首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel actinobacterium, strain N9999T, was isolated from soil and its taxonomic position determined using a polyphasic approach. The organism formed abundant aerial hyphae that differentiated into spherical spore vesicles. The cell wall contained meso-diaminopimelic acid; the whole-cell sugars were galactose, glucose, mannose, madurose and ribose; the predominant menaquinones MK-9 (H2) and MK-9 (H4); the major phospholipids phosphatidylethanolamine, diphosphatidylglycerol, a phosphaglycolipid and phosphatidylinositol mannosides; while the cellular fatty acids were rich in iso-C14:0, C15:0, cis-9-C17:1, iso-C16:0 and 10-methyl C17:0 components. Phylogenetic analyses based on an almost complete 16S rRNA gene sequence indicated that strain N9999T was closely related to a group that consisted of Streptosporangium pseudovulgare DSM 43181T and Streptosporangium nondiastaticum DSM 43848T. However, DNA–DNA relatedness and phenotypic data demonstrated that strain N9999T was clearly distinguished from all closely related Streptosporangium species. The combined genotypic and phenotypic data demonstrate conclusively that the isolate should be classified as a new species of Streptosporangium.  相似文献   

2.
A novel actinomycete, designated strain NEAU-NH11T, was isolated from muddy soil collected from a lake and characterized using a polyphasic approach. The 16S rRNA gene sequence analysis showed that strain NEAU-NH11T belongs to the genus Streptosporangium, and was most closely related to Streptosporangium amethystogenes subsp. amethystogenes DSM 43179T (99.0 %). Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain NEAU-NH11T formed a monophyletic clade with Streptosporangium purpuratum CY-15110T (98.3 %) and Streptosporangium yunnanense CY-11007T (98.0 %), an association that was supported by a bootstrap value of 80 % in the neighbour-joining tree and also recovered with the maximum-likelihood algorithm. However, the low level of DNA–DNA relatedness allowed the strain to be differentiated from S. amethystogenes subsp. amethystogenes DSM 43179T, S. purpuratum CY-15110T and S. yunnanense CY-11007T. Moreover, strain NEAU-NH11T could also be differentiated from its closest related strains by phenotypic characteristics. Therefore, it is proposed that strain NEAU-NH11T represents a novel Streptosporangium species, Streptosporangium nanhuense sp. nov. The type strain of S. nanhuense is NEAU-NH11T. (=CGMCC 4.7131T = DSM 46674T).  相似文献   

3.
A novel actinomycete, designated strain NEAU-GH7T, was isolated from a lake sediment and characterized using a polyphasic approach. Strain NEAU-GH7T was Gram-stain positive, aerobic, non-spore-forming and produced spherical sporangia. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain NEAU-GH7T formed a monophyletic clade with the closest relative Streptosporangium longisporum DSM 43180T (99.0 %), an association that was supported by a bootstrap value of 74 % in the neighbour-joining tree and also recovered with the maximum-likelihood algorithm. However, the low level of DNA–DNA relatedness allowed the strain to be differentiated from its closest relative. Moreover, strain NEAU-GH7T could also be differentiated from S. longisporum DSM 43180T and other Streptosporangium species showing high 16S rRNA gene sequence similarity (>98.0 %) by morphological and physiological characteristics. On the basis of phylogenetic analysis, DNA–DNA hybridization and phenotypic characteristics, strain NEAU-GH7T should be classified as a new species of the genus Streptosporangium, for which the name Streptosporangium shengliensis sp. nov. is proposed. The type strain is NEAU-GH7T (=CGMCC 4.7105T=DSM 45881T).  相似文献   

4.
Evidence from numerical taxonomic analysis and DNA-DNA hybridization supports the proposal of new species in the genera Actinobacillus and Pasteurella. The following new species are proposed: Actinobacillus rossii sp. nov., from the vaginas of postparturient sows; Actinobacillus seminis sp. nov., nom. rev., associated with epididymitis of sheep; Pasteurella bettii sp. nov., associated with human Bartholin gland abscess and finger infections; Pasteurella lymphangitidis sp. nov. (the BLG group), which causes bovine lymphangitis; Pasteurella mairi sp. nov., which causes abortion in sows; and Pasteurella trehalosi sp. nov., formerly biovar T of Pasteurella haemolytica, which causes septicemia in older lambs.  相似文献   

5.
A previous phylogenetic study on type strains of the genus Micromonospora and Micromonospora species bearing non-validly published names has pointed towards the species status of several of latter strains. Subsequent studies on morphological, cultural, chemotaxonomic, metabolic, and genomic properties, and on whole cell mass spectrometric analyses by matrix adsorbed laser desorption/ionization time-of-flight (MALDI-TOF) confirmed the species status, leading to the proposal of eight new Micromonospora species: Micromonospora citrea sp. nov., type strain DSM 43903T, Micromonospora echinaurantiaca sp. nov., type strain DSM 43904T, Micromonospora echinofusca sp. nov., type strain DSM 43913T, Micromonospora fulviviridis sp. nov., type strain DSM 43906T, Micromonospora inyonensis sp. nov., type strain DSM 46123T, Micromonospora peucetia sp. nov., type strain DSM 43363T, Micromonospora sagamiensis sp. nov., type strain DSM 43912T and Micromonospora viridifaciens sp. nov., type strain DSM 43909T.  相似文献   

6.
Ten Bifidobacterium strains, i.e., 6T3, 64T4, 79T10, 80T4, 81T8, 82T1, 82T10, 82T18, 82T24, and 82T25, were isolated from mantled guereza (Colobus guereza), Sumatran orangutan (Pongo abeli), silvery marmoset (Mico argentatus), golden lion tamarin (Leontopithecus rosalia), pied tamarin (Saguinus bicolor), and common pheasant (Phaisanus colchinus). Cells are Gram-positive, non-motile, non-sporulating, facultative anaerobic, and fructose 6-phosphate phosphoketolase-positive. Phylogenetic analyses based on the core genome sequences revealed that isolated strains exhibit close phylogenetic relatedness with Bifidobacterium genus members belonging to the Bifidobacterium bifidum, Bifidobacterium longum, Bifidobacterium pullorum, and Bifidobacterium tissieri phylogenetic groups. Phenotypic characterization and genotyping based on the genome sequences clearly show that these strains are distinct from each of the type strains of the so far recognized Bifidobacterium species. Thus, B. phasiani sp. nov. (6T3 = LMG 32224T = DSM 112544T), B. pongonis sp. nov. (64T4 = LMG 32281T = DSM 112547T), B. saguinibicoloris sp. nov. (79T10 = LMG 32232T = DSM 112543T), B. colobi sp. nov. (80T4 = LMG 32225T = DSM 112552T), B. simiiventris sp. nov. (81T8 = LMG 32226T = DSM 112549T), B. santillanense sp. nov. (82T1 = LMG 32284T = DSM 112550T), B. miconis sp. nov. (82T10 = LMG 32282T = DSM 112551T), B. amazonense sp. nov. (82T18 = LMG 32297T = DSM 112548T), pluvialisilvae sp. nov. (82T24 = LMG 32229T = DSM 112545T), and B. miconisargentati sp. nov. (82T25 = LMG 32283T = DSM 112546T) are proposed as novel Bifidobacterium species.  相似文献   

7.
A Gram-stain positive, filamentous bacterial strain, designated strain NEAU-TWSJ13T, was isolated from the rhizosphere of a marigold (Tagetes erecta L.) plant collected in Heilongjiang Province, northeast China, and characterized using a polyphasic approach. The strain was observed to form abundant aerial hyphae differentiated into spherical sporangia. 16S rRNA gene sequence similarity studies showed that strain NEAU-TWSJ13T belongs to the genus Streptosporangium, being most closely related to Streptosporangium fragile DSM 43847T (98.6 %). Phylogenetic analysis of the 16S rRNA gene sequence indicated that it formed a phyletic line with S. fragile DSM 43847T, Streptosporangium jomthongense NBRC 110047T (98.4 % 16S rRNA gene similarity) and Streptosporangium violaceochromogenes DSM 43849T (97.6 % 16S rRNA gene similarity). A combination of DNA–DNA hybridization results and some phenotypic characteristics indicated that strain NEAU-TWSJ13T can be distinguished from S. fragile DSM 43847T and S. jomthongense NBRC 110047T. Moreover, strain NEAU-TWSJ13T can also be differentiated from S. violaceochromogenes DSM 43849T and other Streptosporangium species showing high 16S rRNA gene sequence similarity (>98.0 %) by morphological and physiological characteristics. Therefore, it is proposed that strain NEAU-TWSJ13T represents a novel species of the genus Streptosporangium, for which the name Streptosporangium subfuscum sp. nov. is proposed. The type strain is NEAU-TWSJ13T ( = CGMCC 4.7146T = DSM = 46724T).  相似文献   

8.
Mycoplasmas isolated from the throats of lions were shown to belong to three serotypes, all of which were serologically distinct from the previously recognized Mycoplasma and Acholeplasma spp. Eight mycoplasma colonies were cloned, including one from a leopard (strain LP), and were examined in detail for morphology, growth, and biochemical characteristics. The strains had the following properties: guanine-plus-cytosine contents of 37 mol% (strain LXT [T = type strain]), 28 mol% (strain LL2T), and 27 mol% (strain 3L2T) and a requirement for sterol. Strain 3L2T metabolized glucose, which was not metabolized by strains LXT and LL2T. Arginine and urea were not hydrolyzed. Strain LX (= NCTC 11724) is the type strain of a new species, Mycoplasma simbae; strain LL2 (= NCTC 11725) is the type strain of a second new species, Mycoplasma leopharyngis; and strain 3L2 (= NCTC 11726) is the type strain of a third new species, Mycoplasma leocaptivus.  相似文献   

9.
Exploration of unexplored habitats for novel actinobacteria with high bioactivity potential holds great promise in the search for novel entities. During the course of isolation of actinobacteria from desert soils, four actinobacteria, designated as 5K548T, 7K502T, 16K309T and 16K404T, were isolated from the Karakum Desert and their bioactivity potential as well as taxonomic provenances were revealed by comprehensive genome analyses. Pairwise sequence analyses of the 16S rRNA genes indicated that the four strains are representatives of putatively novel taxa within the prolific actinobacterial genus Saccharopolyspora. The strains have typical chemotaxonomic characteristics of the genus Saccharopolyspora by having meso-diaminopimelic acid as diagnostic diaminoacid, arabinose, galactose and ribose as whole-cell sugars. Consistent with this assignment, all of the isolates contained phosphatidylcholine in their polar lipid profiles and MK-9(H4) as the predominant menaquinone. The sizes of the genomes of the isolates ranged from 6.0 to 10.2 Mb and the associated G + C contents from 69.6 to 69.7 %. Polyphasic characterizations including determination of overall genome relatedness indices revealed that the strains are representatives of four novel species in the genus Saccharopolyspora. Consequently, isolates 5K548T, 7K502T, 16K404T and 16K309T are proposed as novel Saccharopolyspora species for which the names of Saccharopolyspora karakumensis sp. nov., Saccharopolyspora elongata sp. nov., Saccharopolyspora aridisoli sp. nov. and Saccharopolyspora terrae sp. nov. are proposed, respectively. Comprehensive genome analysis for biosynthetic gene clusters showed that the strains have high potential for novel secondary metabolites. Moreover, the strains harbour many antimicrobial resistance genes providing more evidence for their potentiality for bioactive metabolites.  相似文献   

10.
《Mycological Research》2006,110(3):346-356
Fourteen yeast isolates belonging to the Metschnikowia clade were isolated from the digestive tracts of lacewings (Neuroptera: Chrysopidae), soldier beetles and leaf beetles (Coleoptera: Cantharidae and Chrysomelidae), and a caddisfly (Trichoptera: Hydropsychidae). The insect hosts were associated with sugary substances of plants, a typical habitat for yeasts in this clade. Based on DNA sequence comparisons and phenetic characters, the yeasts were identified as Candida picachoensis, Candida pimensis, and four undescribed taxa. Among the undescribed taxa, three yeasts were distinguished from one another and from other described taxa by nucleotide differences in the ribosomal DNA repeat, which were sufficient to consider them as new species. Two of the novel yeast species are described as Metschnikowia noctiluminum (NRRL Y-27753T) and M. corniflorae spp. nov. (NRRL Y-27750T) based in part on production of needle-shaped ascospores, which are found in most Metschnikowia species. Sexual reproduction was not observed in the third new yeast, Candida chrysomelidarum sp. nov. (NRRL Y-27749T). A fourth isolate, NRRL Y-27752, was not significantly distinct from Metschnikowia viticola and Candida kofuensis to be described as a new species. Phylogenetic analysis of the D1/D2 loop sequences placed M. noctiluminum within the M. viticola clade, while C. chrysomelidarum was a sister taxon of Candida rancensis. Metschnikowia corniflorae was phylogenetically distinct from other new species and fell outside of the large-spored Metschnikowia group.  相似文献   

11.
12.
Three new species of Candida and a new species of Trigonopsis are described based on their recognition from phylogenetic analysis of gene sequences from large subunit ribosomal RNA, ITS1/ITS2 rRNA, mitochondrial small subunit rRNA and cytochrome oxidase II. Candida infanticola sp. nov. (type strain NRRL Y-17858, CBS 7922) was isolated from the ear of an infant in Germany and is closely related to Candida sorbophila. Candida polysorbophila sp. nov. (type strain NRRL Y-27161, CBS 7317) is a member of the Zygoascus clade and was isolated in South Africa as a contaminant from an emulsion of white oil and polysorbate. Candida transvaalensis sp. nov. (type strain NRRL Y-27140, CBS 6663) was obtained from forest litter, the Transvaal, South Africa, and forms an isolated clade with Candida santjacobensis. Trigonopsis californica sp. nov. (type strain NRRL Y-27307, CBS 10351) represents a contaminant from wine in California, and forms a well-supported clade with Trigonopsis cantarellii, Trigonopsis variabilis and Trigonopsis vinaria.  相似文献   

13.
14.
Nine anamorphic, ascomycetous yeast strains belonging to the Pichia anomala clade were recovered from forest soil in 2006 in Taiwan. The nine yeast strains represent four novel yeast species based on the sequences of their D1/D2 domain of the large subunit (LSU) rRNA gene and their physiological characteristics. The scientific names of Candida dajiaensis sp. nov., Candida yuanshanicus sp. nov., Candida jianshihensis sp. nov., and Candida sanyiensis sp. nov. are proposed for these novel yeast species. The type strains are C. dajiaensis SM11S03(T) (=CBS 10590(T)=BCRC 23099(T)), C. yuanshanicus SY3S02(T) (=CBS 10589(T)=BCRC 23100(T)), C. jianshihensis SM8S04(T) (=CBS 10591(T)=BCRC 23096(T)), and C. sanyiensis SA1S06(T) (=CBS 10592(T)=BCRC 23094(T)). Sequence analysis of the D1/D2 of the LSU rRNA gene revealed that the three species, C. dajiaensis, C. yuanshanicus and Pichia onychis, shared a separate branch in the phylogenetic tree, C. jianshihensis is phylogenetically related to Candida ulmi and Pichia alni, and the phylogenetically closest relative of C. sanyiensis is Pichia populi.  相似文献   

15.
16.
On the basis of phenotypic properties and G+C content of DNA, as well as competitive DNA-DNA hybridization and extracellular polymeric substance analysis it was shown that this strain was completely different from all other alkaliphilic bacteria. We hereby propose that this strain be designatedAlkalobacter lublini gen. nov., sp. nov.  相似文献   

17.
Biological denitrification is a significant process in nitrogen biogeochemical cycle of terrestrial geothermal environments, and Thermus species have been shown to be crucial heterotrophic denitrifier in hydrothermal system. Five Gram-stain negative, aerobic and rod-shaped thermophilic bacterial strains were isolated from hot spring sediments in Tibet, China. Phylogenetic analysis based on 16S rRNA gene and whole genome sequences indicated that these isolates should be assigned to the genus Thermus and were most closely related to Thermus caldifontis YIM 73026T, and Thermus brockianus YS38T. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the five strains and the type strains of the genus Thermus were lower than the threshold values (95% and 70%, respectively) recommended for bacterial species, which clearly distinguished the five isolates from other species of the genus Thermus and indicated that they represent independent species. Colonies are circular, convex, non-transparent. Cell growth occurred at 37–80 °C (optimum, 60–65 °C), pH 6.0–8.0 (optimum, pH 7.0) and with 0–2.0% (w/v) NaCl (optimum, 0–0.5%). Denitrification genes (narG, nirK, nirS, and norB genes) detected in their genomes indicated their potential function in nitrogen metabolism. The obtained results combined with those of morphological, physiological, and chemotaxonomic characteristics, including the menaquinones, polar lipids, and cellular fatty acids showed that the isolates are proposed as representing five novel species of the genus Thermus, which are proposed as Thermus hydrothermalis sp. nov. SYSU G00291T, Thermus neutrinimicus sp. nov. SYSU G00388T, Thermus thalpophilus sp. nov. SYSU G00506T, Thermus albus sp. nov. SYSU G00608T, Thermus altitudinis sp. nov. SYSU G00630T.  相似文献   

18.
19.
20.
Four new d-xylose fermenting yeast species of the clade Spathaspora were recovered from rotting-wood samples in a region of Amazonian forest, Northern Brazil. Three species produced unconjugated asci with a single elongated ascospore with curved ends. These species are described as Spathaspora brasiliensis, Spathaspora suhii and Spathaspora roraimanensis. Two isolates of an asexually reproducing species belonging to the Spathaspora clade were also obtained and they are described as Spathaspora xylofermentans. All these species are able to ferment d-xylose during aerobic batch growth in rich YP (1 % yeast extract, 2 % peptone and 2 % D-xylose) medium, albeit with differing efficiencies. The type strains are Spathaspora brasiliensis sp. nov UFMG-HMD19.3 (=CBMAI 1425=CBS 12679), Spathaspora suhii sp. nov. UFMG-XMD16.2 (=CBMAI 1426=CBS 12680), Spathaspora roraimanensis sp. nov. UFMG-XMD23.2 (CBMAI 1427=CBS 12681) and Spathaspora xylofermentans sp. nov. UFMG-HMD23.3 (=CBMAI 1428=CBS 12682).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号