首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phase transitions for dipalmitoylphosphatidylethanolamine (DPPE) dispersed in water and in N-ethylammonium nitrate (EAN) were examined using differential scanning calorimetry and time-resolved x-ray diffraction. Subgel, pre-, and main-phase transitions were observed for DPPE in water, whereas only the pre- and main transitions were observed for DPPE in EAN. Hysteresis was observed for both dispersions upon cooling. In addition, the lamellar (L alpha) to hexagonal (H alpha) phase transition was observed for DPPE dispersed in EAN when using time-resolved x-ray diffraction but not when using calorimetry. This low enthalpy process occurred at 73-77 degrees C, which is significantly lower than that observed for DPPE in water. The presence of EAN stabilizes the existence of the H alpha phase in DPPE by its influence on the bilayer interfacial properties, primarily on the area per lipid head group.  相似文献   

2.
F S Hing  P R Maulik  G G Shipley 《Biochemistry》1991,30(37):9007-9015
The ether-linked phospholipid 1,2-dihexadecylphosphatidylethanolamine (DHPE) was studied as a function of hydration and in fully hydrated mixed phospholipid systems with its ester-linked analogue 1,2-dipalmitoylphosphatidylethanolamine (DPPE). A combination of differential scanning calorimetry (DSC) and X-ray diffraction was used to examine the phase behavior of these lipids. By DSC, from 0 to 10 wt % H2O, DHPE displayed a single reversible transition that decreased from 95.2 to 78.8 degrees C and which was shown by X-ray diffraction data to be a direct bilayer gel to inverted hexagonal conversion, L beta----HII. Above 15% H2O, two reversible transitions were observed which stabilized at 67.1 and 92.3 degrees C above 19% H2O. X-ray diffraction data of fully hydrated DHPE confirmed the lower temperature transition to be a bilayer gel to bilayer liquid-crystalline (L beta----L alpha) phase transition and the higher temperature transition to be a bilayer liquid-crystalline to inverted hexagonal (L alpha----HII) phase transition. The lamellar repeat distance of gel-state DHPE increased as a function of hydration to a limiting value of 62.5 A at 19% H2O (8.6 mol of water/mol of DHPE), which corresponds to the hydration at which the transition temperatures are seen to stabilize by DSC. Electron density profiles of DHPE, in addition to calculations of the lipid layer thickness, confirmed that DHPE in the gel state forms a noninterdigitated bilayer at all hydrations. Fully hydrated mixed phospholipid systems of DHPE and DPPE exhibited two reversible transitions by DSC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We investigated the influence of the local anesthetic tetracaine on the thermodynamic properties and the temperature- and pressure-dependent phase behavior of the model biomembrane 1,2-dimyristoyl-sn-glycero-3-phosphocholine by using volumetric measurements at temperatures ranging from 0 degrees to 40 degrees C and at pressures from ambient up to 1000 bar. The pVT measurements were complemented by temperature-dependent differential scanning calorimetric measurements. Information about the influence of different concentrations of the local anesthetic on the thermodynamic changes accompanying the lipid phase transitions, and on the thermal expansion coefficient, the isothermal compressibility, and the volume fluctuations of the lipids in their different phases, could be obtained from these experiments. The incorporation of tetracaine leads to an overall disordering of the membrane, as can be inferred from the depression of the main transition temperature and the reduction of the volume change at the main lipid phase transition. The expansion coefficient alpha p and the isothermal compressibility chi T of the lipid bilayer are enhanced by the addition of tetracaine and strongly enhanced values of alpha p and chi T, and the lipid volume fluctuations are found in the direct neighborhood of the main phase transition region. As tetracaine can be viewed as a model system for amphiphilic molecules, these results also provide insight into the general understanding of the physicochemical action of amphiphilic molecules on membranes. The experimental results are compared with recent theoretical predictions for the phase behavior of anesthetic-lipid systems, and the biological relevance of this study is discussed.  相似文献   

4.
The miscibility properties of ether- and ester-linked phospholipids in two-component, fully hydrated bilayers have been studied by differential scanning calorimetry (DSC) and Raman spectroscopy. Mixtures of 1,2-di-O-hexadecyl-rac-glycero-3-phosphocholine (DHPC) with 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DHPE) and of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) with 1,2-di-O-hexadecyl-sn-glycero-3-phosphoethanolamine (DHPE) have been investigated. The phase diagram for the DPPC/DHPE mixtures indicates that these two phospholipids are miscible in all proportions in the nonrippled bilayer gel phase. In contrast, the DHPC/DPPE mixtures display two regions of gel phase immiscibility between 10 and 30 mol% DPPE. Raman spectroscopic measurements of DHPC/DPPE mixtures in the C-H stretching mode region suggest that this immiscibility arises from the formation of DHPC-rich interdigitated gel phase domains with strong lateral chain packing interactions at temperatures below 27 degrees C. However, in the absence of interdigitation, our findings, and those of others, lead to the conclusion that the miscibility properties of mixtures of ether- and ester-linked phospholipids are determined by the nature of the phospholipid headgroups and are independent of the character of the hydrocarbon chain linkages. Thus it seems unlikely that the ether linkage has any significant effect on the miscibility properties of phospholipids in biological membranes.  相似文献   

5.
The interaction between 1-decyloxymethyl-3-carbamoylpyridinium salts (PS-X) and two types of vesicles (multilamellar vesicle and sonicated vesicle) was investigated. Vesicles were formed from two classes of phospholipids: 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphatidylethanolamine (DPPE). The PS-X salts used had nitrate, perchlorate, tetrafluoroborate and halides as counterions. Measurements were carried out using differential scanning calorimetry and 1H NMR. All studied compounds decreased the main phase transition temperatures of both DPPC and DPPE bilayers. All of them also decreased the transition enthalpy of DPPC bilayers, however they had a dual effect on the transition enthalpy of DPPE. Namely, at low concentrations the PS-X salts studied significantly increased the main transition enthalpy of DPPE (perchlorate and tetrafluoroborate the least among them) and decreased it at higher concentrations. We have suggested that surfactant rich and pure domains form on the DPPE bilayer in the presence of PS-ClO4, PS-BF4 and PS-NO3, whereas they form on DPPC bilayer only in the presence of PS-ClO4. Results are discussed in terms of counterion molecular geometry and the ability of amide group to form hydrogen bonds with lipids.  相似文献   

6.
In this study, we have examined how the headgroup size and properties affect the membrane properties of sphingomyelin and interactions with cholesterol. We prepared N-palmitoyl ceramide phosphoethanolamine (PCPE) and compared its membrane behavior with D-erythro-N-palmitoyl-sphingomyelin (PSM), both in monolayers and bilayers. The pure PCPE monolayer did not show a phase transition at 22 degrees C (in contrast to PSM), but displayed a much higher inverse isothermal compressibility as compared to the PSM monolayer, indicating stronger intermolecular interactions between PCPEs than between PSMs. At 37 degrees C the PCPE monolayer was more expanded (than at 22 degrees C) and displayed a rather poorly defined phase transition. When cholesterol was comixed into the monolayer, a condensing effect of cholesterol on the lateral packing of the lipids in the monolayer could be observed. The phase transition from an ordered to a disordered state in bilayer membranes was determined by diphenylhexatriene steady-state anisotropy. Whereas the PSM bilayer became disordered at 41 degrees C, the PCPE bilayer main transition occurred around 64 degrees C. The diphenylhexatriene steady-state anisotropy values were similar in both PCPE and PSM bilayers before and after the phase transition, suggesting that the order in the hydrophobic core in both bilayer types was rather similar. The emission from Laurdan was blue shifted in PCPE bilayers in the gel phase when compared to the emission spectra from PSM bilayers, and the blue-shifted component in PCPE bilayers was retained also after the phase transition, suggesting that Laurdan molecules sensed a more hydrophobic environment at the PCPE interface compared to the PSM interface both below and above the bilayer melting temperature. Whereas PSM was able to form sterol-enriched domains in dominantly fluid bilayers (as determined from cholestatrienol dequenching experiments), PCPE failed to form such domains, suggesting that the size and/or properties of the headgroup was important for stabilizing sphingolipid/sterol interaction. In conclusion, our study has highlighted how the headgroup in sphingomyelin affect its membrane properties and interactions with cholesterol.  相似文献   

7.
Molecular dynamics simulations were used for a comprehensive study of the structural properties of saturated lipid bilayers, DPPC and DPPE, near the main phase transition. Though the chemical structure of DPPC and DPPE are largely similar (they only differ in the choline and ethanolamine groups), their transformation process from a gel to a liquid-crystalline state is contrasting. For DPPC, three distinct structures can be identified relative to the melting temperature (Tm): below Tm with "mixed" domains consisting of lipids that are tilted with partial overlap of the lipid tails between leaflet; near Tm with a slight increase in the average area per lipid, resulting in a rearrangement of the lipid tails and an increase in the bilayer thickness; and above Tm with unhindered lipid tails in random motion resulting in an increase in %gauche formed and increase in the level of interdigitation between lipid leaflets. For DPPE, the structures identified were below Tm with "ordered" domains consisting of slightly tilted lipid tails and non-overlapping lipid tails between leaflets, near Tm with minimal rearrangement of the lipids as the bilayer thickness reduces slightly with increasing temperature, and above Tm with unhindered lipid tails as that for DPPC. For DPPE, most of the lipid tails do not overlap as observed to DPPC, which is due to the tight packing of the DPPE molecules. The non-overlapping behavior of DPPE above Tm is confirmed from the density profile of the terminal carbon atoms in each leaflet, which shows a narrow distribution near the center of the bilayer core. This study also demonstrates that atomistic simulations are capable of capturing the phase transition behavior of lipid bilayers, providing a rich set of molecular and structural information at and near the transition state.  相似文献   

8.
The effect of the frequently used antibiotic sulfadiazine (SD) was studied on a bacteria membrane mimetic model system by using differential scanning calorimetric (DSC), small- and wide-angle X-ray scattering (SWAXS) and freeze-fracture methods. The membrane model system consisted of dipalmitoylphosphatidylethanolamine (DPPE, 0.8 molar ratio) and dipalmitoylphosphatidylglycerol (DPPG, 0.2 molar ratio). The SD molar ratio (relative to the lipids) was varied between 10(-3) and 1. In the presence of SD, two transitions between the gel and liquid crystalline phases appear at 60.5 degrees C and about at 65 degrees C. In the temperature domain of the gel phase, the subcell of the chain packing is strongly temperature dependent indicating the increased dominance of the hydration forces during the first transition and the location of SD molecules in the neighbourhood of the polar lipid head groups. The second transition is accompanied by the changes in the nanometer-scale layer arrangements observed by SAXS and in the mum-scale morphology observed by freeze-fracture. Above the temperature of the second transition, the SD-induced metastable structures undergo further formations to produce a more homogeneous state favoured by the geometrical packing of the cylindrical-shaped lipid molecules.  相似文献   

9.
The influence of corticosteroids on the lipid polymorphism of dielaidoylglycerophosphoethanolamine was studied by 31P NMR spectroscopy and differential scanning calorimetry. Both techniques evidenced two transitions in the pure lipid samples. The first one corresponded to the gel----liquid crystalline phase transition. It occurred at a temperature of 38.9 degrees C, as measured by differential scanning calorimetry and at 35-40 degrees C as detected by 31P NMR. The second transition corresponded to the bilayer----hexagonal HII phase transition. It occurred at 64.2 degrees C as measured by differential scanning calorimetry and at 60 degrees C as detected by NMR. Addition of corticosteroids led to different specific effects on the bilayer----hexagonal HII phase transition, according to their chemical structure. These effects appear to be the result of low amounts of incorporated steroids, according to binding studies (partition coefficient values range between 5 and 54). The presence of a conjugated 3-keto group in the steroid molecule (progesterone) promoted a downward shift in the bilayer----hexagonal HII phase transition temperature by about 6 -7 degrees C as compared to the 3 beta-OH-bearing compound (pregnenolone), which did not exhibit any appreciable effect. No change in the delta H of transition could be measured. The presence of the 21-OH group (like in deoxycorticosterone) induced the formation of a structure, characterized by an isotropic lineshape of the 31P NMR spectrum at temperatures where the 'hexagonal' type of lineshape is present, without steroid. The transition from the bilayer to this other structure occurred at a slightly higher temperature than the bilayer----hexagonal HII phase transition. It corresponded to a peak in differential scanning calorimetry scans with a delta H of 2.1 kJ X mol-1. The presence of the 17 beta-OH group as present in 17 beta-OH-progesterone and 11-deoxycortisol suppressed the two former effects. These compounds had no influence on the bilayer----hexagonal HII phase HII phase transition. The additional presence of the 11 beta-OH group like in corticosterone and cortisol, evoked a stabilization of the bilayer organization as the bilayer----hexagonal HII phase transition temperature is shifted upward by about 10 degrees C. This was accompanied by a decrease of the delta H to 0.8 kJ X mol-1. Besides this, the corticosteroids did not affect to a large extent the gel----liquid crystalline phase transition: a general slight downward shift of the transition temperature and a small broadening of the transition were observed without significant change in the delta H.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
In order to understand the effect of polar head group modification on the thermotropic and barotropic phase behavior of phospholipid bilayer membranes, the phase transitions of dipalmitoylphosphatidylethanolamine (DPPE), dipalmitoylphosphatidyl-N-methylethanolamine (DPMePE), dipalmitoylphosphatidyl-N,N-dimethylethanolamine (DPMe2PE) and dipalmitoylphosphatidylcholine (DPPC) bilayer membranes were observed by differential scanning calorimetry and high-pressure optical methods. The temperatures of the so-called main transition from the gel (L(beta)) or ripple gel (P(beta)') phase to the liquid crystalline (L(alpha)) phase were almost linearly elevated by applying pressure. The slope of the temperature-pressure boundary, dT/dp, was in the range of 0.220-0.264 K MPa(-1) depending on the number of methyl groups in the head group of lipids. The main-transition temperatures of N-methylated DPPEs decreased with increasing size of head group by stepwise N-methylation. On the other hand, there was no significant difference in thermodynamic quantities of the main transition between the phospholipids. With respect to the transition from the subgel (L(c)) phase to the lamellar gel (L(beta) or L(beta)') phase, the transition temperatures were also elevated by applying pressure. In the case of DPPE bilayer the L(c)/L(beta) transition appeared at a pressure higher than 21.8 MPa. At a pressure below 21.8 MPa the L(c)/L(alpha) transition was observed at a temperature higher than the main-transition temperature. The main (L(beta)/L(alpha)) transition can be recognized as the transformation between metastable phases in the range from ambient pressure to 21.8 MPa. Polymorphism in the gel phase is characteristic of DPPC bilayer membrane unlike other lipid bilayers used in this study: the L(beta)', P(beta)' and pressure-induced interdigitated gel (L(beta)I) phases were observed only in the DPPC bilayer. Regarding the bilayers of DPPE, DPMePE and DPMe2PE, the interdigitation of acyl chain did not appear even at pressures as high as 200 MPa.  相似文献   

11.
Molecular dynamics simulations have been used to study structural and dynamic properties of fully hydrated mixed 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) bilayers at 0, 25, 50, 75, and 100 mol % DPPE. Simulations were performed for 50 ns at 350 K and 1 bar for the liquid-crystalline state of the mixtures. Results show that the average area per headgroup reduces from 0.65 +/- 0.01 nm(2) in pure DPPC to 0.52 +/- 0.01 nm(2) in pure DPPE systems. The lipid tails become more ordered with increasing DPPE concentration, resulting in a slight increase in membrane thickness (3.43 +/- 0.01 nm in pure DPPC to 4.00 +/- 0.01 nm in pure DPPE). The calculated area per headgroup and order parameter for pure DPPE deviates significantly from available experimental measurements, suggesting that the force field employed requires further refinement. In-depth analysis of the hydrogen-bond distribution in DPPE molecules shows that the amine groups strongly interact with the phosphate and carbonyl groups through inter/intramolecular hydrogen bonds. This yields a bilayer structure with DPPE headgroups preferentially located near the lipid phosphate and ester oxygens. It is observed that increasing DPPE concentrations causes competitive hydrogen bonding between the amine groups (hydrogen-donor) and the phosphate/carbonyl groups or water (hydrogen-acceptor). Due to the increasing number of hydrogen-donors from DPPE molecules with increasing concentration, DPPE becomes more hydrated. Trajectory analysis shows that DPPE molecules in the lipid mixtures move laterally and randomly around the membrane surface and the movement becomes more localized with increasing DPPE concentrations. For the conditions and simulation time considered, no aggregation or phase separation was observed between DPPC and DPPE.  相似文献   

12.
The increase in passive permeability of bilayer membranes near the phase transition temperature is usually explained as caused by either the increase in the amount of ‘boundary lipid’ present in the membrane, or by the increase in lateral compressibility of the membrane. Since both the amount of ‘boundary lipid’ and the lateral compressibility show a similar anomaly near the transition temperature, it is difficult to distinguish experimentally between the two proposed mechanisms.We have examined some details of both of the proposed pictures. The fluid-solid boundary energy, neglected in previous work, has been computed as a function of the domain size. For a single component uncharged lipid bilayer, the results rule out the existence of even loosely defined solid domains in a fluid phase, or vice versa. Thermodynamic fluctuations, which are responsible for anomalous behaviour near the phase transition temperature, are not intense enough to approximate the formation of a domain of the opposite phase.Turning next to lateral compressibility of bilayer membranes we have considered two-component mixtures in the phase separation region. We present the first calculation of lateral compressibility for such systems. The behaviour shows interesting anomalies, which should correlate with existing and future data on transport across membranes.  相似文献   

13.
Electrical capacitance of the planar bilayer lipid membrane (BLM) formed from hydrogenated egg lecithin (HEL) has been studied during many passages through the phase transition temperature. In contrast to the BLM from individual synthetic phospholipids, membranes from HEL did not demonstrate any capacitance change at the phase transition temperature maximum, as measured by differential scanning calorimeter at 52 degrees C. Instead, two temperatures have been discerned by capacitance records: thickening at 42-43 degrees C and thinning at 57-59 degrees C. The first temperature region is close to the transition temperature of dipalmitoyllecithin, whereas the second is close to that of distearoyllecithin, two main components of the HEL. It was suggested that capacitance measurements were able to reveal a phase separation in the BLM from HEL which was not detected by differential scanning calorimetry. The phase transition of the BLM from the liquid crystal state to the gel state is followed by thickening of the bilayer structure, partly due to a gauche- trans transition of lipid molecules but mainly due to redistribution of the solvent n-decane.  相似文献   

14.
S Mulukutla  G G Shipley 《Biochemistry》1984,23(11):2514-2519
The structure and thermotropic properties of hydrated bilayers of 1,2-dimyristoyl-sn-glycero-3-phospho-ethanolamine (DMPE) and its N-monomethyl (mmDMPE) and N,N-dimethyl (dmDMPE) derivatives have been investigated by differential scanning calorimetry and X-ray diffraction. For DMPE, mmDMPE, and dmDMPE, multilamellar dispersions (approximately 50 wt % water) show chain melting bilayer gel----bilayer liquid-crystal transitions (onset) at 49.2, 42.3, and 30.7 degrees C, respectively, with the corresponding value for 1,2-dimyristoyl-sn-glycero-3-phosphocholine occurring at 23 degrees C. Thus, the bilayer chain melting transition decreases with increasing N-methylation, as originally reported for the corresponding palmitoyl series [Vaughan, D.J., & Keough, K.M. (1974) FEBS Lett. 47, 158-161]. This transition is reversible on cooling, and DMPE, mmDMPE, and dmDMPE form the original bilayer gel phase with the rotationally disordered hydrocarbon chains packed in a hexagonal lattice. Following prolonged incubation at -4 degrees C, the bilayer gel phase is shown to be metastable, and conversion to a low-temperature "crystalline" phase occurs with the hydrocarbon chains adopting a specific packing mode. For DMPE, mmDMPE, and dmDMPE, either a single or a double endothermic transition occurs as the "crystal" bilayer phase converts to the bilayer gel phase. A similar pattern of behavior is observed for the palmitoyl series. The relatively slow kinetic conversion of the metastable bilayer gel phase with hexagonally packed hydrocarbon chains to a bilayer phase in which the chains have "crystallized" appears to be a general property of membrane phospholipids and sphingolipids.  相似文献   

15.
The effect of incorporation of 1-palmitoyl-sn-glycero-3-phosphocholine (PLPC) on the structure of the Pβ ripple mesophase in aqueous dispersions of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) has been studied by differential scanning calorimetry (DSC) and scanning dilatometry (SD). For samples containing 34 wt. % 2H2O and 0–15 wt. % PLPC, a pretransition was observed by DSC. The pretransition disappears at 15 wt. % PLPC. The behavior of thermodynamic functions at the pretransition and main transition gives new insights on the structural changes produced by PLPC on bilayers of DPPC.  相似文献   

16.
A combination of differential scanning calorimetry (DSC) and X-ray diffraction have been used to study the kinetics of formation and the structure of the low-temperature phase of 1-stearoyl-lysophosphatidylcholine (18:0-lysoPC). For water contents greater than 40 weight %, DSC shows a sharp endothermic transition at 27 degrees C (delta H = 6.75 kcal/mol) corresponding to a low-temperature phase----micelle transition. This sharp transition is not reversible, but is regenerated in a time and temperature-dependent manner. For example, with incubation at 0 degrees C the maximum transition enthalpy (delta H = 6.75 kcal/mol) is generated in about 45 min after an initial slow nucleation process of approx. 20 min. The kinetics of formation of the low-temperature phase is accelerated at lower temperatures and may be related to the disruption of 18:0-lysoPC micelles by ice crystal formation. X-ray diffraction patterns of 18:0-lysoPC recorded at 10 degrees C over the hydration range 20-80% are characteristic of a lamellar gel phase with tilted hydrocarbon chains with the bilayer repeat distance increasing from 47.6 A at 20% hydration to a maximum of 59.4 A at 39% hydration. At this maximum hydration, approx. 19 molecules of water are bound per molecule of 18:0-lysoPC. Electron density profiles show a phosphate-phosphate distance of 30 A, indicating an interdigitated lamellar gel phase for 18:0-lysoPC at all hydration values. The angle of chain tilt is calculated to be between 20 and 30 degrees. For water contents greater than 40%, this interdigitated lamellar phase converts to the micellar phase at 27 degrees C in a kinetically fast process, while the reverse (micelle----interdigitated bilayer) transition is a kinetically slower process (see also Wu, W. and Huang, C. (1983) Biochemistry 22, 5068-5073).  相似文献   

17.
R M Epand 《Biochemistry》1985,24(25):7092-7095
The bilayer to hexagonal phase transition temperatures of dielaidoylphosphatidylethanolamine and 1-palmitoyl-2-oleoylphosphatidylethanolamine are 65.6 and 71.4 degrees C, respectively. Using high-sensitivity differential scanning calorimetry, I have shown that these transition temperatures are extremely sensitive to the presence of small amounts of other lipid components. For example, at a mole fraction of only 0.01, dilinolenin lowers the bilayer to hexagonal phase transition temperature of 1-palmitoyl-2-oleoyl-phosphatidylethanolamine by 8.5 degrees C. Other diacylglycerols have similar effects on this transition temperature, although the degree of unsaturation of the acyl chains has some effect, with distearin being less potent. In comparison, the 20-carbon alkane eicosane lowers this transition temperature by 5 degrees C, while palmitoyl-lysolecithin raises it by 2.5 degrees C. Similar effects of these additives on the bilayer to to hexagonal phase transition temperature are observed with dielaidoylphosphatidylethanolamine. At these concentrations of additive, there is no effect on the gel-state to liquid-crystalline-state transition temperature. The observed shifts in the temperature of the bilayer to the hexagonal phase transition can be qualitatively interpreted in terms of the effects of these additives on the hydrophilic surface area and on the hydrophobic volume. Substances expanding the hydrophobic domain promote hexagonal phase formation and lower the bilayer to hexagonal phase transition temperature. The sensitivity of the bilayer to hexagonal phase transition temperature to the presence of additives is at least as great as that which has been observed for any other lipid phase transition.  相似文献   

18.
We determined changes in the volume and adiabatic compressibility of large multi- and unilamellar vesicles composed of dimyristoylphosphatidylcholine containing various concentrations of the antimicrobial peptide gramicidin S (GS) by applying densitometry and sound velocimetry. Gramicidin S incorporation was found to progressively decrease the phase transition temperature of DMPC vesicles as well as to decrease the degree of cooperativity of the main phase transition and to increase the volume compressibility of the vesicles. GS probably enhanced thermal fluctuations at the region of main phase transition and provide more freedom of rotational movement for the phospholipid hydrocarbon chains. The ability of GS to increase the membrane compressibility and to decrease the phase transition temperature is evidence for regions of distorted membrane structure around incorporated gramicidin S molecules. At relatively high GS concentration (10 mol%), more significant changes of specific volume and compressibility appear. This might suggest changes in the integrity of the lipid bilayer upon interaction with high concentrations of GS.  相似文献   

19.
Differential scanning calorimetry (DSC) and x-ray diffraction have been used to study the effect of increasing chain-unsaturation on the structure and properties of the hydrated cerebrosides N-stearoyl, -oleoyl, and -linoleoyl galactosylsphingosine (NSGS, NOGS, and NLnGS, respectively). DSC of hydrated (70 wt% water) NSGS shows an endothermic transition at 85 degrees C (delta H = 18.0 kcal/mol NSGS) and a broad exothermic transition at 40-60 degrees C, the latter being dependent upon the previous cooling rate. X-Ray diffraction patterns recorded at 21, 61, and 86 degrees C provide evidence for interconversions between metastable and stable crystalline NSGS bilayer phases. The properties of the unsaturated-chain cerebrosides are more complex. Hydrated NOGS shows a single endothermic transition at 44.8 degrees C (delta H = 11.5 kcal/mol NOGS). However, incubation of NOGS at 49 degrees C for 24 h results in a second transition at 55.5 degrees C. By cycling NOGS between 0 and 49 degrees C complete conversion into this higher melting phase (delta H = 12.1 kcal/mol NOGS) is achieved. X-ray diffraction confirms a bilayer phase at all temperatures and delineates the conversions between a crystalline phase at 21 degrees C (bilayer period d = 56.5A), a second crystalline phase at 47 degrees C (d = 69.9A), and a liquid crystalline phase at 59 degrees C (d = 52.0A). The more unsaturated NLnGS shows two transitions, a sharp transition at 28 degrees C (delta H = 8.0 kcal/mol NLGS) and a broad, low-enthalpy transition at 42 degrees C (delta H = 0.4 kcal/mol NLGS). Again, incubation between the two transitions leads to a single transition at 44 degrees C (delta H = 9.3 kcal/mol NLGS). X-ray diffraction demonstrates conversions between two crystalline bilayer phases (d = 55.2A and d = 68.4A), and a liquid crystalline bilayer phase (d = 51.8A). Thus, increased unsaturation in the amide-linked fatty acyl chain of cerebrosides results in decreased chain-melting temperatures (NSGS greater than NOGS greater than NLnGS) and has marked effects on their structural properties.  相似文献   

20.
The phase transition behavior of a lipid bilayer of dimyristoyl-sn-glycero-3-phosphatidylcholine/distearoyl-sn-glycero-3- phosphatidylcholine (DMPC-d54/DSPC) (1:1) on a solid support with varying curvatures was investigated with differential scanning calorimetry, infrared spectroscopy, and model calculations. With increasing curvature the temperatures of the liquidus and solidus points are shifted to lower values by up to 7 degrees C and 15 degrees C, and the mixing of the two lipid species in the two phase region is altered. With increasing curvature the DSPC dominates the gel phase, whereas the DMPC-d54 is expelled to the fluid phase. Whereas the planar system shows a nearly simultaneous phase transition of DSPC and DMPC-d54, the spherical system with the highest curvature exhibits an almost complete separation of the phase transitions of the two lipids. Model calculations suggest that the shift of the liquidus point can be understood as a reduction of the lateral pressure in the bilayer with increasing curvature. The shift of the solidus line is interpreted as a result of the increased demixing of the two components in the two-phase region with increasing curvature due to lowering of the lateral pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号