首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The NADH-dependent nitrite reductase of Escherichia coli, which contains sirohaem, flavin, non-haem iron and labile sulphide, was examined by low-temperature e.s.r. spectroscopy. The enzyme, stored in the presence of nitrite and ascorbate, gave the spectrum of a nitrosyl derivative, with hyperfine splitting due to the nitrosyl nitrogen. On removal of these reagents, a series of signals centred around g = 6 was observed, typical of high-spin ferric haem. Cyanide converted this into a low-spin form. On reduction of the enzyme with NADH, an axial spectrum at g = 1.92, 2.01 was observed. The temperature-dependence of this signal is indicative of a [2Fe-2S] iron-sulphur cluster. The midpoint potential of this cluster was estimated to be -230 +/- 15 mV by two independent methods. Reduction of the enzyme with dithionite yielded further signals, which are at present unidentified, at g = 2.1-2.28. No signals were observed that could be assigned to a [4Fe-4S] cluster, such as is found in other sulphite reductases and nitrite reductases that contain sirohaem.  相似文献   

2.
Mutants of Escherichia coli K12 defective in the nirB gene lack NADH-dependent nitrite reductase activity and reduce nitrite slowly during anaerobic growth. With one exception these mutants require cysteine for growth. Cytochrome C552 synthesis and the assimilation of ammonia are unaffected by the nirB mutation. The defective gene is located between the crp and aroB genes at minute 73 on the E. coli chromosome. Mapping and reversion studies indicate the nirB is identical to the previously described cysG gene. It is suggested that the product of the cysG+ (nirB+)?gene is an enzyme required for the synthesis of sirohaem, a prosthetic group of enzymes which catalyse the six-electron reduction of nitrite to ammonia and sulphite to sulphide.  相似文献   

3.
Nitrite reductase purified to homogeneity from vegetable marrow contains 2 atoms Fe/mol. Enzyme-bound iron exchanged extremely slowly with 59-Fe in solution. Acid-acetone extracts of the enzyme have a spectrum which is consistent with the presence of a sirohaem prosthetic group. Inhibition by mersalyl, which partially bleaches the enzyme, is reversible by glutathione only if this is added within a few min of mersalyl. The absorption spectra of the reduced and autoxidised enzyme and of the nitrite, cyanide and CO complexes are described. Amino acid composition data are given. The hydroxylamine reductase activity of the purified enzyme was 0.2% of nitrite reductase activity.  相似文献   

4.
Fumarate reductase is a membrane-bound terminal oxidase which is induced when Escherichia coli is grown anaerobically. The purified enzyme is composed of two polypeptide chains of 69,000 and 24,000 daltons and contains 1 mol of covalently bound flavin adenine dinucleotide per mol of enzyme. Fluorescence scanning of SDS-polyacrylamide gels of the protein shows that the flavin is attached to the large subunit. The hypsochromic shift of the 372 nm band of riboflavin to 350 nm in both native fumarate reductase and a flavin peptide released by proteolytic digestion indicates that the flavin is attached via position 8 alpha of riboflavin. Based on the spectral properties and pH-fluorescence dependence we have identified the linkage as 8 alpha-[N(3)-histidyl]FAD.  相似文献   

5.
PduS is a corrin reductase and is required for the reactivation of the cobalamin-dependent diol dehydratase. It is one component encoded within the large propanediol utilisation (pdu) operon, which is responsible for the catabolism of 1,2-propanediol within a self-assembled proteinaceous bacterial microcompartment. The enzyme is responsible for the reactivation of the cobalamin coenzyme required by the diol dehydratase. The gene for the cobalamin reductase from Citrobacter freundii (pduS) has been cloned to allow the protein to be overproduced recombinantly in E. coli with an N-terminal His-tag. Purified recombinant PduS is shown to be a flavoprotein with a non-covalently bound FMN that also contains two coupled [4Fe-4S] centres. It is an NADH-dependent flavin reductase that is able to mediate the one-electron reductions of cob(III)alamin to cob(II)alamin and cob(II)alamin to cob(I)alamin. The [4Fe-4S] centres are labile to oxygen and their presence affects the midpoint redox potential of flavin. Evidence is presented that PduS is able to bind cobalamin, which is inconsistent with the view that PduS is merely a flavin reductase. PduS is also shown to interact with one of the shell proteins of the metabolosome, PduT, which is also thought to contain an [Fe-S] cluster. PduS is shown to act as a corrin reductase and its interaction with a shell protein could allow for electron passage out of the bacterial microcompartment.  相似文献   

6.
Flavin reductases use flavins as substrates and are distinct from flavoenzymes which have tightly bound flavins. The reduced flavin can serve to reduce ferric complexes and iron proteins. In Escherichia coli, reactivation of ribonucleotide reductase is achieved by reduced flavins produced by flavin reductase. The crystal structure of E. coli flavin reductase reveals that the enzyme structure is similar to the structures of the ferredoxin reductase family of flavoproteins despite very low sequence similarities. The main difference between flavin reductase and structurally related flavoproteins is that there is no binding site for the AMP moiety of FAD. The direction of the helix in the flavin binding domain, corresponding to the phosphate binding helix in the flavoproteins, is also slightly different and less suitable for phosphate binding. Interactions for flavin substrates are instead provided by a hydrophobic isoalloxazine binding site that also contains a serine and a threonine, which form hydrogen bonds to the isoalloxazine of bound riboflavin in a substrate complex.  相似文献   

7.
A strain of Pseudomonas putida grown on 4-methoxybenzoate as sole carbon source contains an enzyme system for the O-demethylation of this substrate. The enzyme system is purifiable and can be separated into two components: an NADH-dependent reductase and an iron-containing and acid-labile-sulfur-containing monooxygenase. The reductase, of molecular weight 42000 and containing two chromophores, an FMN and an iron-sulfur complex (EPR at g = 1.95), reduces both one-electron and two-electron acceptors (i.e., ferricyanide, 2,6-dichloroindophenol, cytochrome c, and cytochrome b5) at an optimum pH of 8.0. Increasing ionic strength affects these activities differently. The absolute spectrum of the oxidized displays distinct absorption peaks at 409 and 463 nm and a small shoulder between 538 and 554 nm. Treatment with dithionite or NADH reduces the absorbance throughout the visible range, yielding a spectrum with small maxima at 402 and 538 nm. Spectroscopic characteristics of the reductase indicate a tight coupling between its two chromophores. The iron-containing and acid-labile-sulfur-containing monooxygenase, which has a molecular weight of about 120000, contains an iron-sulfur chromophore with an EPR signal at g = 1.90. This protein is a dimer whose subunits each have a molecular weight of about 50000 and are perhaps identical. The optical absorption properties are somewhat unusual. In contrast to other iron-sulfur proteins, there is no significant peak near 415 nm in the absorption spectrum of the oxidized protein, but rather one at 455 nm. The presence of the substrate 4-methoxybenzoate increases both the NADH-dependent reductase. Hydroxylation can be achieved by the monooxygenase also in absence of the reductase with artifical reductants. This enzyme opens a new group of oxygenases within the classification scheme, i.e., iron-containing and labile-sulfur-containing monooxygenases. From the reported data, a scheme for the interaction of the isolated pigments and their relationship to various acceptors is proposed.  相似文献   

8.
The dibenzothiophene (DBT)-desulfurizing bacterium, Rhodococcus erythropolis D-1, removes sulfur from DBT to form 2-hydroxybiphenyl using four enzymes, DszC, DszA, DszB, and flavin reductase. In this study, we purified and characterized the flavin reductase from R. erythropolis D-1 grown in a medium containing DBT as the sole source of sulfur. It is conceivable that the enzyme is essential for two monooxygenase (DszC and DszA) reactions in vivo. The purified flavin reductase contains no chromogenic cofactors and was found to have a molecular mass of 86 kDa and four identical 22-kDa subunits. The enzyme catalyzed NADH-dependent reduction of flavin mononucleotide (FMN), and the K(m) values for NADH and FMN were 208 and 10.8 microM, respectively. Flavin adenine dinucleotide was a poor substrate, and NADPH was inert. The enzyme did not catalyze reduction of any nitroaromatic compound. The optimal temperature and optimal pH for enzyme activity were 35 degrees C and 6.0, respectively, and the enzyme retained 30% of its activity after heat treatment at 80 degrees C for 30 min. The N-terminal amino acid sequence of the purified flavin reductase was identical to that of DszD of R. erythropolis IGTS8 (K. A. Gray, O. S. Pogrebinsky, G. T. Mrachko, L. Xi, D. J. Monticello, and C. H. Squires, Nat. Biotechnol. 14:1705-1709, 1996). The flavin reductase gene was amplified with primers designed by using dszD of R. erythropolis IGTS8, and the enzyme was overexpressed in Escherichia coli. The specific activity in crude extracts of the overexpressed strain was about 275-fold that of the wild-type strain.  相似文献   

9.
2,4-Dienoyl-CoA reductase is an enzyme that is required for the beta-oxidation of unsaturated fatty acids with even-numbered double bonds. The 2,4-dienoyl-CoA reductase from Escherichia coli was studied to explore the catalytic and structural properties that distinguish this enzyme from the corresponding eukaryotic reductases. The E. coli reductase was found to contain 1 mol of flavin mononucleotide and 4 mol each of acid-labile iron and sulfur in addition to 1 mol of flavin adenine dinucleotide per mole of protein. Redox titrations revealed a requirement for 5 mol of electrons to completely reduce 1 mol of enzyme and provided evidence for the formation of a red semiquinone intermediate. The reductase caused a significant polarization of the substrate carbonyl group as indicated by an enzyme-induced red shift of 38 nm in the spectrum of 5-phenyl-2,4-pentadienoyl-CoA. However, suspected cis --> trans isomerase and Delta(3),Delta(2)-enoyl-CoA isomerase activities were not detected in this enzyme. It is concluded that the 2, 4-dienoyl-CoA reductases from E. coli and eukaryotic organisms are structurally and mechanistically unrelated enzymes that catalyze the same type of reaction with similar efficiencies.  相似文献   

10.
The enzyme NAD(P)H:flavin oxidoreductase (flavin reductase) catalyzes the reduction of soluble flavins by reduced pyridine nucleotides. In Escherichia coli it is part of a multienzyme system that reduces the Fe(III) center of ribonucleotide reductase to Fe(II) and thereby sets the stage for the generation by dioxygen of a free tyrosyl radical required for enzyme activity. Similar enzymes are known in other organisms and may more generally be involved in iron metabolism. We have now isolated the gene for the E. coli flavin reductase from a lambda gt11 library. After DNA sequencing we found an open reading frame coding for a polypeptide of 233 amino acids, with a molecular weight of 26,212 and with an N-terminal segment identical to that determined by direct Edman degradation. The coding sequence is preceded by a weak ribosome binding site centered 8 nucleotides from the start codon and by a promoterlike sequence centered at a distance of 83 nucleotides. In a Kohara library the gene hybridized to position 3680 on the physical map of E. coli. A bacterial strain that overproduced the enzyme approximately 100-fold was constructed. The translated amino acid sequence contained a potential pyridine nucleotide-binding site and showed 25% identity with the C-terminal part of one subunit (protein C) of methane monooxygenase from methanotropic bacteria that reduces the iron center of a second subunit (protein A) of the oxygenase by pyridine nucleotides.  相似文献   

11.
The Neurospora crassa assimilatory nitrite reductase (EC 1.6.6.4) catalyzes the NADPH-dependent reduction of nitrite to ammonia, a 6-electron transfer reaction. Highly purified preparations of this enzyme exhibit absorption spectra which suggest the presence of a heme component (wavelength maxima for oxidized senzyme: 390 and 578 nm). There is a close correspondence between nitrite reductase activity and absorbance at 400 nm when partially purified nitrite reductase preparations are subjected to sucrose gradient centrifugation. In addition, a role for an iron component in the formation of active nitrite reductase is indicated by the fact that nitrate-induced production of nitrite reductase activity in Neurospora mycelia in vivo requires the presence of iron in the induction medium. The heme chromophore present in Neurospora nitrite reductase preparations is reducible by NADPH. Complete reduction, however, requires the presence of added FAD. The NADPH-nitrite reductase activity of the enzyme is also dependent upon addition of FAD. A spectrally unique complex is formed between the heme chromophore and nitrite (or a reduction product thereof) when nitrite is added to NADPH-reducted enzyme. Carbon monoxide forms a complex with the heme chromophore of nitrite reductase with an intense alpha-band maximum at 590 nm and a beta-band of lower intensity at 550 nm. CO is an inhibitor of NADPH-nitrite reductase activity. Spectrophotometrically detectable CO complex formation and Co inhibition of enzyme activity share the following properties...  相似文献   

12.
Dissimilatory nitrite reductase was isolated from anaerobically nitrate-grown Vibrio fischeri cells and purified to electrophoretic homogeneity. The enzyme catalyzes the six-electron reduction of nitrite to ammonia. Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, under either nonreducing or reducing conditions, the purified nitrite reductase migrated as a single protein band of Mr 57,000. Gel filtration chromatography revealed a native molecular weight of 58,000, indicating the enzyme as isolated to be present in the monomeric form. Purified nitrite reductase exhibited typical c-type cytochrome absorption spectra with the reduced alpha-band at 552.5 nm. Heme content analysis using the purified preparation indicated the enzyme to contain 5.5 heme c groups per molecule. Iron analysis showed the presence of 5.62 g iron atoms per mole of enzyme and no nonheme irons were detected. These results clearly indicate that, similar to the dissimilatory nitrite reductases from Desulfovibrio desulfuricans, Wolinella succinogenes, and Escherichia coli, the V. fischeri nitrite reductase is a hexaheme c-type cytochrome. Amino acid composition of V. fischeri also revealed close similarities to those of the other three hexaheme nitrite reductases previously studied. Based on this information, it is concluded that the four ammonia-forming, dissimilatory nitrite reductases isolated to date represent a homologous group of proteins with the distinct property of being hexaheme c-type cytochromes.  相似文献   

13.
Nitrate reductase of Clostridium perfringens was purified by an improved method using immuno-affinity chromatography. The purified preparation contained Mo, Fe, and acid-labile sulfide; the Mo content was 1 mol per mol and the Fe 3.7 mol per mol of the enzyme. The inactive enzyme obtained from cells grown in the presence of tungstate did not hold Mo but contained 1 mol of W. The content of Fe was not increased. The presence of molybdenum cofactor in the nitrate reductase was indicated by the formation of molybdopterin form A in the oxidation of the enzyme by iodine and by the complementation of NADPH-nitrate reductase with the heart-treated enzyme in the extract of Neurospora crassa nit-1. The Clostridium nitrate reductase had an absorption maximum at 279 nm and shoulders at 320, 380, 430, and 520 nm. This enzyme seems to contain an iron sulfur cluster since the reduced enzyme showed decreased absorption in visible region. The CD spectrum of the enzyme has a positive peak at 425 nm and negative ones at 310, 360, and 595 nm. It was compared with the CD spectrum of ferredoxin (2Fe-2S or 4Fe-4S cluster) and the nitrate reductase of Plectonema boryanum.  相似文献   

14.
Nitrite reductase (EC 1.6.6.4) prepared from pea roots was found to be immunologically indistinguishable from pea leaf nitrite reductase. Comparisons of the pea root enzyme with nitrite reductase from leaf sources showed a close similarity in inhibition properties, light absorption spectrum, and electron paramagnetic resonance signals. The resemblances indicate that the root nitrite reductase is a sirohaem enzyme and that it functions in the same manner as the leaf enzyme in spite of the difference in reductant supply implicit in its location in a non-photosynthetic tissue.Abbreviations DEAE diethylaminoethyl - EPR electron paramagnetic resonance - NIR nitrite reductase - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis  相似文献   

15.
Low-temperature e.p.r. spectra are presented of nitrite reductase purified from leaves of vegetable marrow (Cucurbita pepo). The oxidized enzyme showed a spectrum at g=6.86, 4.98 and 1.95 corresponding to high-spin Fe(3+) in sirohaem, which disappeared slowly on treatment with nitrite. The midpoint potential of the sirohaem was estimated to be -120mV. On reduction with Na(2)S(2)O(4) or Na(2)S(2)O(4)+Methyl Viologen a spectrum at g=2.038, 1.944 and 1.922 was observed, due to a reduced iron-sulphur centre. The midpoint potential of this centre was very low, about -570mV at pH8.1, decreasing with increasing pH. On addition of cyanide, which binds to haem, and Na(2)S(2)O(4), the iron-sulphur centre became further reduced. We think that this is due to an increased midpoint potential of the iron-sulphur centre. Other ligands to haem, such as CO and the reaction product NH(3), had similar but less pronounced effects, and also changed the lineshape of the iron-sulphur signal. Samples were prepared of the enzyme frozen during the reaction with nitrite, Methyl Viologen and Na(2)S(2)O(4) in various proportions. Signals were interpreted as due to the reduced iron-sulphur centre (with slightly different g values), a haem-NO complex and reduced Methyl Viologen. In the presence of an excess of nitrite, the haem-NO spectrum was more intense, whereas in the presence of an excess of Na(2)S(2)O(4) it was weaker, and disappeared at the end of the reaction. A reaction sequence is proposed for the enzyme, in which the haem-NO complex is an intermediate, followed by other e.p.r.-silent states, leading to the production of NH(4) (+).  相似文献   

16.
Incorporation of deuterium atoms from deuterium-labeled NADPH and 2H2O during the reaction catalyzed by 2,4-dienoyl-CoA reductase of Escherichia coli (E. coli) was investigated. When trans-2,cis-4-decadienoyl-CoA was incubated with 4R- or 4S-[4-2H1]NADPH in the presence of purified 2,4-dienoyl-CoA reductase, no deuterium was detected in the reaction product by gas chromatography-mass spectrometry after derivatization to its pyrrolidine amide. On the other hand, when the dienoyl-CoA was incubated in the presence of NADPH and the reductase in 2H2O, two deuterium atoms were incorporated: One deuterium atom was located at the C-4 position of trans-2-decenoate, and the other at the C-5 position. The UV and shorter wavelengths of the visible spectrum of the reductase solution revealed that the reductase contained flavin as a prosthetic group. Therefore it is considered that a hydrogen atom of NADPH was first transferred to the flavin moiety of the reductase, and then the hydrogen atom was rapidly exchanged for one in the medium before its direct transfer to the substrate.  相似文献   

17.
Two polytopic membrane proteins, NarK and NarU, are assumed to transport nitrite out of the Escherichia coli cytoplasm, but how nitrate enters enteric bacteria is unknown. We report the construction and use of four isogenic strains that lack nitrate reductase Z and the periplasmic nitrate reductase, but express all combinations of narK and narU. The active site of the only functional nitrate reductase, nitrate reductase A, is located in the cytoplasm, so nitrate reduction by these four strains is totally dependent upon a mechanism for importing nitrate. These strains were exploited to determine the roles of NarK and NarU in both nitrate and nitrite transport. Single mutants that lack either NarK or NarU were competent for nitrate-dependent anaerobic growth on a non-fermentable carbon source, glycerol. They transported and reduced nitrate almost as rapidly as the parental strain. In contrast, the narK-narU double mutant was defective in nitrate-dependent growth unless nitrate transport was facilitated by the nitrate ionophore, reduced benzyl viologen (BV). It was also unable to catalyse nitrate reduction in the presence of physiological electron donors. Synthesis of active nitrate reductase A and the cytoplasmic, NADH-dependent nitrite reductase were unaffected by the narK and narU mutations. The rate of nitrite reduction catalysed by the cytoplasmic, NADH-dependent nitrite reductase by the double mutant was almost as rapid as that of the NarK+-NarU+ strain, indicating that there is a mechanism for nitrite uptake by E. coli that is in-dependent of either NarK or NarU. The nir operon encodes a soluble, cytoplasmic nitrite reductase that catalyses NADH-dependent reduction of nitrite to ammonia. One additional component that contributes to nitrite uptake was shown to be NirC, the hydrophobic product of the third gene of the nir operon, which is predicted to be a polytopic membrane protein with six membrane-spanning helices. Deletion of both NarK and NirC decreased nitrite uptake and reduction to a basal rate that was fully restored by a single chromosomal copy of either narK or nirC. A multicopy plasmid encoding NarU complemented a narK mutation for nitrite excretion, but not for nitrite uptake. We conclude that, in contrast to NirC, which transports only nitrite, NarK and NarU provide alternative mechanisms for both nitrate and nitrite transport. However, NarU might selectively promote nitrite ex-cretion, not nitrite uptake.  相似文献   

18.
A dissimilatory nitrite reductase from Haloferax denitrificans was purified to apparent electrophoretic homogeneity. The overall purification was 125-fold with about a 1% recovery of activity. The enzyme, which had a molecular mass of 127 kDa, was composed of a 64-kDa subunit as determined by SDS-PAGE. Although maximum activity occurred in the presence of 4 M NaCl, no activity was lost when the enzyme was incubated in the absence of NaCl. The absorption spectrum had maxima at 462, 594, and 682 nm, which disappeared upon reduction with dithionite. Diethyldithiocarbamate (DDC) was inhibitory, and the addition of copper sulfate to DDC-inhibited enzyme partially restored activity. These results suggest this enzyme is a copper-containing nitrite reductase and is the first such nitrite reductase to be described in an Archeon.  相似文献   

19.
EPR spectroscopic and chemical analyses of spinach nitrite reductase show that the enzyme contains one reducible iron-sulfur center, and one site for binding either cyanide or nitrite, per siroheme. The heme is nearly all in the high spin ferric state in the enzyme as isolated. The extinction coefficient of the enzyme has been revised to E386 = 7.6 X 10(4) cm-1 (M heme)-1. The iron-sulfur center is reduced with difficulty by agents such as reduced methyl viologen (equilibrated with 1 atm of H2 at pH 7.7 in the presence of hydrogenase) or dithionite. Complexation of the enzyme with CO (a known ligand for nitrite reductase heme) markedly increases the reducibility of the iron-sulfur center. New chemical analyses and reinterpretation of previous data show that the enzyme contains 6 mol of iron and 4 mol of acid-labile S2-/mol of siroheme. The EPR spectrum of reduced nitrite reductase in 80% dimethyl sulfoxide establishes clearly that the enzyme contains a tetranuclear iron-sulfur (Fe4S4) center. The ferriheme and Fe4S4 centers are reduced at similar rates (k = 3 to 4 s-1) by dithionite. The dithionite-reduced Fe4S4 center is rapidly (k = 100 s-1) reoxidized by nitrite. These results indicate a role for the Fe4S4 center in catalysis.  相似文献   

20.
Pseudomonas aureofaciens truncates the respiratory reduction of nitrate (denitrification) at the level of N2O. The nitrite reductase from this organism was purified to apparent electrophoretic homogeneity and found to be a blue copper protein. The enzyme contained 2 atoms of copper/85 kDa, both detectable by electron paramagnetic resonance (EPR) spectroscopy. The protein was dimeric, with subunits of identical size (40 +/- 3 kDa). Its pI was 6.05. The EPR spectrum showed an axial signal g at 2.21(8) and g at 2.04(5). The magnitude of the hyperfine splitting (A parallel = 6.36 mT) indicated the presence of type 1 copper only. The electronic spectrum had maxima at 280 nm, 474 nm and 595 nm (epsilon = 7.0 mM-1 cm-1), and a broad shoulder around 780 nm. A copper protein of low molecular mass (15 kDa), with properties similar to azurin, was also isolated from P. aureofaciens. The electronic spectrum of this protein showed a maximum at 624 nm in the visible range (epsilon = 2.5 mM-1 cm-1) and pronounced structures in the ultraviolet region. The EPR parameters were g parallel = 2.26(6) and g perpendicular = 2.05(6), with A parallel = 5.8 mT. The reduced azurin transferred electrons efficiently to nitrite reductase; the product of nitrite reduction was nitric oxide. The specific nitrite-reducing activity with ascorbate-reduced phenazine methosulfate as electron donor was 1 mumol substrate min-1 mg protein-1. The reaction product again was nitric oxide. Nitrous oxide was the reaction product from hydroxylamine and nitrite and from dithionite-reduced methyl viologen and nitrite. No 'oxidase' activity could be demonstrated for the enzyme. Our data disprove the presumed exclusiveness of cytochrome cd1 as nitrite reductase within the genus Pseudomonas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号