共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Genetic regulation of gene expression during shoot development in Arabidopsis 总被引:5,自引:0,他引:5
下载免费PDF全文

The genetic control of gene expression during shoot development in Arabidopsis thaliana was analyzed by combining quantitative trait loci (QTL) and microarray analysis. Using oligonucleotide array data from 30 recombinant inbred lines derived from a cross of Columbia and Landsberg erecta ecotypes, the Arabidopsis genome was scanned for marker-by-gene linkages or so-called expression QTL (eQTL). Single-feature polymorphisms (SFPs) associated with sequence disparities between ecotypes were purged from the data. SFPs may alter the hybridization efficiency between cDNAs from one ecotype with probes of another ecotype. In genome scans, five eQTL hot spots were found with significant marker-by-gene linkages. Two of the hot spots coincided with classical QTL conditioning shoot regeneration, suggesting that some of the heritable gene expression changes observed in this study are related to differences in shoot regeneration efficiency between ecotypes. Some of the most significant eQTL, particularly those at the shoot regeneration QTL sites, tended to show cis-chromosomal linkages in that the target genes were located at or near markers to which their expression was linked. However, many linkages of lesser significance showed expected "trans-effects," whereby a marker affects the expression of a target gene located elsewhere on the genome. Some of these eQTL were significantly linked to numerous genes throughout the genome, suggesting the occurrence of large groups of coregulated genes controlled by single markers. 相似文献
3.
4.
Steven M. Swanson Gail B. Mahady Christopher W. W. Beecher 《Plant Cell, Tissue and Organ Culture》1992,28(2):151-157
Leaf explants of Stevia rebaudiana Bertoni (Compositae), an herb which produces the sweet ent-kaurene glycoside stevioside, were cultured in Murashige and Skoog medium with vitamins, sucrose (30 g l–1), agar (0.9% w/v) and supplemented with naphthaleneacetic acid (NAA, 0.5 mg l–1) and benzylaminopurine (BAP, 0.5 mg l–1). These conditions yielded friable callus cultures. Differentiation of the callus tissue was then achieved by eliminating the agar and modulating the medium's hormone concentrations. Thus, medium containing increased auxin concentration (1.0 mg l–1) and no cytokinin or increased cytokinin (1.0 mg l–1) and no auxin yielded root or shoot cultures respectively. Supplementation of the shoot medium with NAA (1.0 mg ml–1) induced shoot cultures to grow roots thereby differentiating into rooted-shoot cultures. Only the rooted-shoot cultures tasted sweet. Feedings of [2-14C]acetic acid to callus, shoot or rooted-shoot cultures demonstrated that only the rooted-shoot cultures are capable of de novo biosynthesis of the aglycone moiety of stevioside (steviol). In addition, [methyl-3H(N)steviol feedings to shoot or rooted-shoot cultures illustrated that both types of cultures are capable of the glycosylation reaction. The ability of these tissues to glycosylate steviol to stevioside was also demonstrated employing crude enzyme preparations derived from shoot or rooted-shoot cultures. These results suggest that stevioside biosynthesis is a function of tissue differentiation since both roots and leaves are required for cultured S. rebaudiana to biosynthesize stevioside from acetate, while the final biosynthetic steps can be performed at all levels of differentiation. 相似文献
5.
Shoot organogenesis in Arabidopsis thaliana wasstudied with regard to the timing of key developmental phases and expression ofthe SHOOTMERISTEMLESS (STM) gene.Shoot regeneration in the highly organogenic ecotype C24 was affected byexplanttype and age. The percentage of C24 cotyledon explants producing shootsdecreased from 90% to 26% when donor seedlings were more than 6 dold, but 96% of root explants produced shoots regardless of the age of thedonorplant. Using explant transfer experiments, it was shown that C24 cotyledonexplants required about 2 days to become competent and another 8-10 days tobecome determined for shoot organogenesis. A C24 line containing the promoterofthe SHOOTMERISTEMLESS (STM) genelinked to the -glucuronidase(GUS) gene was used as a tool for determining the timingofde novo shoot apical meristem (SAM) development incotyledon and root explants. Cotyledon and root explants from anSTM:GUS transgenic C24 line were placed on shoot inductionmedium and GUS expression was examined after 6-16 days ofculture. GUS expression could be found in localizedregionsof callus cells on root and cotyledon explants after 12 days indicating thatthese groups of cells were expressing the STM gene, hadreached the key time point of determination, and were producing an organizedSAM. This was consistent with the timing of determination as indicated byexplant transfer experiments. Root explants from anSTM:GUStransgenic Landsberg erecta line and a two-step tissue culture method revealedasimilar pattern of localized GUS expression duringde novo shoot organogenesis. This is the first studydocumenting the timing and pattern of expression of theSTMgene during de novo shoot organogenesis. 相似文献
6.
7.
Cytokinin receptors are involved in alkamide regulation of root and shoot development in Arabidopsis 总被引:2,自引:0,他引:2
下载免费PDF全文

López-Bucio J Millán-Godínez M Méndez-Bravo A Morquecho-Contreras A Ramírez-Chávez E Molina-Torres J Pérez-Torres A Higuchi M Kakimoto T Herrera-Estrella L 《Plant physiology》2007,145(4):1703-1713
Alkamides and N-acilethanolamides are a class of lipid compounds related to animal endocannabinoids of wide distribution in plants. We investigated the structural features required for alkamides to regulate plant development by comparing the root responses of Arabidopsis (Arabidopsis thaliana) seedlings to a range of natural and synthetic compounds. The length of the acyl chain and the amide moiety were found to play a crucial role in their biological activity. From the different compounds tested, N-isobutyl decanamide, a small saturated alkamide, was found to be the most active in regulating primary root growth and lateral root formation. Proliferative-promoting activity of alkamide treatment was evidenced by formation of callus-like structures in primary roots, ectopic blades along petioles of rosette leaves, and disorganized tumorous tissue originating from the leaf lamina. Ectopic organ formation by N-isobutyl decanamide treatment was related to altered expression of the cell division marker CycB1:uidA and an enhanced expression of the cytokinin-inducible marker ARR5:uidA both in roots and in shoots. The involvement of cytokinins in mediating the observed activity of alkamides was tested using Arabidopsis mutants lacking one, two, or three of the putative cytokinin receptors CRE1, AHK2, and AHK3. The triple cytokinin receptor mutant was insensitive to N-isobutyl decanamide treatment, showing absence of callus-like structures in roots, the lack of lateral root proliferation, and absence of ectopic outgrowths in leaves under elevated levels of this alkamide. Taken together our results suggest that alkamides and N-acylethanolamides may belong to a class of endogenous signaling compounds that interact with a cytokinin-signaling pathway to control meristematic activity and differentiation processes during plant development. 相似文献
8.
Mustapha Benmoussa Sandip Mukhopadhyay Yves Desjardins 《Plant Cell, Tissue and Organ Culture》1996,47(1):91-94
The effects of different growth regulators on induction and growth of callus ofAsparagus densiflorus cv. Sprengeri were studied. Calluses grew more rapidly on Murashige and Skoog basal medium supplemented with 5.4 μM p-chlorophenoxyacetic acid (pCPA) and 4.4 μM 6-benzylaminopurine (BA) (medium 1) as compared to the same medium with 11.3 μM 2,4-dichlorophenoxyacetic acid (2,4-d) and 4.6 μM kinetin (medium 2). Calluses on medium 1 were soft and friable, whereas, compact, hard calluses originated on medium 2. Different concentrations and combinations of BA and/or kinetin were also used to study their effects on shoot regeneration. Kinetin was found to be less effective than BA in the initiation of shoots (1.8 shoots/callus). High numbers of shoots were produced in the presence of 0.4 μM BA alone (3.3 shoots/callus). The addition of ancymidol (5 μM) in MS with 0.4 μM BA enhanced multiplication of shoots (9.8 shoots/explant) and also produced well-developed crowns. 相似文献
9.
A new reliable protocol for the induction of adventitious shoot formation and plant regeneration from apple callus has been developed. High regeneration frequency was obtained with this method in four different genotypes (Jork9, M26, Gala and McIntosh) and callus maintained regeneration ability for several months. The procedure consists of inducing vegetative shoot apices, excised from in vitro shoots, for 20 days in darkness on an MS medium without glycine, supplied with 17.8 μM BA, 2.7 μM NAA and 250 mg l−1 cefotaxime. The explants are then transferred to a fresh auxin-free medium and given light. Histological studies revealed that all the regenerated shoots originated from callus. Regenerated shoots were multiplied, rooted and successfully established in soil. Received: 2 April 1999 / Revision received: 10 November 1999 / Accepted: 15 November 1999 相似文献
10.
11.
Kamal Osama M. Shah Sayyed Hamad Ahmad Li Yan Hou Xilin Li Ying 《Molecular biology reports》2020,47(9):6887-6897
Molecular Biology Reports - The objective of the present work was the selection of cultivar, suitable medium and explant type for callus, root production, ascorbic acid, total ascorbic acid,... 相似文献
12.
Shoot formation in tobacco (Nicotiana tabacum L.) callus is accompanied by an increase in peroxidase activity which takes a form similar to a sigmoid curve. The "stationary" phase coincides with the period of organ formation. Characteristic changes in isoperoxidase pattern are found in the shoot-forming part of the callus. These changes are different from those in the nonshoot-forming part or in gibberellin-treated tissue, which does not form shoots. 相似文献
13.
14.
Mitochondria isolated from tobacco ( Nicotiana tabacum L. cv. Wisconsin 38) callus growing on either shoot-forming or non-shoot forming medium show an increase in state 3 and state 4 respiration and a drop in respiratory control and ADP/O ratios after subculture. the protein content of the mitochondria fraction and the activity of succinate dehydrogenase, malate dehydrogenase, cytochrome c oxidase and catalase also increase after subculture but there is no apparent difference between shoot-forming and non-shoot-forming tissue. For mitochondria assayed at their native osmolarities, a trend of higher respiration rates and respiratory control as well as lower levels of cyanide-resistant respiration was observed for shoot-forming tissue. Generally, differences were greatest after day 9 in culture, the time during which primordia formation occurred in the shoot-forming callus. These patterns are in concert with the view that the shoot-forming process has a high energy requirement which must be realized during the time of primordia formation. 相似文献
15.
Mustapha Benmoussa Sandip Mukhopadhyay Yves Desjardins 《Plant Cell, Tissue and Organ Culture》1997,47(1):91-94
The effects of different growth regulators on induction and growth of callus ofAsparagus densiflorus cv. Sprengeri were studied. Calluses grew more rapidly on Murashige and Skoog basal medium supplemented with 5.4 μM p-chlorophenoxyacetic
acid (pCPA) and 4.4 μM 6-benzylaminopurine (BA) (medium 1) as compared to the same medium with 11.3 μM 2,4-dichlorophenoxyacetic
acid (2,4-d) and 4.6 μM kinetin (medium 2). Calluses on medium 1 were soft and friable, whereas, compact, hard calluses originated on
medium 2. Different concentrations and combinations of BA and/or kinetin were also used to study their effects on shoot regeneration.
Kinetin was found to be less effective than BA in the initiation of shoots (1.8 shoots/callus). High numbers of shoots were
produced in the presence of 0.4 μM BA alone (3.3 shoots/callus). The addition of ancymidol (5 μM) in MS with 0.4 μM BA enhanced
multiplication of shoots (9.8 shoots/explant) and also produced well-developed crowns. 相似文献
16.
Catapan Elizabete Luís Márcio Silva Busi da Netto Moreno Fábio Viana Ana Maria 《Plant Cell, Tissue and Organ Culture》2002,70(3):301-309
Efficient micropropagation, callus culture and root culture protocols were developed for the medicinal plant Phyllanthus urinaria(Euphorbiaceae) using single node explants. Maximum multiplication (16–20 shoots per explant) was achieved on Murashige and Skoog media supplemented with 5.0 M kinetin. Murashige and Skoog and Anderson Rhododendron media promoted significant shoot culture growth in terms of numbers of shoots and nodes produced per explant. Rooting was achieved with 93–100% of the microshoots on Murashige and Skoog medium without growth regulators, although 1.25–5.0 M -naphthaleneacetic acid significantly increased the number of roots per explant. Regenerated plants were successfully acclimatized and 91% of plantlets survived under ex vitro conditions. Flowering was observed on micropropagated plants after 3–4 weeks of acclimatization. High frequency callus initiation and growth was achieved when single node explants were inoculated in the horizontal position on Murashige and Skoog medium supplemented with 5.0 M indole-3-butyric acid. Other auxins such as 2,4-dichlorophenoxyacetic acid and -naphthaleneacetic acid promoted moderate callus fresh weight increase, when used separately. Root cultures were successfully established on Murashige and Skoog medium containing 1.1 M -naphthaleneacetic acid. The optimized micropropagation, callus culture and root culture protocols offer the possibility to use cell/root culture techniques for vegetative propagation and secondary metabolism studies. 相似文献
17.
Liam Dolan Keith Roberts 《BioEssays : news and reviews in molecular, cellular and developmental biology》1995,17(10):865-872
The post-embryonic architecture of higher plants is derived from the activity of two meristems that are formed in the embryo: the shoot meristem and the root meristem. The epidermis of the shoot is derived from the outermost layer of cells covering the shoot meristem through repeated anticlinal divisions. By contrast, the epidermis of the root is derived from an internal ring of cells, located at the centre of the root meristem, by a precise series of both periclinal and anticlinal divisions. Each epidermis has an independent origin. In Arabidopsis the mature shoot epidermis is composed of a small number of cell types: hair cells (trichomes), stomatal guard cells and other epidermal cells. In shoots, hairs take the form of branched trichomes that are surrounded at their base by a ring of accessory cells in a sheet of epidermal cells. The root epidermis is composed of two cell types: trichoblasts that form root hair cells and atrichoblasts that form non-hair cells. Mutations affecting both the patterning and the morphogenesis of cells in both shoot and root epidermis have recently been described. Most of these mutations affect development in a single epidermis, but at least one, ttg, is involved in development in both epidermal systems. 相似文献
18.
V. Chalupa 《Biologia Plantarum》1974,16(4):316-320
The technique of trees production from the undifferentiated poplar callus tissue is described. The best root formation was observed on the modifiedWolter andSkoog medium when NAA in concentration 0.2 to 0.4 mg l?1 was used as an auxin and cytokinins were omitted. The induction of leafy shoots from the undifferentiated callus was the most effective on the modifiedLinsmaier andSkoog medium in the absence of auxin and with 0.15 to 0.70 mg l?1 of BAP. The best development of roots at the basal end of excised shoots was achieved when shoots were transferred into the sterile mixture of perlit and sand (3: l, v/v) containing a modifiedWolter andSkoog medium. 相似文献
19.
The development of complex eukaryotic organisms can be viewed as the selective expression of distinct fractions of the genome in different organs or tissue types in response to developmental and environmental cues. Here, we generated a genome expression atlas of 18 organ or tissue types representing the life cycle of Arabidopsis (Arabidopsis thaliana). We showed that each organ or tissue type had a defining genome expression pattern and that the degree to which organs share expression profiles is highly correlated with the biological relationship of organ types. Further, distinct fractions of the genome exhibited expression changes in response to environmental light among the three seedling organs, despite the fact that they share the same photo-perception and transduction systems. A significant fraction of the genes in the Arabidopsis genome is organized into chromatin domains exhibiting coregulated expression patterns in response to developmental or environmental signals. The knowledge of organ-specific expression patterns and their response to the changing environment provides a foundation for dissecting the molecular processes underlying development. 相似文献
20.
Reorganization and in vivo dynamics of microtubules during Arabidopsis root hair development
下载免费PDF全文

Root hairs emerge from epidermal root cells (trichoblasts) and differentiate by highly localized tip growth. Microtubules (MTs) are essential for establishing and maintaining the growth polarity of root hairs. The current knowledge about the configuration of the MT cytoskeleton during root hair development is largely based on experiments on fixed material, and reorganization and in vivo dynamics of MTs during root hair development is at present unclear. This in vivo study provides new insights into the mechanisms of MT (re)organization during root hair development in Arabidopsis (Arabidopsis thaliana). Expression of a binding site of the MT-associated protein-4 tagged with green fluorescent protein enabled imaging of MT nucleation, growth, and shortening and revealed distinct MT configurations. Depending on the dynamics of the different MT populations during root hair development, either repeated two-dimensional (x, y, t) or repeated three-dimensional (x, y, z, t) scanning was performed. Furthermore, a new image evaluation tool was developed to reveal important data on MT instability. The data show how MTs reorient after apparent contact with other MTs and support a model for MT alignment based on repeated reorientation of dynamic MT growth. 相似文献