共查询到20条相似文献,搜索用时 0 毫秒
1.
Many organisms living in cold environments can survive subzero temperatures by producing antifreeze proteins (AFPs) or antifreeze glycoproteins. In this paper we investigate the ice-binding surface of type II AFP by quantum mechanical methods, which, to the best of our knowledge, represents the first time that molecular orbital computational approaches have been applied to AFPs. Molecular mechanical approaches, including molecular docking, energy minimization, and molecular dynamics simulation, were used to obtain optimal systems for subsequent quantum mechanical analysis. We selected 17 surface patches covering the entire surface of the type II AFP and evaluated the interaction energy between each of these patches and two different ice planes using semi-empirical quantum mechanical methods. We have demonstrated the weak orbital overlay phenomenon and the change of bond orders in ice. These results consistently indicate that a surface patch containing 19 residues (K37, L38, Y20, E22, Y21, I19, L57, T56, F53, M127, T128, F129, R17, C7, N6, P5, G10, Q1, and W11) is the most favorable ice-binding site for both a regular ice plane and an ice plane where water O atoms are randomly positioned. Furthermore, for the first time the computation results provide new insights into the weakening of the ice lattice upon AFP binding, which may well be a primary factor leading to AFP-induced ice growth inhibition. 相似文献
2.
Lee JH Park AK Do H Park KS Moh SH Chi YM Kim HJ 《The Journal of biological chemistry》2012,287(14):11460-11468
Arctic yeast Leucosporidium sp. produces a glycosylated ice-binding protein (LeIBP) with a molecular mass of ~25 kDa, which can lower the freezing point below the melting point once it binds to ice. LeIBP is a member of a large class of ice-binding proteins, the structures of which are unknown. Here, we report the crystal structures of non-glycosylated LeIBP and glycosylated LeIBP at 1.57- and 2.43-? resolution, respectively. Structural analysis of the LeIBPs revealed a dimeric right-handed β-helix fold, which is composed of three parts: a large coiled structural domain, a long helix region (residues 96-115 form a long α-helix that packs along one face of the β-helix), and a C-terminal hydrophobic loop region ((243)PFVPAPEVV(251)). Unexpectedly, the C-terminal hydrophobic loop region has an extended conformation pointing away from the body of the coiled structural domain and forms intertwined dimer interactions. In addition, structural analysis of glycosylated LeIBP with sugar moieties attached to Asn(185) provides a basis for interpreting previous biochemical analyses as well as the increased stability and secretion of glycosylated LeIBP. We also determined that the aligned Thr/Ser/Ala residues are critical for ice binding within the B face of LeIBP using site-directed mutagenesis. Although LeIBP has a common β-helical fold similar to that of canonical hyperactive antifreeze proteins, the ice-binding site is more complex and does not have a simple ice-binding motif. In conclusion, we could identify the ice-binding site of LeIBP and discuss differences in the ice-binding modes compared with other known antifreeze proteins and ice-binding proteins. 相似文献
3.
The beetle Tenebrio molitor produces several isoforms of a highly disulfide-bonded beta-helical antifreeze protein with one surface comprised of an array of Thr residues that putatively interacts with ice. In order to use mutagenesis to identify the ice-binding face, we have selected an isoform that folds well and is tolerant of amino acid substitution, and have developed a heating test to monitor refolding. Three different types of steric mutations made to the putative ice-binding face reduced thermal hysteresis activity substantially while a steric mutation on an orthogonal surface had little effect. NMR spectra indicated that all mutations affected protein folding to a similar degree and demonstrated that most of the protein folded well. The large reductions in activity associated with steric mutations in the Thr array strongly suggest that this face of the protein is responsible for ice binding. 相似文献
4.
5.
The antifreeze protein of Lolium perenne, a perennial ryegrass, was previously modeled as a beta-roll with two extensive flat beta-sheets on opposite sides of the molecule. Here we have validated the model with a series of nine site-directed steric mutations in which outward-pointing short side-chain residues were replaced by tyrosine. None of these disrupted the fold. Mutations on one of the beta-sheets and on the sides of the protein retained 70% or greater activity. Three mutations that clustered on the other flat surface lost up to 90% of their antifreeze activity and identify this beta-sheet as the ice-binding face. 相似文献
6.
The winter flounder (Pseudopleuronectes americanus) produces short, monomeric alpha-helical antifreeze proteins (type I AFP), which adsorb to and inhibit the growth of ice crystals. These proteins alone are not sufficiently active to protect this fish against freezing at -1.9 degrees C, the freezing point of seawater. We have recently isolated a hyperactive antifreeze protein from the plasma of the flounder with activity 10-100-fold higher than type I AFP. It is comparable in activity to the AFPs produced by insects, and is capable of conferring freeze resistance to the flounder. This novel AFP has a molecular mass of 16,683 Da and a remarkable amino acid composition that is >60% alanine. CD spectra indicate that the protein is almost entirely alpha-helical at 4 degrees C but partially denatures at 20 degrees C, resulting in a species with a moderately reduced helix content that is stable at up to 50 degrees C. This transformation correlates with irreversible loss of activity. Analytical ultracentrifugation (sedimentation velocity and equilibrium) indicates that the predominant species in solution is dimeric (molecular weight, 32,275). Size-exclusion chromatography reveals a 2-fold higher apparent molecular weight suggesting that this molecule has an unusually large Stokes radius. The axial ratio of the dimer calculated from the sedimentation velocity data is 18:1, confirming that this protein has an extraordinarily long, rod-like structure, consistent with a novel dimeric alpha-helical arrangement. The structural model that best fits these data is one in which the approximately 195 amino acids of each monomer form one approximately 290-A long alpha-helix and associate via a unique dimerization motif that is distinct from that of the leucine zipper and any other coiled-coil. 相似文献
7.
Antifreeze proteins (AFPs) are found in cold-adapted organisms and have the unusual ability to bind to and inhibit the growth of ice crystals. However, the underlying molecular basis of their ice-binding activity is unclear because of the difficulty of studying the AFP-ice interaction directly and the lack of a common motif, domain or fold among different AFPs. We have formulated a generic ice-binding model and incorporated it into a physicochemical pattern-recognition algorithm. It successfully recognizes ice-binding surfaces for a diverse range of AFPs, and clearly discriminates AFPs from other structures in the Protein Data Bank. The algorithm was used to identify a novel AFP from winter rye, and the antifreeze activity of this protein was subsequently confirmed. The presence of a common and distinct physicochemical pattern provides a structural basis for unifying AFPs from fish, insects and plants. 相似文献
8.
An ice-binding protein from an Antarctic sea ice bacterium 总被引:4,自引:0,他引:4
An Antarctic sea ice bacterium of the Gram-negative genus Colwellia, strain SLW05, produces an extracellular substance that changes the morphology of growing ice. The active substance was identified as a approximately 25-kDa protein that was purified through its affinity for ice. The full gene sequence was determined and was found to encode a 253-amino acid protein with a calculated molecular mass of 26,350 Da. The predicted amino acid sequence is similar to predicted sequences of ice-binding proteins recently found in two species of sea ice diatoms and a species of snow mold. A recombinant ice-binding protein showed ice-binding activity and ice recrystallization inhibition activity. The protein is much smaller than bacterial ice-nucleating proteins and antifreeze proteins that have been previously described. The function of the protein is unknown but it may act as an ice recrystallization inhibitor to protect membranes in the frozen state. 相似文献
9.
Hyperactive spruce budworm antifreeze protein expression in transgenic Drosophila does not confer cold shock tolerance 总被引:2,自引:0,他引:2
Drosophila melanogaster, a freeze intolerant and cold shock sensitive insect, was transformed with the hyperactive insect antifreeze protein gene (AFP) from the spruce budworm, Choristoneura fumiferana. Transformation P-element constructs (pCasper) were made with CfAFP 337 isoform DNA using a strong constitutive promoter, Actin 5c. This is the first report of insect AFP used to transform another insect. Properly folded active insect AFP was only detected when signal sequences were used to target proteins to the endoplasmic reticulum for secretion into the hemolymph. The 18 residue Drosophila binding protein signal sequence (BiP) constructs resulted in transformed fly lines with significantly higher AFP expression in hemolymph than when the native C. fumiferana AFP signal sequence was used. The resultant transgene fly lines have the highest levels of thermal hysteresis, 0.8 degrees C, seen for any engineered Drosophila. Despite the high level of expression, even higher than some overwintering fish with natural levels of endogenous AFP, the transformants did not display any cold shock resistance compared to controls or low AFP expressing lines. These results indicate that insect AFP alone cannot protect Drosophila from cold shock and may not be useful for Drosophila cryopreservation. 相似文献
10.
11.
The dependence of amide proton chemical shifts on temperature is used as an indication of the hydrogen bonding properties in a protein. The amide proton temperature coefficients of the beta-helical antifreeze protein from Tenebrio molitor are examined to determine their hydrogen bonding state in solution. The temperature-dependent chemical shift behavior of the amides in T. molitor antifreeze protein varies widely throughout the protein backbone; however, very subtle effects of hydrogen bonding can be distinguished using a plot of chemical shift deviation (CSD) versus the backbone amide chemical shift temperature gradient (Deltadelta/DeltaT). We show that differences between the two ranks of ice-binding threonine residues on the surface of the protein indicate that threonine residues in the left-hand rank participate in intrastrand hydrogen bonds that stabilize the flat surface required for optimal ice binding. 相似文献
12.
Ding J Valle A Allen E Wang W Nardine T Zhang Y Peng L Yang Y 《Biochemical and biophysical research communications》2006,339(1):172-179
Microtubule-associated proteins (MAPs) are critical regulators of microtubule dynamics and functions, and have long been proposed to be essential for many cellular events including neuronal morphogenesis and functional maintenance. In this study, we report the characterization of a new microtubule-associated protein, we named MAP8. The protein of MAP8 is mainly restricted to the nervous system postnatally in mouse. Its expression could first be detected as early as at embryonic day 10, levels plateau during late embryonic and neonatal periods, and subsequently decrease moderately to remain constant into adulthood. In addition to its carboxyl terminal binding site, the MAP8 polyprotein also contains a functional microtubule-binding domain at its N-terminal segment. The association of the carboxyl terminal of the light chain with actin microfilaments could also be detected. Our findings define MAP8 as a novel microtubule associated protein containing two microtubule binding domains. 相似文献
13.
A bacterial ice-binding protein from the Vostok ice core 总被引:1,自引:0,他引:1
Raymond JA Christner BC Schuster SC 《Extremophiles : life under extreme conditions》2008,12(5):713-717
Bacterial and yeast isolates recovered from a deep Antarctic ice core were screened for proteins with ice-binding activity, an indicator of adaptation to icy environments. A bacterial strain recovered from glacial ice at a depth of 3,519 m, just above the accreted ice from Subglacial Lake Vostok, was found to produce a 54 kDa ice-binding protein (GenBank EU694412) that is similar to ice-binding proteins previously found in sea ice diatoms, a snow mold, and a sea ice bacterium. The protein has the ability to inhibit the recrystallization of ice, a phenotype that has clear advantages for survival in ice. 相似文献
14.
Amyloid is associated with a number of diseases including Alzheimer's, Huntington's, Parkinson's, and the spongiform encephalopathies. Amyloid fibrils have been formed in vitro from both disease and nondisease related proteins, but the latter requires extremes of pH, heat, or the presence of a chaotropic agent. We show, using fluorescence spectroscopy, electron microscopy, and solid-state NMR spectroscopy, that the alpha-helical type I antifreeze protein from the winter flounder forms amyloid fibrils at pH 4 and 7 upon freezing and thawing. Our results demonstrate that the freezing of some proteins may accelerate the formation of amyloid fibrils. 相似文献
15.
Biochemistry of fish antifreeze proteins 总被引:28,自引:0,他引:28
Four distinct macromolecular antifreezes have been isolated and characterized from different marine fish. These include the glycoprotein antifreezes (Mr 2.5-33 K), which are made up of a repeating tripeptide (Ala-Ala-Thr)n with a disaccharide attached to the threonyl residues, and three antifreeze protein (AFP) types. Type I is an alanine-rich, amphiphilic, alpha-helix (Mr 3-5 K); type II is a larger protein (Mr 14 K) with a high content of reverse turns and five disulfide bridges; and type III is intermediate in size (Mr 6-7 K) with no distinguishing features of secondary structure or amino acid composition. Despite their marked structural differences, all four antifreeze types appear to function in the same way by binding to the prism faces of ice crystals and inhibiting growth along the a-axes. It is suggested that type I AFP binds preferentially to the prism faces as a result of interactions between the helix macrodipole and the dipoles on the water molecules in the ice lattice. Binding is stabilized by hydrogen bonding, and the amphiphilic character of the helix results in the hydrophobic phase of the helix being exposed to the solvent. When the solution temperature is lowered further, ice crystal growth occurs primarily on the uncoated, unordered basal plane resulting in bipyramidal-shaped crystals. The structural features of type I AFP that could contribute to this mechanism of action are reviewed. Current challenges lie in solving the other antifreeze structures and interpreting them in light of what appears to be a common mechanism of action. 相似文献
16.
A protein with multiple heme-binding sites from rabbit serum 总被引:1,自引:0,他引:1
A 93,000 molecular weight protein (HBP.93) which binds hemin and protoporphyrin IX with high affinity has been isolated from rabbit serum using affinity chromatography on hemin-conjugated agarose. The amino acid composition of this protein is unique in that the proline and histidine contents are remarkably high (16.6 and 9.9 mol %, respectively). A large increase in the absorbance of the Soret region arises from the heme-protein interaction. The spectrophotometric titration showed that the protein can bind 25-35 mol of hemin/mol of protein. The apparent dissociation constant was estimated to be 1-4 X 10(-7) M for hemin at pH 7.4 and approximately 10(-6) M for protoporphyrin IX at pH 9.2. The similarity of the difference spectrum of heme-HBP.93 complex to that of heme-hemopexin complex suggests that a bisimidazol-type coordination of heme iron is involved in the binding. The extremely high capacity of HBP.93 to bind heme is also demonstrated by a large increase in the sedimentation velocity of the protein upon heme binding. The native heme-protein complex migrates faster than the heme-free protein in a polyacrylamide gel at pH 8.8; the increased mobility appears to be due to the charge on the carboxyl groups of the bound heme. Although the use of a hemin-agarose column has failed to reveal a protein of similar size and heme affinity in the sera of a number of other species, including man, the heme-binding properties and high histidine level of the human alpha 2-histidine-rich glycoprotein raise the possibility that the two proteins are related. 相似文献
17.
Yamashita Y Miura R Takemoto Y Tsuda S Kawahara H Obata H 《Bioscience, biotechnology, and biochemistry》2003,67(3):461-466
A lot of reports of antifreeze protein (AFP) from fish have been published, but no report has mentioned of commercialized mid-latitude fresh water fish which producing AFP in its body fluid. We found that the AFP in the body fluid of Japanese smelt (Hypomesus nipponensis) from mid-latitude fresh water was purified and characterized. The N-terminal amino acid sequence of the Japanese smelt AFP was 75.0% identical to Type II AFP from herring. Results of EDTA treatment and ruthenium red staining suggested that the Japanese smelt AFP had at least one Ca2+-binding domain. Interestingly, the antifreeze activity of the Japanese smelt AFP did not completely disappear when Ca2+ ions were removed. The molecular mass of the Japanese smelt AFP was calculated to be 16,756.8 by the TOF-mass analysis. The Open reading flame of the gene coding for the Japanese smelt AFP was 444 bp long and was 85.0% identical with the entire herring AFP gene. The cDNA and amino acid sequence of the Japanese smelt AFP were the same length as those of herring AFP. 相似文献
18.
The secondary multidrug transporter LmrP of Lactococcus lactis mediates the efflux of Hoechst 33342 from the cytoplasmic leaflet of the membrane. Kinetic analysis of Hoechst 33342 transport in inside-out membrane vesicles of L. lactis showed that the LmrP-mediated H(+)/Hoechst 33342 antiport reaction obeyed Michaelis-Menten kinetics, with a low apparent affinity constant of 0.63 microM Hoechst 33342 (= 0.5 mmol Hoechst 33342/mol phospholipid). Several drugs significantly inhibited LmrP-mediated Hoechst 33342 transport through a direct interaction with the protein rather than through dissipation of the proton motive force or reduction of the membrane partitioning of Hoechst 33342. The characterization of the mechanism of inhibition of LmrP-mediated Hoechst 33342 transport indicated competitive inhibition by quinine and verapamil, noncompetitive inhibition by nicardipin and vinblastin, and uncompetitive inhibition by TPP(+). The three types of inhibition of LmrP-mediated Hoechst 33342 transport in inside-out membrane vesicles indicate for the first time the presence of multiple drug interaction sites in a secondary multidrug transporter. 相似文献
19.
20.
Accumulation of type I fish antifreeze protein in transgenic tobacco is cold-specific 总被引:5,自引:0,他引:5
Kimberly D. Kenward Mitchell Altschuler David Hildebrand Peter L. Davies 《Plant molecular biology》1993,23(2):377-385
Expression of fish antifreeze protein (AFP) genes in plants is a possible means of increasing their frost resistance and freeze tolerance. Initial work involved transfer into tobacco of an AFP gene from winter flounder which codes for the alanine-rich, -helical Type I AFP. Plants were transformed with a gene construct in which the preproAFP cDNA was inserted between the cauliflower mosaic virus 19S RNA promoter and the nopaline synthetase polyadenylation site. Although transgenic plants produced AFP mRNA, no AFP was detected on western blots. Re-evaluation of AFP expression in these transgenic plants showed that AFP accumulated to detectable levels only after exposure of the plant to cold. Extracts of plants incubated at 4°C for 24 h contained a protein which co-migrated with winter flounder proAFP and was cross-reactive to Type I AFP antisera. Two other minor protein bands of slightly higher apparent M
r also cross-reacted with the antisera and are thought to represent processing intermediates. The proAFP was unique to the transgenic plants and was absent in extracts taken prior to cold exposure. AFP levels increased over the first 48 h of cold incubation then remained stable. Since the -helix content of Type I AFP has been shown to decrease markedly at warmer temperatures, we postulate that Type I AFP stability in transgenic plants is dependent on its secondary structure. 相似文献