首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Patients with Chagas' disease or different clinical forms of leishmaniasis (cutaneous or visceral) have elevated galactosyl alpha (1-3)galactose antibodies. Using colloidal gold immunocytochemistry--monoclonal antibody gal-13 (specific for lipid-linked galactosyl alpha (1-3)galactose residues) and anti-nidogen antibodies and lectin cytochemistry (Bandeiraea simplicifolia IB4), both techniques specific for demonstrating galactosyl alpha (1-3)galactose residues--we have found terminal disaccharide residues on the Trypanosoma cruzi external surface of Vero cell-derived trypomastigotes but not in intact epimastigotes (although disrupted epimastigotes strongly stained), in the lips of the flagellar pocket, and on the parasitic side exactly opposite to the flagellar pocket in amastigote and promastigote forms of American Leishmania. These results resemble those obtained using anti-laminin antibodies in both trypanosomatids. In addition, results obtained with anti-nidogen antibodies seem to recognize in Trypanosoma cruzi and American Leishmania culture forms another different unknown terminal disaccharide. These results confirm the presence of terminal galactosyl alpha (1-3)galactose residues in both trypanosomatids, and that rabbit anti-laminin antibodies are indeed also recognizing galactosyl alpha (1-3)galactose residues as demonstrated for human circulating antibody. The presence of abundant galactosyl alpha (1-3)galactose residues on Trypanosomatid family members suggests a specific unknown role in parasite physiology for this terminal disaccharide.  相似文献   

2.
The flagellar calcium-binding protein (FCaBP) of Trypanosoma cruzi is localized to the flagellar membrane in all life cycle stages of the parasite. Myristoylation and palmitoylation of the N terminus of FCaBP are necessary for flagellar membrane targeting. Not all dually acylated proteins in T. cruzi are flagellar, however. Other determinants of FCaBP therefore likely contribute to flagellar specificity. We generated T. cruzi transfectants expressing the N-terminal 24 or 12 amino acids of FCaBP fused to GFP. Analysis of these mutants revealed that although amino acids 1-12 are sufficient for dual acylation and membrane binding, amino acids 13-24 are required for flagellar specificity and lipid raft association. Mutagenesis of several conserved lysine residues in the latter peptide demonstrated that these residues are essential for flagellar targeting and lipid raft association. Finally, FCaBP was expressed in the protozoan Leishmania amazonensis, which lacks FCaBP. The flagellar localization and membrane association of FCaBP in L. amazonensis suggest that the mechanisms for flagellar targeting, including a specific palmitoyl acyltransferase, are conserved in this organism.  相似文献   

3.
Antibodies against laminin were determined by ELISA in forty six patients suffering from Chagas' disease and twenty healthy persons (control group). The patients were divided into three groups according to the severity of clinical, electrocardiographic and echocardiographic studies. Histologic, ultrastructural and immunohistochemical studies were made of endomyocardial biopsy specimens from 10 of these patients with chronic Chagasic cardiomyopathy. Antibodies to laminin were detected in 50% of the patients in each of the three groups. However analysis of the data did not allow us to determine any significant correlation among the severity of the different clinical and non-invasive studies and the level of circulating antibodies to laminin. The highest titers of antilaminin antibodies were detected in the group with severe cardiological alterations (37% of the patients). Histological and electron microscopic observation of myocardial biopsies disclosed marked thickening of the basement membranes of the myocytes, endothelial cells and vascular smooth muscle cells. Light (peroxidase-labeled antibodies) and electron (gold-conjugated antibody) microscopic immunohistochemical methods revealed a positive reaction for laminin in these thickened basement membranes. This thickening may develop as a consequence of: a) an immunologic reaction which is triggered by the presence of a laminin-like molecule on the surfaces of T. cruzi amastigotes and trypomastigotes; b) an immunologic response to direct injury of basement membranes causing some of their components to become antigenic; c) myocardial fibrosis, with synthesis of new connective tissue components, and d) a combination of the preceding factors. The relationship of these changes to antilaminin antibodies remains unclear. From these results, it is not possible to assure a physiopathogenic role for antibodies to laminin in chronic Chagas' cardiomyopathy.  相似文献   

4.
Leishmaniasis and Chagas' are parasitic protozoan diseases that affect the poorest population in the world, causing a high mortality and morbidity. As a result of highly toxic and long-term treatments, novel, safe and more efficacious drugs are essential. In this work, the CH(2)Cl(2) phase from MeOH extract from the leaves of Baccharis retusa DC. (Asteraceae) was fractioned to afford two flavonoids: naringenin (1) and sakuranetin (2). These compounds were in vitro tested against Leishmania spp. promastigotes and amastigotes and Trypanosoma cruzi trypomastigotes and amastigotes. Compound 2 presented activity against Leishmania (L.) amazonensis, Leishmania (V.) braziliensis, Leishmania (L.) major, and Leishmania (L.) chagasi with IC(50) values in the range between 43 and 52 μg/mL and against T. cruzi trypomastigotes (IC(50)=20.17 μg/mL). Despite of the chemical similarity, compound 1 did not show antiparasitic activity. Additionally, compound 2 was subjected to a methylation procedure to give sakuranetin-4'-methyl ether (3), which resulted in an inactive compound against both Leishmania spp. and T. cruzi. The obtained results indicated that the presence of one hydroxyl group at C-4' associated to one methoxyl group at C-7 is important to the antiparasitic activity. Further drug design studies aiming derivatives could be a promising tool for the development of new therapeutic agents for Leishmaniasis and Chagas' disease.  相似文献   

5.
The mechanisms by which proteins are targeted to the membrane of eukaryotic flagella and cilia are largely uncharacterized. We have identified a new family of small myristoylated proteins (SMPs) that are present in Leishmania spp and related trypanosomatid parasites. One of these proteins, termed SMP-1, is targeted to the Leishmania flagellum. SMP-1 is myristoylated and palmitoylated in vivo, and mutation of Gly-2 and Cys-3 residues showed that both fatty acids are required for flagellar localization. SMP-1 is associated with detergent-resistant membranes based on its recovery in the buoyant fraction after Triton X-100 extraction and sucrose density centrifugation and coextraction with the major surface glycolipids in Triton X-114. However, the flagellar localization of SMP-1 was not affected when sterol biosynthesis and the properties of detergent-resistant membranes were perturbed with ketoconazole. Remarkably, treatment of Leishmania with ketoconazole and myriocin (an inhibitor of sphingolipid biosynthesis) also had no affect on SMP-1 localization, despite causing the massive distension of the flagellum membrane and the partial or complete loss of internal axoneme and paraflagellar rod structures, respectively. These data suggest that flagellar membrane targeting of SMP-1 is not dependent on axonemal structures and that alterations in flagellar membrane lipid composition disrupt axoneme extension.  相似文献   

6.
Godsel LM  Engman DM 《The EMBO journal》1999,18(8):2057-2065
The mechanisms by which proteins are targeted to flagella and cilia are poorly understood. We set out to determine the basis for the specific localization of a 24 kDa flagellar calcium-binding protein (FCaBP) expressed in all life cycle stages of Trypanosoma cruzi. Through the study of trypanosome transfectants expressing various FCaBP deletion mutants, we found that the N-terminal 24 amino acids of the protein are necessary and sufficient for flagellar localization. Subsequent experiments revealed that FCaBP is myristoylated and palmitoylated and, in fact, is one of very few proteins in the cell possessing these acyl modifications. Both fatty acids are required for flagellar localization, suggesting that FCaBP localization may be mediated through association with the flagellar plasma membrane. Indeed, FCaBP associates with the flagellar membrane in a calcium-dependent manner, reminiscent of the recoverin family of calcium-myristoyl switch proteins. Thus, FCaBP is a novel member of the calcium-acyl switch protein family and is the only member described to date that requires two fatty acid modifications for specific membrane association. Its unique localization mechanism is the first described for any flagellar protein. The existence of such a protein in this protozoan suggests that acylation and calcium switch mechanisms for regulated membrane association are conserved among eukaryotes.  相似文献   

7.
The distribution of tubulin domains in the mammalian stages of Trypanosoma cruzi was investigated by using monoclonal antibodies elicited against bovine brain tubulin. Western blotting performed on T. brucei trypomastigotes and T. cruzi epimastigotes showed that the monoclonal antibodies 16D3 and 24E3 reacted only with tubulin in these cell types. Indirect immunofluorescence revealed that, whereas 16D3 stained all microtubules, including subpellicular microtubules, the epitope defined by 24E3 was found in only a part of the tubulin pool of amastigotes and intermediate stages infecting murine fibroblasts and of broad trypomastigotes; the staining was limited to the basal bodies and the distal region of the flagellar adhesion zone in these developmental forms. By contrast, slender trypomastigotes did not exhibit any reaction with 24E3. These results are consistent with a transformation of broad trypomastigotes into slender trypomastigotes during which the tubulin domain recognized by 24E3 would undergo modifications leading to its complete masking in slender forms. The morphogenesis of the mammalian stages of T. cruzi would involve modifications of the tubulin molecule.  相似文献   

8.
Laminin is a complex extracellular matrix molecule consisting of one A-subunit (Mr400KD) and 3 B-subunits (Mr220KD) and is found in the basement membrane. Even though it is now apparent that different cell types are synthesizing laminin-like molecules, the role of these molecules in different systems is not well understood. We have characterized laminin and raised specific antiserum in rabbits. The distribution of laminin was studied by indirect immunofluorescence in different cells such as PFHR-9, WI-38, MRC-5, CHO, 3T3, WI38VA132RA, RAW264-7 and Ki3T3. All normal and transformed cells display a high amount of intracellular submembranous network-like component cross-reacting with antilaminin serum (anti-Lm) and not with anti-fibronectin (anti-Fn) serum as seen by immunofluorescence in permeabilized cells. Preabsorption of anti-Lm with increasing amounts of laminin progressively decreased the staining of the submembranous network. Anti-Lm sera from four other laboratories also showed similar staining pattern. The structural and non-secretory nature of this submembranous staining was confirmed by (a) inhibiting protein synthesis in 0.5% serum and 4 micrograms/ml puromycin and (b) by immunoelectron microscopy of permeabilized cells. Immunoprecipitation of 3H-leucine labelled cellular proteins with anti-laminin sera showed proteins of Mr 220-210 KD in SDS-PAGE fluorography. These studies suggest that an antigen(s) crossreacting with anti-Lm sera is localized in the membrane associated cytoskeletal region where spectrin/fodrin family of proteins have been localized.  相似文献   

9.
Reactivity of different Trypanosoma cruzi developmental forms with purified Chagasic anti-α-galactosyl antibodies (anti-Gal) was studied using epimastigotes from axenic cultures, trypomastigotes and amastigotes from infected Vero cell cultures, and an immunogold labeling method as observed by electron microscopy. Epimastigotes were poorly labeled, whereas extracellular trypomastigotes and amastigotes bound heterogeneously to the antibody with many cells being intensely labeled at the cell surface, including the membrane lining the cell body, the flagellum and the flagellar pocket. Parasites with poor labeling at the cell surface generally had several gold particles within the cell, mostly in cytoplasmic vacuoles. The Golgi complex of trypomastigotes was strongly labeled. Intracellular parasites were labeled at the parasite cell surface or within vacuolar structures. The expression in T. cruzi -infected Vero cells of α-galactosyl antigenic structures acquired from the parasite was shown by moderate labeling with Chagasic anti-Gal of the membrane lining parasite-free outward cell projections. The reactivity with purified anti-Gal from healthy individuals at the same concentrations of Chagasic anti-Gal was poor, with gold particles appearing in the nucleus and cytoplasm but not at the cell surface. It paralleled the labeling with Bandeireae simplicifolia IB-4 lectin. The results provide a basis for autoimmune reactions involving anti-Gal from chronic Chagasic patients.  相似文献   

10.
American trypanosomiasis and leishmaniasis are caused by related hemoflagellate parasites, Trypanosoma cruzi and Leishmania spp., which share several common host species. Both zoonotic protozoans are endemic in the United States. Canines, including domestic and wild canids, are reservoir hosts for human infections with T. cruzi and Leishmania spp. The present study examined the seroprevalence of T. cruzi and Leishmania spp. in wild canids from North Carolina and Virginia. Wild canine species tested in this work included 49 gray foxes (Urocyon cinereoargenteus) and 5 red foxes (Vulpes vulpes). Overall, sera samples from 54 foxes (North Carolina = 43; Virginia = 11) were tested by immunochromatographic strip assays (ICT). Antibodies to T. cruzi were found in 4 (9%) gray foxes from North Carolina and 2 (18%) gray foxes from Virginia. Antibodies to Leishmania spp. were detected in 1 (2%) gray fox from North Carolina. Our results indicate that wild canids are exposed more frequently to T. cruzi in North Carolina than Leishmania spp. and only T. cruzi in Virginia.  相似文献   

11.
12.
Chagas disease is caused by Trypanosoma cruzi and is endemic to North, Central and South American countries. Current therapy against this disease is only partially effective and produces adverse side effects. Studies on the metabolic pathways of T. cruzi, in particular those with no equivalent in mammalian cells, might identify targets for the development of new drugs. Ceramide is metabolized to inositolphosphoceramide (IPC) in T. cruzi and other kinetoplastid protists whereas in mammals it is mainly incorporated into sphingomyelin. In T. cruzi, in contrast to Trypanosoma brucei and Leishmania spp., IPC functions as lipid anchor constituent of glycoproteins and free glycosylinositolphospholipids (GIPLs). Inhibition of IPC and GIPLs biosynthesis impairs differentiation of trypomastigotes into the intracellular amastigote forms. The gene encoding IPC synthase in T. cruzi has been identified and the enzyme has been expressed in a cell-free system. The enzyme involved in IPC degradation and the remodelases responsible for the incorporation of ceramide into free GIPLs or into the glycosylphosphatidylinositols anchoring glycoproteins, and in fatty acid modifications of these molecules of T. cruzi have been understudied. Inositolphosphoceramide metabolism and remodeling could be exploited as targets for Chagas disease chemotherapy.  相似文献   

13.
Summary The distribution of laminin-like immunoreactivity in adult normal and denervated cat mandibular tooth pulps was studied by the use of fluorescence microscopy and pre-embedding immunogold electron microscopy. Immunoreactivity to collagen IV was also assessed in order to distinguish basement membranes. In normal pulps, light-microscope laminin-like immunoreactivity was strong along blood vessels and Schwann cell sheaths, and a faint immunoreactivity was seen also in the odontoblast layer. Electron microscopy confirmed the laminin-like immunoreactivity of endothelial and Schwann cell basement membranes at all pulpal levels. In the odontoblast layer and the predentine, nerve-like structures lacking basement membranes but possessing strong membrane laminin-like immunoreactivity were encountered. In addition, a clear-cut laminin-like immunoreactivity of plasma membranes of the somata and processes of odontoblasts was seen. Observations on denervated pulps as well as pulps in which nerve regeneration had taken place did not reveal any changes in the pattern of laminin-immunoreactivity in basement membranes or odontoblasts. Distribution of collagen IV-like immunoreactivity was very similar to laminin-like immunoreactivity in basement membranes of blood vessels and Schwann cells, and appeared unaffected by denervation. The odontoblasts and nerve-like profiles in the odontoblast layer were devoid of collagen IV-like immunoreactivity. We propose that odontoblast-associated laminin could be of significance as guidance for regenerating terminal pulpal nerve fibers to appropriate targets.  相似文献   

14.
The calcium ion (Ca(2+)) is used as a major signaling molecule in a diverse range of eukaryotic cells including several human parasitic protozoa, such as Trypanosoma cruzi, Trypanosoma brucei, Leishmania spp, Plasmodium spp, Toxoplasma gondii, Cryptosporidium parvum, Entamoeba histolytica, Giardia lamblia and Trichomonas vaginalis. Ca(2+) is critical for invasion of intracellular parasites, and its cytosolic concentration is regulated by the concerted operation of several transporters present in the plasma membrane, endoplasmic reticulum, mitochondria and acidocalcisomes. Recent findings have shed light on the function of these transporters, the roles that they play in cellular metabolism and their potential use for targeting them for new therapies.  相似文献   

15.
The relation of humoral antibody response to protection was evaluated in mice immunized with whole homogenates of Trypanosoma cruzi or with its flagellar fraction by direct agglutination and indirect fluorescent antibody test as well as by lytic and neutralizing activity against blood trypomastigotes. The results indicated that lytic antibodies were not implicated directly in protection against these trypanosomes. It was evident from histopathologic examination that the higher the degree of protection achieved, the lower the tissue damage observed in the challenged mice. Serum-neutralizing activity was highest in the groups protected most effectively.  相似文献   

16.
We compared in vitro and in vivo induction of IL-12 (p40) and IFN-gamma by mouse cells stimulated with Toxoplasma gondii, Trypanosoma cruzi, and different species of Leishmania. Spleen cells cultured in vitro with T. cruzi or T. gondii, but not with Leishmania, produced IL-12 (p40) and IFN-gamma. Accordingly, IL-12 (p40) was produced by macrophages stimulated in vitro with live T. cruzi or T. gondii or membrane glycoconjugates obtained from trypomastigotes or tachyzoites. No IL-12 production was detected when macrophages were stimulated with live parasites or glycoconjugates from Leishmania, regardless of priming with IFN-gamma. In vivo, only T. cruzi and T. gondii induced the synthesis of IL-12 and IFN-gamma by mouse spleen cells after intraperitoneal injection of parasites. When injected subcutaneously, live Leishmania sp. induced IL-12 (p40) and IFN-gamma production by draining lymph node cells, albeit the levels were slightly lower than those induced by infection with T. gondii or T. cruzi using the same route. Together our results indicate that under different conditions, the intracellular protozoa T. gondii and T. cruzi are more potent stimulators of IL-12 and IFN-gamma synthesis by host immune cells than parasites of the genus Leishmania.  相似文献   

17.
Stage-specific mAb have been produced to amastigotes and epimastigotes of Trypanosoma cruzi (Brazil strain). mAb C-1 through C-6 reacted specifically with T. cruzi strains; no cross-reactions were found with membranes of promastigotes or amastigotes of Leishmania species. One mAb produced against the epimastigote membranes (C-5) was found to be specific against this stage by radioimmune binding assay, immunofluorescence, and radioimmunoprecipitation. mAb C-5 recognized a novel epimastigote protein at Mr (greater than 200,000) on immunoprecipitation with radiolabeled epimastigotes. Three amastigote stage-specific monoclonal antibodies were produced against membrane-enriched preparations of T. cruzi (Brazil strain) amastigotes grown in axenic culture (C-1 through C-3). By indirect immunofluorescence assay, monoclonal antibody C-2 bound only to T. cruzi amastigotes; no reaction with either tissue culture-derived trypomastigotes or epimastigotes was observed. mAb C-1 and C-2 each specifically immunoprecipitated a single protein molecule with Mr 83,000 from [35S]-methionine-labeled amastigotes. mAb C-2 was also used to affinity purify an 83-kDa Ag that was recognized by human Chagasic sera from patients of endemic countries of Latin America in an enzyme immunoassay. Amino acid composition and preliminary sequence data of the 83-kDa protein are presented. These mAb and/or purified Ag may be useful in studying stage differentiation, monitoring transformation, and for further taxonomic, epidemiologic, and immunologic studies of Chagas' disease.  相似文献   

18.
Two monoclonal antibodies (designated as TCF48 and TCF87 were raised against Trypanosoma cruzi, strain Tulahuen, Both antibodies reacted with all developmental forms of several different strains of Trypanosoma cruzi. The antibodies showed no detectable cross-reactivity with other species of Trypanosomatidae, so far examined. TCF48 and TCF87 were classified as immunoglobulin subclasses IgG1 and IgG2b, respectively. Apparent molecular weight of the corresponding antigen(s) to these monoclonal antibodies was 25,000 in amastigotes and epimastigotes, and 25,000 and 24,000 in trypomastigotes, as determined by the Western immunoblotting analysis. This antigen appeared to be located at the plasma membrane and the flagellum ofT. cruzi. However, no evidence supported the localization of the epitope(s) at the external surface of the live cell. Since this antigen reacted with the sera from the chronically infected mice, these monoclonal antibodies may be useful in the study of Chagas' disease.  相似文献   

19.
Phytomonas serpens , a phytoflagellate trypanosomatid, shares common antigens with Trypanosoma cruzi . In the present work, we compared the hydrolytic capability of cysteine peptidases in both trypanosomatids. Trypanosoma cruzi epimastigotes presented a 10-fold higher efficiency in hydrolyzing the cysteine peptidase substrate Z-Phe-Arg-AMC than P. serpens promastigotes. Moreover, two weak cysteine-type gelatinolytic activities were detected in P. serpens , while a strong 50-kDa cysteine peptidase was observed in T. cruzi . Cysteine peptidase activities were detected at twofold higher levels in the cytoplasmic fraction when compared with the membrane-rich or the content released from P. serpens . The cysteine peptidase secreted by P. serpens cleaved several proteinaceous substrates. Corroborating these findings, the cellular distribution of the cruzipain-like molecules in P. serpens was attested through immunocytochemistry analysis. Gold particles were observed in all cellular compartments, including the cytoplasm, plasma membrane, flagellum, flagellar membrane and flagellar pocket. Interestingly, some gold particles were visualized free in the flagellar pocket, suggesting the release of the cruzipain-like molecule. The antigenic properties of the cruzipain-like molecules of P. serpens were also analyzed. Interestingly, sera from chagasic patients recognized both cellular and extracellular antigens of P. serpens , including the cruzipain-like molecule. These results point to the use of P. serpens antigens, especially the cruzipain-like cysteine-peptidases, as an alternative vaccination approach to T. cruzi infection.  相似文献   

20.
One of the hallmarks of Trypanosoma cruzi invasion of non-professional phagocytes is facilitation of the process by host cell actin depolymerization. Host cell entry by invasive T. cruzi trypomastigotes is accomplished by exploiting a cellular wound repair process involving Ca(2+)-regulated lysosome exocytosis (i.e. lysosome-dependent) or by engaging a recently recognized lysosome-independent pathway. It was originally postulated that cortical actin microfilaments present a barrier to lysosome-plasma membrane fusion and that transient actin depolymerization enhances T. cruzi entry by increasing access to the plasma membrane for lysosome fusion. Here we demonstrate that cytochalasin D treatment of host cells inhibits early lysosome association with invading T. cruzi trypomastigotes by uncoupling the cell penetration step from lysosome recruitment and/or fusion. These findings provide the first indication that lysosome-dependent T. cruzi entry is initiated by plasma membrane invagination similar to that observed for lysosome-independent entry. Furthermore, prolonged disruption of host cell actin microfilaments results in significant loss of internalized parasites from infected host cells. Thus, the ability of internalized trypomastigotes to remain cell-associated and to fuse with host cell lysosomes is critically dependent upon host cell actin reassembly, revealing an unanticipated role for cellular actin remodelling in the T. cruzi invasion process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号