polycationic ferritin used at low pH, 1.8, and the use of neuraminidase show that the nonmodified endothelial cell surface has exposed sialic acid groups, which are absent at the sites of these functional specializations. Polycationic ferritin binding over a range of pH levels indicates the prsence of another species of anionic materials present at both the nonmodified cell surface and at the sites of the cell surface modifications. This second group of anionic compounds is neuraminidase resistant and has a pKa higher than that of sialic acid (pKa:2.6).  相似文献   

2.
The ability of anionic groups on the luminal surface of blood vessels to redistribute by lateral migration under the influence of multivalent ligands was analyzed by electron microscopy, using cationized ferritin (CF). In vitro interaction of blood vessel segments with CF results in rapid aggregation of most anionic sites on the luminal fromt of the endothelium, followed by internalization or detachment of the CF patches, leaving most of the luminal surface devoid of anionic sites. Further incubation of such endothelial cells without CF results in regeneration of binding capacity for the polycationic label. Transport of CF, but not of native ferritin, across the endothelium by vesicle transport, followed by exocytosis of the interiorized CF clusters on the tissue front of the endothelium, was also observed. The possibility that such activities in the blood vessels in vivo may be associated with local changes in the normal distribution of the surface anionic sites as well as in accumulation of debris in the subendothelial layers of the vessels is suggested.  相似文献   

3.
Distribution of anionic sites on the oviduct ciliary membrane   总被引:2,自引:1,他引:1       下载免费PDF全文
Polycationic ferritin (PCF) was used as a visual probe for anionic sites on the oviduct ciliary membrane. The binding of PCF to ciliary membranes was dependent on the concentration of the probe in the incubation media. At low concentrations (0.08-0.16 mg/ml), PCF was bound exclusively to the tip of the cilium whereas at higher concentrations (0.32-0.64 mg/ml), ferritin was located at the tip and at the base around the transition region, with occasional scattered clumps on the remainder of the membrane. The base and tip binding was fount to be associated with special surface modifications of the membrane in these regions. At the tip, PCF was bound to a filamentous glycocalyx termed the ciliary crown. Base binding was associated with a system of five to six 140-A high ridges, each of which encircled the membrane of the transition region. The ridges were equally spaced (approxamately 245 A spacing) along the length of the transition region. Since pretreatment of oviduct with either neuraminidase or protease blocked the binding of the probe, the PCF-binding sites appear to be negatively charged glycoproteins or mucopolysaccharides.  相似文献   

4.
Sialic acid is a cell surface component of Entamoeba invadens trophozoites   总被引:1,自引:0,他引:1  
The surface anionic groups of Entamoeba invadens were analysed by cell electrophoresis, by ultrastructural cytochemistry, and by identification of sialic acids using paper and gas-liquid chromatography. Binding of colloidal iron hydroxide (CIH) and of cationized ferritin (CF) particles at pH 1.8 and 7.2, respectively, was observed on the cell surface. E. invadens has a highly negative surface charge (-0.96 microns s-1 V-1 cm). Treatment of the cells with trypsin and neuraminidase significantly reduced the electrophoretic mobility by 24% and 40%, respectively. Treatment of the amoebae with neuraminidase also markedly decreased the binding of CIH to the cell surface. This finding suggests that sialic acid residues are the major anionogenic groups exposed on the surface of E. invadens. Paper and gas-liquid chromatography showed that N-acetylneuraminic acid was the only derivative characterized in E. invadens.  相似文献   

5.
To study the regulation of cellular and molecular traffic across the marrow-blood barrier, rat marrow endothelial surface was incubated with ferritin-conjugated concanavalin A, wheat germ agglutinin (WGA), recinus communis agglutinin I, and phytohemagglutinin. Normal animals were compared with those after erythropoietic stimulation (phenylhydrazine-induced hemolysis, phlebotomy). A selective and significant reduction in the density of WGA receptors, but not other lectins was noted congruent to the degree of reticulocytosis. Neuraminidase treatment also reduced WGA binding sites and the surface negative charge as detected by polycationic ferritin (PCF). Thus, the reduction in WGA binding sites, may reflect a decrease in the density of membrane sialic acid, rendering the endothelial surface charge less negative and providing an electrostatic attraction for the negatively charged surface of reticulocytes. The findings may also be explained by an increase in the frequency of WGA-excluding fenestrae in the endothelium. These areas, lacking sialic acid, may provide unstable areas in the membrane suitable for the passage of cells and molecules in both directions. It is concluded that, by modulating the density of sialic acid residues, the endothelium may regulate the traffic of cells and molecules across the marrow-blood barrier.  相似文献   

6.
Glomerular development was studied in the newborn rat kidney by electron microscopy and cytochemistry. Glomerular structure at different developmental stages was related to the permeability properties of its components and to the differentiation of anionic sites in the glomerular basement membrane (GBM) and on endothelial and epithelia cell surfaces. Cationic probes (cationized ferritin, ruthenium red, colloidal iron) were used to determine the time of appearance and distribution of anionic sites, and digestion with specific enzymes (neuraminidase, heparinase, chondroitinases, hyaluronidases) was used to determine their nature. Native (anionic) ferritin was used to investigate glomerular permeability. The main findings were: (a) The first endothelial fenestrae (which appear before the GBM is fully assembled) possess transient, negatively charged diaphragms that bind cationized ferritin and are impermeable to native ferritin. (b). Two types of glycosaminoglycan particles can be identified by staining with ruthenium red. Large (30-nm) granules are seen only in the cleft of the S-shaped body at the time of mesenchymal migration into the renal vesicle. They consist of hyaluronic acid and possibly also chondroitin sulfate. Smaller (10-15-nm) particles are seen in the earliest endothelial and epithelial basement membranes (S-shaped body stage), become concentrated in the laminae rarae after fusion of these two membranes to form the GBM, and contain heparan sulfate. They are assumed to be precursors of the heparan sulfate-rich granules present in the mature GBM. (c) Distinctive sialic acid-rich, and sialic acid-poor plasmalemmal domains have been delineated on both the epithelial and endothelial cell surfaces. (d) The appearance of sialoglycoproteins on the epithelial cell surface concides with the development of foot processes and filtration slits. (e) Initially the GBM is loosely organized and quite permeable to native ferritin ;it becomes increasinly impermeable to ferritin as the lamina densa becomes more compact. (f) The number of endothelial fenestrae and open epithelial slits increases as the GBM matures and becomes organized into an effective barrier to the passage of native ferritin.  相似文献   

7.
Sialic acids, occupying a terminal position in cell surface glycoconjugates, are major contributors to the net negative charge of the vascular endothelial cell surface. As integral membrane glycoproteins, LDL receptors also bear terminal sialic acid residues. Pretreatment of near-confluent, cultured bovine aortic endothelial cells (BAEC) with neuraminidase (50 mU/ml, 30 min, 37 degrees C) stimulated a significant increase in receptor-mediated 125I-LDL internalization and degradation relative to PBS-treated control cells. Binding studies at 4 degrees C revealed an increased affinity of LDL receptor sites on neuraminidase-treated cells compared to control BAEC (6.9 vs. 16.2 nM/10(6) BAEC) without a change in receptor site number. This enhanced LDL endocytosis in neuraminidase-treated cells was dependent upon the enzymatic activity of the neuraminidase and the removal of sialic acid from the cell surface. Furthermore, enhanced endocytosis due to enzymatic alteration of the 125I-LDL molecules was excluded. In contrast to BAEC, neuraminidase pretreatment of LDL receptor-upregulated cultured normal human fibroblasts resulted in an inhibition of 125I-LDL binding, internalization, and degradation. Specifically, a significant inhibition in 125I-LDL internalization was observed at 1 hr after neuraminidase treatment, which was associated with a decrease in the number of cell surface LDL receptor sites. Like BAEC, neuraminidase pretreatment of human umbilical vein endothelial cells resulted in enhanced receptor-mediated 125I-LDL endocytosis. These results indicate that sialic acid associated with either adjacent endothelial cell surface molecules or the endothelial LDL receptor itself may modulate LDL receptor-mediated endocytosis and suggest that this regulatory mechanism may be of particular importance to endothelial cells.  相似文献   

8.
We propose here the use of freeze-fracture to gain access and to label in vitro glomerular components and locate WGA receptors and anionic sites. Tissues are frozen, fractured under liquid nitrogen, and thawed. Freeze-fracture rendered all glomerular structures directly accessible to the reagents. This made possible study of the nature and topology of cationized ferritin and WGA binding sites. WGA-gold complexes were observed over plasma membranes of podocytes and of endothelial and mesangial cells. Labeling of podocytes and endothelial cells was similar in the mesangial area and in the peripheral part of the capillary loop. Cross-fractures of extracellular matrices showed that WGA bound uniformly to the glomerular basement membrane (GBM) as well as to mesangial matrix. In fractured specimens treated with neuraminidase, WGA was no longer observed over podocytes but it consistently labeled the surface of endothelial and mesangial cells. Whereas in GBM cross-sections WGA binding was greatly reduced or even abolished, it remained unmodified in the mesangium. This shows that only NeuNAc (sialic acid) might account for the binding of WGA to podocytes, whereas GlcNAcs appear to be the main WGA binding sites on endothelial and mesangial cells and in the mesangial matrix. Both NeuNAc and GLcNAc residues are probably associated in GBM. With cationized ferritin (pI 8.3) at pH 7.4, intense, continuous labeling was seen all over the different plasma membranes, denser in podocytes than in endothelial cells. CF was also observed in cross-fractured profiles of extracellular matrices and never appeared agglutinated in discrete sites.  相似文献   

9.
Bioelectric surface properties of the high and low tumor-producing cell lines, NCTC 2472 and NCTC 2555, respectively, were determined by cationic ferritin binding and the electrophoretic mobility of intact cells. Measurements of anionic sites were bases on the number of cationic ferritin particles per 0.01 mu 2 that were electronically tagged and counted by an image analyzer. The average particle count was 45 for the control "high" cells and 34 for the control "low" cells. The surface charge densities, expressed as electrostatic units per cm-2 x 10(-13) were 2.34 and 1.18 at 50 V (2 mA) for the "high" and "low" control cells, respectively. Enzymic cleavage of sialic acid and other carbohydrate moieties resulted in up to an 81% reduction in the charge densities and a 57% reduction of the anionic sites of the "high" cells. The electrophoretic mobility of cells with bound cationic ferritin showed that up to 50% of the exposed anionic sites fail to bind cationic ferritin. Preliminary findings on the particle size/distribution by image analysis showed wide ranges in both particle size and interparticle distances that may limit cationic ferritin binding.  相似文献   

10.
We propose a new method for ultrastructural localization of cell surface anionic sites. The method consists of sequential interaction of aldehyde-fixed cells with a polycationic reagent, poly-L-lysine (PL), followed by secondary interaction with a negatively charged marker, ferritin. By use of PL of low molecular weight (4000) on aldehyde-pre-fixed red blood cells and macrophages, the reaction resulted in binding of ferritin particles to cell surface anionic sites with a density distribution resembling that of cationized ferritin (CF). The density of the attached ferritin molecules increased in direct correlation with the MW of PL used. The primary PL interaction can be carried out at low pH (less than 2), thus restricting the labeling mainly to membrane-bound sialyl residues.  相似文献   

11.
Binding characteristics of Hyphantria cunea nuclear polyhedrosis virus (HcNPV) to Spodoptera frugiperda 21 (Sf21) cells was determined. The cells displayed an affinity of 0.9 × 1010 M-1 with about 8900 binding sites per cell. The biochemical nature of HcNPV-binding sites on the cell surface was also partially elucidated. There were 45 to 49% reductions in HcNPV binding following the pretreatment of cells with three proteases, suggesting the involvement of a cellular protein component in virus binding. Tunicamycin, which inhibits N-linked glycosylation and the expression of some membrane proteins on the cell surface, reduced virus binding suggesting a role for glycoprotein(s) in binding. Treatment of cells with wheat germ agglutinin or neuraminidase did not measurably reduce virus binding, indicating that oligosaccharides containing N-acetylglucosamine or sialic acid are not directly involved in HcNPV attachment. The negative effect of methylamine on HcNPV binding seems to be due to the fact that HcNPV entry via an endocytic pathway is blocked by the increased pH of the endosome. Data on energy inhibitors (sodium azide and dinitrophenol) indicates that HcNPV attachment to Sf21 cells may be closely linked to viral entry via receptor-mediated endocytosis. These findings suggest that the binding site moiety has a glycoprotein component, but that direct involvement of oligosacccharides containing N-acetylglucosamine or sialic acid residues in binding is unlikely, and that HcNPV attachment to Sf21 cells might be via receptor-mediated endocytosis. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
Summary A new endothelial cell structure, named the endothelial pocket, has been found by combined transmission and scanning electron microscopic studies of renal peritubular capillaries. Transmission EM observations made on these and other fenestrated capillaries demonstrated that each pocket consists of an attenuated fold of fenestrated endothelium that projects 200 nm into the lumen above the rest of the endothelial surface. Beneath this luminal fold, there is a space and then another layer of fenestrated endothelium which abuts the basal lamina. The linear density of endothelial pockets was measured in the capillaries of the kidney cortex, intestinal mucosa and exocrine pancreas in mice and determined to be 0.067, 0.017 and 0.007 pockets·m-1 respectively. Cationic ferritin decoration of the anionic sites on the luminal surface of the endothelium in these capillary beds revealed that both unlabelled and labelled diaphragms are clustered. In such specimens, the majority of the luminal diaphragms on endothelial pockets did not have cationic ferritin binding sites detectable by either scanning or transmission EM. On this account as well as on account of their general morphology, endothelial pockets appear to be multifold versions of the simple transendothelial channel.  相似文献   

13.
Summary The endothelial glycocalyx, a polyanionic structure which may regulate the passage of solutes and water through the endothelium, readily binds cationic ferritin (CF). In normal, nonexchange-transfused rats, however, only 7.5% and 6.0% of the luminal plasma membrane and 7.5% and 5.0% of vesicle diaphragms on the thick and thin side of pulmonary capillaries, respectively, bound cationic ferritin. With the graded removal of circulating proteins by exchange transfusion with fluorocarbon emulsion, up to 89 and 82% of the luminal surface, and 76 and 73% of vesicle diaphragms on the thick and thin sides, respectively, bound CF. Although the extent of binding on the thin side was consistently less than on the thick side, the difference was not statistically significant. The extensive binding of CF to the glycocalyx in totally exchange-transfused rats was completely reversible upon addition of lyophilized rat serum protein to the perfusate. These data suggest that in vivo anionic sites of the endothelial glycocalyx are partially masked by adsorbed plasma proteins.  相似文献   

14.
Fc receptors on the luminal membranes of intestinal epithelial cells in the neonatal rat mediate the vesicular transfer of functionally intact IgG from the intestinal lumen to the circulation. In addition, there is a low level of nonselective protein uptake, but in this case transfer does not occur. To determine whether a specialized class of endocytic vesicles could account for the selective transfer of IgG, mixtures of IgG conjugated to ferritin (IgG-Ft) and unconjugated horseradish peroxidase (HRP) were injected together into the proximal intestine of 10-d-old rats, and the cellular distribution of these two different tracers was determined by electron microscopy. Virtually all apical endocytic vesicles contained both tracers, indicating simultaneous uptake of both proteins within the same vesicle. However, only IgG-Ft bound to the apical plasma membrane, appeared within coated vesicles at the lateral cell surface, and was released from cells. HRP did not bind to the luminal membrane and was not transferred across cells but was confined to apical lysosomes as identified by acid phosphatase and aryl sulfatase activities. To test the possibility that the binding of IgG to its receptor stimulated endocytosis, HRP was used as a fluid volume tracer, and the amount of HRP taken up by cells in the presence and absence of IgG was measured morphologically and biochemically. The results demonstrate that endocytosis in these cells is constitutive and occurs at the same level in the absence of IgG. The evidence presented indicates that the principal selective mechanism for IgG transfer is the binding of IgG to its receptor during endocytosis. Continued binding to vesicle membranes appears to be required for successful transfer because unbound proteins are removed from the transport pathway before exocytosis. These results favor the proposal that IgG is transferred across cells as an IgG-receptor complex.  相似文献   

15.
Pial microvessels have commonly been used in studies of the blood-brain barrier because of their relative accessibility. To determine the validity of using the pial microvessel as a model system for the blood-brain barrier, we have extended the comparison of pial and cerebral microvessels at the molecular level by a partial characterization of the glycocalyx of pial endothelial cells, in view of the functional importance of anionic sites within the glycocalyx. Rat optic nerves were fixed by vascular perfusion. Anionic sites on the endothelium were labelled with cationic colloidal gold by means of post- and pre-embedding techniques. The effects of digestion of ultrathin sections on subsequent gold labelling was quantified following their treatment with a battery of enzymes. Biotinylated lectins, viz. wheat germ agglutinin and concanavalin A with streptavidin gold, were employed to identify specific saccharide residues. The results demonstrate that the luminal glycocalyx of pial microvessels is rich in sialic-acid-containing glycoproteins. Neuraminidase, which is specific for N-acetylneuraminic (sialic) acid, and papain (a protease with a wide specificity) significantly reduce cationic colloidal gold binding to the luminal endothelial cell plasma membrane. Wheat germ agglutinin (with an affinity for sialic acid) binds more to the luminal than abluminal plasma membrane, whereas concanavalin A, which binds mannose, binds more to the abluminal surface. Similar results have been obtained for cerebral cortical endothelial cells. With respect to these molecular characteristics, therefore, the pial and cortical microvessels appear to be the same. However, since the two vessel types differ in other respects, caution is urged regarding the use of pial microvessels to investigate the blood-brain barrier. Received: 22 July 1996 / Accepted: 11 October 1996  相似文献   

16.
The distribution and mobility of anionic sites on the surfaces of baby hamster kidney cells were studied by utilizing the multivalent ligand, polycationic ferritin, as a visual probe. Our observations revealed that anionic sites are distributed over the entire cell surface, with the highest density of sites being located on cell surface microextensions. Following the initial binding of polycationic ferritin to the surface of unfixed cells, the ligand-bound anionic sites redistributed by migrating from the surface of microextensions to the surface of the cell body. In 20 min, this migration resulted in a total clearing of anionic sites from the surface of microextensions concomitant with the formation of patches of anionic sites on the surface of the cell body. Polycationic ferritin-induced migration and patch formation of anionic sites was not prevented by 2,4- dinitrophenol, N-ethylmaleimide, colchicine, or cytochalasin B. However, the ligand-induced redistribution of cell surface anionic sites was prevented by prefixation of cells with glutaraldehyde.  相似文献   

17.
Summary The intestinal epithelium of Ascaris suum consists of a single layer of tall columnar epithelial cells that rest on a thick basal membrane in contact with the pseudocoelomic cavity. Experiments were conducted on glutaraldehyde-fixed tissue to ascertain the nature of the electronegative charges associated with both the apical microvillar surface and basal membrane.A strong electronegative charge was demonstrated on the microvillar surface and basal membrane with ruthenium red and cationic ferritin staining. The ionic nature of ferritin binding was demonstrated with poly-L-lysine, a polycation that interacts with anionic groups on the membrane and thus blocks the subsequent binding of ferritin. Tissue thus treated was devoid of reaction product. Methylation with diazomethane completely abolished staining. Since the stronger acidic groups of sulfates or phosphates would not be protonated under the conditions employed in this study, and therefore susceptible to methylation, staining by ferritin is thought to be due to its interaction with carboxyl groups. Prior enzymatic treatment of tissue with neuraminidase or phospholipase C had no effect on subsequent ferritin binding. Tissue exposed to colloidal iron at various pH values showed maximal reactivity at a pH of 2.5 or above. Above pH 2.5, the dissociation of protons from free carboxyl groups of protein-bound amino-acid residues with pK's of 3.8 and 4.2 would be maximal, and the ionized carboxyl groups are then available to interact with iron micelles. These results suggest the presence of weaker acidic groups, such as the carboxyl groups of acidic amino acids or uronic acid residues. The stronger acidic groups of sialic acid and the esterified sulfate groups, if present, contribute only minimally to overall staining. These results demonstrate that a high electronegative charge density exists, despite the apparent lack of sialic acid. Staining is believed to be due to carboxyl groups of acidic amino acids and/or carboxyl groups or uronic acid residues.Part of this work was conducted at the Department of Zoology, Louisiana State University, Baton Rouge, Louisiana  相似文献   

18.
A method is described to determine relative numbers of anionic sites on the surfaces of cells under physiological conditions by binding studies with radiolabeled polycationic ferritin. Labeling of cells by polycationic ferritin occurred very rapidly even at 2°C and was essentially complete within 1 min. At 22°C, a rapid initial phase of labeling was followed by a second, slower binding phase. The interaction of rapidly labeled cell surface anionic sites with polycationic ferritin had a binding constant of 3.6 × 106m?1 (measured at 2°C) and there were about 4 × 106 of these sites per cell.  相似文献   

19.
1. Human skin fibroblasts internalize homologous sulphated proteoglycans by adsorptive endocytosis. Endocytosis rate is half maximal when the concentration of the proteoglycans is 0.1 nM. At saturation, a single fibroblast may endocytose up to 8 X 10(6) proteoglycan molecules/h. 2. The kinetics of prote;glycan binding to the cell surface suggest the presence of 6 X 10(5) high-affinity binding sites per cell. The bulk of sulphated proteoglycans associates to low-affinity binding sites on the cell surface. 3. Glycosaminoglycans and other anionic macromolecules inhibit endocytosis of sulphated proteoglycans non-competitively. The lack of interaction of glycosaminoglycans with the cell-surface receptors for sulphated proteoglycans suggests that the protein core of proteoglycans is essential for binding to the cell surface. 4. The effects of trypsin, cell density, serum concentration and medium pH on endocytosis and degradation of endocytosed sulphated proteoglycans is described. 5. A comparison of the number of the high-affinity binding sites and the number of molecules endocytosed with respect to time suggests a recycling of the proteoglycan receptors between the cell surface and the endocytotic vesicles and/or the lysosomes.  相似文献   

20.
The events leading to lysosomal activity in the sinus endothelium of the rat liver have been studied by means of intravascularly injected ferritin at time intervals ranging from 0.5 min to 1 hr after administration. From 6 min on, the dense body-type lysosomes contain ferritin. There are direct luminal communications of transfer tubules with these lysosomes. In time, there is a marked progressive increase in the number of ferritin-containing dense body-type lysosomes. No formation of lysosomes de novo nor a direct fusion of endosomes with lysosomes has been observed. Endosomes, however, continue to be formed as endocytosis continues. These observations are interpreted as indicating a transport of hydrolytic enzymes by the transfer tubules to the newly formed ferritin containing endosomes, which in this way are transformed into ferritin containing lysosomes. The ferritin-containing lysosomes increase considerably in size by fusing with each other. Continued endocytosis of ferritin leads to an increase of ferritin density in the dense bodies. This increase in particle density cannot be explained solely on the basis of transport by luminal fusion of the endocytic organelles, but requires an active transport mechanism. Administration of low doses of ferritin shows that the bristle coated pits of the sinus endothelium have a high degree of in vivo affinity for protein and that this endothelium must be considered to be an avid catabolic endocytic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号