首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The purpose of this study was to determine whether the rate of muscle glycogen storage could be enhanced during the initial 4-h period postexercise by substantially increasing the amount of the carbohydrate consumed. Eight subjects cycled for 2 h on three separate occasions to deplete their muscle glycogen stores. Immediately and 2 h after exercise they consumed either 0 (P), 1.5 (L), or 3.0 g glucose/kg body wt (H) from a 50% glucose polymer solution. Blood samples were drawn from an antecubital vein before exercise, during exercise, and throughout recovery. Muscle biopsies were taken from the vastus lateralis immediately, 2 h, and 4 h after exercise. Blood glucose and insulin declined significantly during exercise in each of the three treatments. They remained below the preexercise concentrations during recovery in the P treatment but increased significantly above the preexercise concentrations during the L and H treatments. By the end of the 4 h-recovery period, blood glucose and insulin were still significantly above the preexercise concentrations in both treatments. Muscle glycogen storage was significantly increased above the basal rate (P, 0.5 mumol.g wet wt-1.h-1) after ingestion of either glucose polymer supplement. The rates of muscle glycogen storage, however, were not different between the L and H treatments during the first 2 h (L, 5.2 +/- 0.9 vs. H, 5.8 +/- 0.7 mumol.g wet wt-1.h-1) or the second 2 h of recovery (L, 4.0 +/- 0.9 vs. H, 4.5 +/- 0.6 mumol.g wet wt-1. h-1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Previous studies with lung homogenates have suggested that pulmonary O2 toxicity is in part a result of inhibited mitochondrial energy metabolism. In this study, mitochondrial metabolism was determined by measurements of 14CO2 production from [1-14C]-pyruvate in perfused lungs, isolated after 0, 3, 6, 12, and 24 h of exposure to 100% O2. Measurements were made under normal and stimulated conditions brought about by uncoupling oxidative phosphorylation with 2,4-dinitrophenol (DNP). Lungs were ventilated with 5% CO2 in O2 and perfused for 100 min with 12.5 mM 14C labeled pyruvate. Unexposed lungs gave a linear rate of 14CO2 production of 121 +/- 16 mumol/h/g dry wt (n = 5), which was maximally stimulated 84% by perfusion with 0.8 mMDNP. Twenty-four hours of exposure to 100% O2 did not significantly affect 14CO2 production. In contrast, DNP failed to significantly stimulate pyruvate metabolism to CO2 in lungs exposed for greater than 3 h to 100% O2. These latter data suggested that O2 exposure makes lung mitochondria unable to respond to increased ATP demands associated with DNP uncoupling. Compromised energy metabolism is therefore an important early event in O2 toxicity.  相似文献   

3.
We set out to study the pentose phosphate pathway (PPP) in isolated rat hearts perfused with [5-3H]glucose and [1-14C]glucose or [6-14C]glucose (crossover study with 1- then 6- or 6- then 1-14C-labeled glucose). To model a physiological state, hearts were perfused under working conditions with Krebs-Henseleit buffer containing 5 mM glucose, 40 microU/ml insulin, 0.5 mM lactate, 0.05 mM pyruvate, and 0.4 mM oleate/3% albumin. The steady-state C1/C6 ratio (i.e., the ratio from [1-14C]glucose to [6-14C]glucose) of metabolites released by the heart, an index of oxidative PPP, was not different from 1 (1.06 +/- 0.19 for 14CO2, and 1.00 +/- 0.01 for [14C]lactate + [14C]pyruvate, mean +/- SE, n = 8). Hearts exhibited contractile, metabolic, and 14C-isotopic steady state for glucose oxidation (14CO2 production). Net glycolytic flux (net release of lactate + pyruvate) and efflux of [14C]lactate + [14C]pyruvate were the same and also exhibited steady state. In contrast, flux based on 3H2O production from [5-3H]glucose increased progressively, reaching 260% of the other measures of glycolysis after 30 min. The 3H/14C ratio of glycogen (relative to extracellular glucose) and sugar phosphates (representing the glycogen precursor pool of hexose phosphates) was not different from each other and was <1 (0.36 +/- 0.01 and 0.43 +/- 0.05 respectively, n = 8, P < 0.05 vs. 1). We conclude that both transaldolase and the L-type PPP permit hexose detritiation in the absence of net glycolytic flux by allowing interconversion of glycolytic hexose and triose phosphates. Thus apparent glycolytic flux obtained by 3H2O production from [5-3H]glucose overestimates the true glycolytic flux in rat heart.  相似文献   

4.
Gluconeogenesis predominates in periportal regions of the liver lobule   总被引:2,自引:0,他引:2  
Rates of gluconeogenesis from lactate were calculated in periportal and pericentral regions of the liver lobule in perfused rat livers from increases in O2 uptake due to lactate. When lactate (0.1-2.0 mM) was infused into livers from fasted rats perfused in either anterograde or the retrograde direction, a good correlation (r = 0.97) between rates of glucose production and extra O2 uptake by the liver was observed as expected. Rates of oxygen uptake were determined subsequently in periportal and pericentral regions of the liver lobule by placing miniature oxygen electrodes on the liver surface and measuring the local change in oxygen concentration when the flow was stopped. Basal rates of oxygen uptake of 142 +/- 11 and 60 +/- 4 mumol X g-1 X h-1 were calculated for periportal and pericentral regions, respectively. Infusion of 2 mM lactate increased oxygen uptake by 71 mumol X g-1 X h-1 in periportal regions and by 29 mumol X g-1 X h-1 in pericentral areas of the liver lobule. Since the stoichiometry between glucose production and extra oxygen uptake is well-established, rates of glucose production in periportal and pericentral regions of the liver lobule were calculated from local changes in rates of oxygen uptake for the first time. Maximal rates of glucose production from lactate (2 mM) were 60 +/- 7 and 25 +/- 4 mumol X g-1 X h-1 in periportal and pericentral zones of the liver lobule, respectively. The lactate concentrations required for half-maximal glucose synthesis were similar (0.4-0.5 mM) in both regions of the liver lobule in the presence or absence of epinephrine (0.1 microM). In the presence of epinephrine, maximal rates of glucose production from lactate were 79 +/- 5 and 59 +/- 3 mumol X g-1 X h-1 in periportal and pericentral regions, respectively. Thus, gluconeogenesis from lactate predominates in periportal areas of the liver lobule during perfusion in the anterograde direction; however, the stimulation by added epinephrine was greatest in pericentral areas. Differences in local rates of glucose synthesis may be due to ATP availability, as a good correlation between basal rates of O2 uptake and rates of gluconeogenesis were observed in both regions of the liver lobule in the presence and absence of epinephrine. In marked contrast, when livers were perfused in the retrograde direction, glucose production was 28 +/- 5 mumol X g-1 X h-1 in periportal areas and 74 +/- 6 mumol X g-1 X h-1 in pericentral regions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The effects of L-carnitine on myocardial glycolysis, glucose oxidation, and palmitate oxidation were determined in isolated working rat hearts. Hearts were perfused under aerobic conditions with perfusate containing either 11 mM [2-3H/U-14C]glucose in the presence or absence of 1.2 mM palmitate or 11 mM glucose and 1.2 mM [1-14C]palmitate. Myocardial carnitine levels were elevated by perfusing hearts with 10 mM L-carnitine. A 60-min perfusion period resulted in significant increases in total myocardial carnitine from 4376 +/- 211 to 9496 +/- 473 nmol/g dry weight. Glycolysis (measured as 3H2O production) was unchanged in carnitine-treated hearts perfused in the absence of fatty acids (4418 +/- 300 versus 4547 +/- 600 nmol glucose/g dry weight.min). If 1.2 mM palmitate was present in the perfusate, glycolysis decreased almost 2-fold compared with hearts perfused in the absence of fatty acids. In carnitine-treated hearts this drop in glycolysis did not occur (glycolytic rates were 2911 +/- 231 to 4629 +/- 460 nmol glucose/g dry weight.min, in control and carnitine-treated hearts, respectively. Compared with control hearts, glucose oxidation rates (measured as 14CO2 production from [U-14C]glucose) were unaltered in carnitine-treated hearts perfused in the absence of fatty acids (1819 +/- 169 versus 2026 +/- 171 nmol glucose/g dry weight.min, respectively). In the presence of 1.2 mM palmitate, glucose oxidation decreased dramatically in control hearts (11-fold). In carnitine-treated hearts, however, glucose oxidation was significantly greater than control hearts under these conditions (158 +/- 21 to 454 +/- 85 nmol glucose/g dry weight.min, in control and carnitine-treated hearts, respectively). Palmitate oxidation rates (measured as 14CO2 production from [1-14C]palmitate) decreased in the carnitine-treated hearts from 728 +/- 61 to 572 +/- 111 nmol palmitate/g dry weight.min. This probably occurred secondary to an increase in overall ATP production from glucose oxidation (from 5.4 to 14.5% of steady state myocardial ATP production). The results reported in this study provide direct evidence that carnitine can stimulate glucose oxidation in the intact fatty acid perfused heart. This probably occurs secondary to facilitating the intramitochondrial transfer of acetyl groups from acetyl-CoA to acetylcarnitine, thereby relieving inhibition of the pyruvate dehydrogenase complex.  相似文献   

6.
The effects of glucagon and the alpha-adrenergic agonist, phenylephrine, on the rate of 14CO2 production and gluconeogenesis from [1-14C]lactate and [1-14C]pyruvate were investigated in isolated perfused livers of 24-h-fasted rats. Both glucagon and phenylephrine stimulated the rate of 14CO2 production from [1-14C]lactate but not from [1-14C]pyruvate. Neither glucagon nor phenylephrine affected the activation state of the pyruvate dehydrogenase complex in perfused livers derived from 24-h-fasted rats. 3-Mercaptopicolinate, an inhibitor of the phosphoenolpyruvate carboxykinase reaction, inhibited the rates of 14CO2 production and glucose production from [1-14C]lactate by 50% and 100%, respectively. Furthermore, 3-mercaptopicolinate blocked the glucagon- and phenylephrine-stimulated 14CO2 production from [1-14C]lactate. Additionally, measurements of the specific radioactivity of glucose synthesized from [1-14C]lactate, [1-14C]pyruvate and [2-14C]pyruvate indicated that the 14C-labeled carboxyl groups of oxaloacetate synthesized from 1-14C-labeled precursors were completely randomized and pyruvate----oxaloacetate----pyruvate substrate cycle activity was minimal. The present study also demonstrates that glucagon and phenylephrine stimulation of the rate of 14CO2 production from [1-14C]lactate is a result of increased metabolic flux through the phosphoenolpyruvate carboxykinase reaction, and phenylephrine-stimulated gluconeogenesis from pyruvate is regulated at step(s) between phosphoenolpyruvate and glucose.  相似文献   

7.
To determine the effects of epinephrine (EPI) infusion on muscle glycogenolysis and force production, the quadriceps muscles of both legs in six subjects were intermittently stimulated for 30 min. Contractions lasted 1.6 s (20 Hz) and were separated by 1.6 s of rest. EPI was infused (approximately 0.14 micrograms.kg body wt-1.min-1) in one leg during the last 15 min and the vastus lateralis was biopsied at rest (control leg only) and after 15, 18 (EPI leg only), and 30 min of stimulation. EPI infusion doubled the mole fraction of phosphorylase a (22.5 +/- 4.1 to 44.8 +/- 9.0%) and glycogenolysis (2.16 +/- 0.72 to 5.45 +/- 0.81 mmol glucosyl U.kg dry muscle wt-1.min-1) during stimulation. Muscle glucose 6-phosphate increased from 3.04 +/- 0.17 to 6.43 +/- 0.20 mmol/kg dry muscle wt, and lactate increased from 25.8 +/- 4.4 to 34.3 +/- 4.6 mmol/kg after 3 min of EPI infusion. Isometric force production was unaltered by EPI infusion. These results demonstrate a strong glycogenolytic effect of EPI infusion during prolonged electrical stimulation and suggest that the extra pyruvate formed was converted mainly to lactate. Exclusive anaerobic metabolism of the extra substrate would provide only a 10% increase in total ATP production, possibly accounting for the lack of improvement in force production. We suggest that the decrease in force production during prolonged electrical stimulation is related to decreased excitation of the contractile mechanism rather than inhibition of cross-bridge turnover caused by a shortage of energy or accumulation of hyproducts.  相似文献   

8.
The time of ingestion of a carbohydrate supplement on muscle glycogen storage postexercise was examined. Twelve male cyclists exercised continuously for 70 min on a cycle ergometer at 68% VO2max, interrupted by six 2-min intervals at 88% VO2max, on two separate occasions. A 25% carbohydrate solution (2 g/kg body wt) was ingested immediately postexercise (P-EX) or 2 h postexercise (2P-EX). Muscle biopsies were taken from the vastus lateralis at 0, 2, and 4 h postexercise. Blood samples were obtained from an antecubital vein before and during exercise and at specific times after exercise. Muscle glycogen immediately postexercise was not significantly different for the P-EX and 2P-EX treatments. During the first 2 h postexercise, the rate of muscle glycogen storage was 7.7 mumol.g wet wt-1.h-1 for the P-EX treatment, but only 2.5 mumol.g wet wt-1.h-1 for the 2P-EX treatment. During the second 2 h of recovery, the rate of glycogen storage slowed to 4.3 mumol.g wet wt-1.h-1 during treatment P-EX but increased to 4.1 mumol.g wet wt-1.h-1 during treatment 2P-EX. This rate, however, was still 45% slower (P less than 0.05) than that for the P-EX treatment during the first 2 h of recovery. This slower rate of glycogen storage occurred despite significantly elevated plasma glucose and insulin levels. The results suggest that delaying the ingestion of a carbohydrate supplement post-exercise will result in a reduced rate of muscle glycogen storage.  相似文献   

9.
3-Mercaptopicolinic acid (3-MPA) is reportedly a specific inhibitor of phosphoenolpyruvate (PEP) carboxykinase and has hitherto been used accordingly to elucidate the metabolic role of PEP carboxykinase in vitro and in vivo. We show that 3-MPA has multiple effects on intermediary metabolism in hemidiaphragms from 40 h-starved rats. It decreases the release of lactate + pyruvate and alanine in hemidiaphragms provided with no added substrate or with valine, leucine or isoleucine. Moreover, irrespective of the substrate provided (none, valine, leucine, isoleucine, glucose, acetate, oleate), 3-MPA decreases the [lactate]/[pyruvate] ratio. 3-MPA is without effect on 14CO2 production from [U-14C]valine, [1-14C]valine, [1-14C]leucine, [U-14C]isoleucine or [1-14C]oleate, but stimulates 14CO2 production from [U-14C]glucose and [1-14C]pyruvate and inhibits 14CO2 production from [1-14C]acetate. Glycolytic flux (measured as 3H2O formation from [5-3H]glucose) is stimulated by 3-MPA. It is concluded that 3-MPA has site(s) of actions other than PEP carboxykinase and that the putative role of PEP carboxykinase in alanine synthesis de novo in skeletal muscle from tricarboxylic acid-cycle intermediates and related amino acids requires reappraisal.  相似文献   

10.
Carbohydrate metabolism in the isolated perfused rat kidney   总被引:1,自引:1,他引:0  
1. Anaerobic formation of lactate from glucose by isolated perfused rat kidney (411mumol/h per g dry wt.) was three times as fast as in aerobic conditions (138mumol/h per g). 2. In aerobic or in anaerobic conditions, the ratio of lactate production to glucose utilization was about 2. 3. Starvation or acidosis caused a decline of about 30% in the rate of aerobic glycolysis. 4. The rate of formation of glucose from lactate by perfused kidney from a well-fed rat, in the presence of 5mm-acetoacetate (83mumol/h per g dry wt.), was of the same order as the rate of aerobic glycolysis. 5. During perfusion with physiological concentrations of glucose (5mm) and lactate (2mm) there were negligible changes in the concentration of either substrate. 6. Comparison of kidneys perfused with lactate, from well-fed or starved rats, showed no major differences in contents of intermediates of gluconeogenesis. 7. The tissue concentrations of hexose monophosphates and C(3) phosphorylated glycolytic intermediates (except triose phosphate) were decreased in anaerobic conditions. 8. Aerobic metabolism of fructose by perfused kidney was rapid: the rate of glucose formation was 726mumol/h per g dry wt. and of lactate formation 168mumol/h per g (dry wt.). Glycerol and d-glyceraldehyde were also released into the medium. 9. Aerobically, fructose generated high concentrations of glycolytic intermediates. 10. Anaerobic production of lactate from fructose (74mumol/h per g dry wt.) was slower than the aerobic rate. 11. In both anaerobic and aerobic conditions the ratio [lactate]/[pyruvate] in kidney or medium was lower during perfusion with fructose than with glucose. 12. These results are discussed in terms of the regulation of renal carbohydrate metabolism.  相似文献   

11.
Rates of urea synthesis were determined in periportal and pericentral regions of the liver lobule in perfused liver from fed, phenobarbital-treated rats by measuring the extra O2 consumed upon infusion of NH4Cl with miniature O2 electrodes and from decreases in NADPH fluorescence detected with micro-light-guides. Urea synthesis by the perfused rat liver supplemented with lactate (5 mM), ornithine (2 mM) and methionine sulfoximine (0.15 mM), an inhibitor of glutamine synthetase, was stimulated by stepwise infusion of NH4Cl at doses ranging from 0.24 mM to 3.0 mM. A good correlation (r = 0.92) between decreases in NADPH fluorescence and urea production was observed when the NH4Cl concentration was increased. Sublobular rates of O2 uptake were determined by placing miniature oxygen electrodes on periportal or pericentral regions of the lobule on the liver surface, stopping the flow and measuring decreases in oxygen tension. From such measurements local rates of O2 uptake were calculated in the presence and absence of NH4Cl and local rates of urea synthesis were calculated from the extra O2 consumed in the presence of NH4Cl and the stoichiometry between O2 uptake and urea formation. Rates of urea synthesis were also estimated from the fractional decrease in NADPH fluorescence, caused by NH4Cl infusion in each region, measured with micro-light-guides and the rate of urea synthesis by the whole organ. When perfusion was in the anterograde direction, maximal rates of urea synthesis, calculated from changes in fluorescence, were 177 +/- 31 mumol g-1 h-1 and 61 +/- 24 mumol g-1 h-1 in periportal and pericentral regions, respectively. When perfusion was in the retrograde direction, however, rates were 76 +/- 23 mumol g-1 h-1 in periportal areas and 152 +/- 19 mumol g-1 h-1 in pericentral regions. During perfusion in the anterograde direction, urea synthesis, calculated by changes in O2 uptake, was 307 +/- 76 mumol g-1 h-1 and 72 +/- 34 mumol g-1 h-1 in periportal and pericentral regions, respectively. When perfusion was in the retrograde direction, urea was synthesized at rates of 54 +/- 17 mumol g-1 h-1 and 387 +/- 99 mumol g-1 h-1 in periportal and pericentral regions, respectively. Thus, maximal rates of urea synthesis were dependent upon the direction of perfusion. In addition, rates of urea synthesis were elevated dramatically in periportal regions when the flow rate per gram liver was increased (e.g. 307 versus 177 mumol g-1 h-1).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
In perfused livers from fed rats, rates of glucose production (glycogenolysis) were 133 +/- 12 mumol/g/hr. Infusion of 2 microM verapamil into these livers decreased the rates of glucose production significantly to 97 +/- 15 mumol/g/hr within 10 min. Conversely, rates of production of lactate plus pyruvate (glycolysis) of 64 +/- 6 mumol/g/hr were not significantly altered by verapamil (60 +/- 3 mumol/g/hr). When 50 microM verapamil was infused, however, rates of both glycogenolysis and glycolysis were diminished to 56 +/- 11 and 43 +/- 5 mumol/g/hr, respectively. In perfused livers from fasted rats, infusion of 20 mM fructose increased the rates of production of glucose (gluconeogenesis) significantly from 11 +/- 7 to 121 +/- 17 mumol/g/hr. These rates reached 138 +/- 7 mumol/g/hr upon the simultaneous infusion of verapamil (2 microM). In these livers, fructose also increased rates of production of lactate from 6 +/- 2 to 132 +/- 11 mumol/g/hr, which were further increased to 143 +/- 8 mumol/g/hr when 2 microM verapamil was infused. The results show that calcium-dependent processes involved in hepatic carbohydrate metabolism respond differently to the calcium channel blocker verapamil. Low concentrations of verapamil inhibited glycogenolysis significantly while having no effect on either glycolysis or gluconeogenesis. These data suggest that these two processes have different sensitivities to changes in intracellular calcium concentrations and/or different sources of regulatory calcium.  相似文献   

13.
The effect of sodium orthovanadate on the absorption, transmural transport and metabolism of glucose was studied by perfusion of isolated loops of rat jejunum in vitro. The presence of 1 mM vanadate in the serosal medium diminished absorption from 539 +/- 19 (n = 12) to 246 +/- 19 (P less than 0.001) mumol/h per g dry weight and transmural transport from 333 +/- 17 to 14 +/- 19 (P less than 0.001) mumol/h per g dry weight, whereas glucose utilisation was unaffected. The rate of release of lactate into the serosal medium was also diminished from 168 +/- 14 to 75 +/- 5 mumol/h per g dry weight (P less than 0.001). The observed rates were linear with respect to time and vanadate was effective within 5 min. In contrast, the rate of release of lactate into the luminal perfusate was strongly enhanced. Moreover, the progress curve showed a positive transient with an apparent lag time of 18.0 +/- 0.3 min, during which the rate increased to a value 9.2-times that of the control. Under the final steady-state conditions, the ratio of mucosal to serosal lactate production was 5.2 +/- 0.2 compared with 0.25 +/- 0.06 for the control, so that the effect of vanadate was to reverse the vectorial disposition of lactate. The concentration dependence of the effect of vanadate on absorption and metabolism was similar to that observed for the inhibition by vanadate of Na+/K+-ATPase activity in mucosal homogenates. The results are discussed in terms of the dissipation of transmembrane Na+ gradients as a result of the inhibition of the Na+/K+-ATPase.  相似文献   

14.
To quantify the potential of brown adipose tissue as a target organ for glucose oxidation, O2 consumption and glucose metabolism in isolated rat brown adipocytes were measured in the presence and absence of insulin, by using the beta-agonists isoprenaline or Ro 16-8714 to stimulate thermogenesis. Basal metabolic rate (278 mumol of O2/h per g of lipid) was maximally stimulated with isoprenaline (20 nm) and Ro 16-8714 (20 microM) to 1633 and 1024 mumol of O2/h per g respectively, whereas insulin had no effect on O2 consumption. Total glucose uptake, derived from the sum of [U-14C]glucose incorporation into CO2 and total lipids and lactate release, was enhanced with insulin. Isoprenaline and Ro 16-8714 had no effect on insulin-induced glucose uptake, but promoted glucose oxidation while inhibiting insulin-dependent lipogenesis and lactate production. A maximal value for glucose oxidation was obtained under the combined action of Ro 16-8714 and insulin, which corresponded to an equivalent of 165 mumol of O2/h per g of lipid. This makes it clear that glucose is a minor substrate for isolated brown adipocytes, fuelling thermogenesis by a maximum of 16%.  相似文献   

15.
The isolated perfused in situ rat lung preparation was used to investigate the chronic effect of thyroxine on the intermediary metabolism in the mammalian lung. Treatment with thyroxine caused stimulation of the rate of glucose utilization (91 +/- 11 mumol/g dry weight/hr versus 54 +/- 5 mumol/g dry weight/hr). The increase in the rate of glucose uptake was not accompanied by a similar increase in lactate output. Alanine and pyruvate release were also similar in both groups. The implication is that oxidative metabolism of glucose was increased. This study provides the first unequivocal evidence that the mammalian lung is a target organ for thyroxine.  相似文献   

16.
To investigate the effects of training in normoxia vs. training in normobaric hypoxia (fraction of inspired O2 = 20.9 vs. 13.5%, respectively) on the regulation of Na+-K+-ATPase pump concentration in skeletal muscle (vastus lateralis), 9 untrained men, ranging in age from 19 to 25 yr, underwent 8 wk of cycle training. The training consisted of both prolonged and intermittent single leg exercise for both normoxia (N) and hypoxia (H) during a single session (a similar work output for each leg) and was performed 3 times/wk. Na+-K+-ATPase concentration was 326 +/- 17 (SE) pmol/g wet wt before training (Control), increased by 14% with N (371 +/- 18 pmol/g wet wt; P < 0.05), and decreased by 14% with H (282 +/- 20 pmol/g wet wt; P < 0.05). The maximal activity of citrate synthase, selected as a measure of mitochondrial potential, showed greater increases (P < 0.05) with H (1.22 +/- 0.10 mmol x h-1 x g wet wt-1; 70%; P < 0.05) than with N (0.99 +/- 0.10 mmol x h-1 x g wet wt-1; 51%; P < 0.05) compared with pretraining (0.658 +/- 0.09 mmol x h-1 x g wet wt-1). These results demonstrate that normobaric hypoxia induced during exercise training represents a potent stimulus for the upregulation in mitochondrial potential while at the same time promoting a downregulation in Na+-K+-ATPase pump expression. In contrast, normoxic training stimulates increases in both mitochondrial potential and Na+-K+-ATPase concentration.  相似文献   

17.
Lactate metabolism in the perfused rat hindlimb.   总被引:2,自引:0,他引:2       下载免费PDF全文
M Shiota  S Golden    J Katz 《The Biochemical journal》1984,222(2):281-292
A preparation of isolated rat hindleg was perfused with a medium consisting of bicarbonate buffer containing Ficoll and fluorocarbon, containing glucose and/or lactate. The leg was electrically prestimulated to deplete partially muscle glycogen. The glucose was labelled uniformly with 14C and with 3H in positions 2, 5 or 6, and lactate uniformly with 14C and with 3H in positions 2 or 3. Glucose carbon was predominantly recovered in glycogen, and to a lesser extent in lactate. The 3H/14C ration in glycogen from [5-3H,U-14C]- and [6-3H,U-14C]-glucose was the same as in glucose. Nearly all the utilized 3H from [2-3H]glucose was recovered as water. Insulin increased glucose uptake and glycogen synthesis 3-fold. When the muscle was perfused with a medium containing 10 mM-glucose and 2 mM-lactate, there was little change in lactate concentration. 14C from lactate was incorporated into glycogen. There was a marked exponential decrease in lactate specific radioactivity, much greater with [3H]- than with [14C]-lactate. The 'apparent turnover' of [U-14C]lactate was 0.28 mumol/min per g of muscle, and those of [2-3H]- and [3-3H]-lactate were both about 0.7 mumol/min per g. With 10 mM-lactate as sole substrate, there was a net uptake of lactate, at a rate of about 0.15 mumol/min per g, and the apparent turnover of [U-14C]lactate was 0.3 mumol/min per g. The apparent turnover of [3H]lactate was 3-5 times greater. When glycogen synthesis was low (no prestimulation, no insulin), the incorporation of lactate carbon into glycogen exceeded that from glucose, but at high rates of glycogen deposition the incorporation of lactate carbon was much less than that of glucose. Lactate incorporation into glycogen was similar in fast-twitch white and fast-twitch red muscle, but was very low in slow-twitch red fibres. We find that (a) pyruvate in muscle is incorporated into glycogen without randomization of carbon, and synthesis is not inhibited by mercaptopicolinate or cycloserine; (b) there is extensive lactate turnover in the absence of net lactate uptake, and there is a large dilution of 14C-labelled lactate from endogenous supply; (c) there is extensive detritiation of [2-3H]- and [3-3H]-lactate in excess of 14C utilization.  相似文献   

18.
The bioenergetic basis by which the Krebs cycle substrate pyruvate increased cardiac contractile function over that observed with the Embden-Meyerhof substrate glucose was investigated in the isovolumic guinea pig heart. Alterations in the content of the high energy phosphate metabolites and the rate of high energy phosphate turnover were measured by 31P NMR. These were correlated to the changes in contractile function and rates of myocardial oxygen consumption. Maximum left ventricular developed pressure (LVDP) and high energy phosphates were observed with 16 mM glucose or 10 mM pyruvate. In hearts perfused with 16 mM glucose, the intracellular phosphocreatine (PCr) concentration was 15.2 +/- 0.6 mM with a PCr/Pi ratio of 10.3 +/- 0.9. The O2 consumption was 5.35 mumol/g wet weight/min, and these hearts exhibited a LVDP of 97 +/- 3.7 mm Hg at a constant paced rate of 200 beats/min. In contrast, when hearts were switched to 10 mM pyruvate, the PCr concentration was 18.3 +/- 0.4 mM, the PCr/Pi ratio was 30.4 +/- 2.2, the O2 consumption was 6.67 mumol/g wet weight/min, and the LDVP increased to 125 +/- 3.3 mm Hg. From NMR saturation transfer experiments, the steady-state flux of ATP synthesis from PCr was 4.9 mumol/s/g of cell water during glucose perfusion and 6.67 mumol/s/g of cell water during pyruvate perfusion. The flux of ATP synthesis from ADP was measured to be 0.99 mumol/s/g of cell water with glucose and calculated to be 1.33 mumol/s/g of cell water with pyruvate. These results suggest that pyruvate quite favorably alters myocardial metabolism in concert with the increased contractile performance. Thus, as a mechanism to augment myocardial performance, pyruvate appears to be unique.  相似文献   

19.
On the basis of enzyme activities detected in extracts of Selenomonas ruminantium HD4 grown in glucose-limited continuous culture, at a slow (0.11 h-1) and a fast (0.52 h-1) dilution rate, a pathway of glucose catabolism to lactate, acetate, succinate, and propionate was constructed. Glucose was catabolized to phosphoenol pyruvate (PEP) via the Emden-Meyerhoff-Parnas pathway. PEP was converted to either pyruvate (via pyruvate kinase) or oxalacetate (via PEP carboxykinase). Pyruvate was reduced to L-lactate via a NAD-dependent lactate dehydrogenase or oxidatively decarboxylated to acetyl coenzyme A (acetyl-CoA) and CO2 by pyruvate:ferredoxin oxidoreductase. Acetyl-CoA was apparently converted in a single enzymatic step to acetate and CoA, with concomitant formation of 1 molecule of ATP; since acetyl-phosphate was not an intermediate, the enzyme catalyzing this reaction was identified as acetate thiokinase. Oxalacetate was converted to succinate via the activities of malate dehydrogenase, fumarase and a membrane-bound fumarate reductase. Succinate was then excreted or decarboxylated to propionate via a membrane-bound methylmalonyl-CoA decarboxylase. Pyruvate kinase was inhibited by Pi and activated by fructose 1,6-bisphosphate. PEP carboxykinase activity was found to be 0.054 mumol min-1 mg of protein-1 at a dilution rate of 0.11 h-1 but could not be detected in extracts of cells grown at a dilution rate of 0.52 h-1. Several potential sites for energy conservation exist in S. ruminantium HD4, including pyruvate kinase, acetate thiokinase, PEP carboxykinase, fumarate reductase, and methylmalonyl-CoA decarboxylase. Possession of these five sites for energy conservation may explain the high yields reported here (56 to 78 mg of cells [dry weight] mol of glucose-1) for S. ruminantium HD4 grown in glucose-limited continuous culture.  相似文献   

20.
1. Phosphate-dependent glutaminase activity in the epididymal fat-pad was 15.1 nmol/min per mg of protein. Glutaminase activity demonstrated differences with respect to adipose-tissue sites. Considerable variation was found in different sites of adipose tissue from lean control and Zucker obese animals. 2. Adipocytes incubated in the presence of 2 mM-glutamine utilized glutamine at a rate of 1.8 mumol/h per g dry wt., and glutamate, ammonia, lactate and alanine were produced. Addition of glucose plus insulin increased the rates of glutamine utilization and glutamate, ammonia, lactate and alanine production. Isoprenaline alone or plus glucose further stimulated the rate of glutamine utilization and formation of end products. 3. The rate of incorporation of 14C from glutamine into CO2 was similar to that of glucose, but the rate of incorporation into triacylglycerol was much less. Addition of unlabelled glucose or glucose plus insulin stimulated the rate of incorporation of [14C]glutamine into triacylglycerol, but had no effect on that of 14CO2 formation. Isoprenaline plus glucose increased the rate of incorporation of [14C]glutamine into CO2, but decreased the rate of incorporation into triacylglycerol. 4. In the absence of insulin, the rate of [14C]glutamine incorporation into triacylglycerol was related to the glucose concentration (0-10 mM). However, in the presence of insulin, the rate of incorporation of [14C]glutamine was maximal at 1 mM-glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号