共查询到20条相似文献,搜索用时 15 毫秒
1.
Detection of peroxyl and alkoxyl radicals produced by reaction of hydroperoxides with heme-proteins by electron spin resonance spectroscopy 总被引:2,自引:0,他引:2
M J Davies 《Biochimica et biophysica acta》1988,964(1):28-35
ESR spin trapping using the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) has been used to directly detect alkoxyl radicals (with hyperfine coupling constants aN 1.488, aH 1.600 mT and aN 1.488, aH 1.504 mT for the tBuO. and PhC(CH3)2O. adducts, respectively) and peroxyl radicals (aN 1.448, aH 1.088, aH 0.130 mT and aN 1.456, aH 1.064, aH 0.128 mT for the tBuOO. and PhC(CH3)2OO. adducts, respectively) produced from t-butyl or cumene hydroperoxides by a variety of heme-containing substances (purified cytochrome P-450, metmyoglobin, oxyhemoglobin, methemoglobin, cytochrome c, catalase, horseradish peroxidase) and the model compound hematin. The observed species exhibit a complicated dependence on reagent concentrations and time, with maximum concentrations of the peroxyl radical adducts being observed immediately after mixing of the hydroperoxide with low concentrations of the heme-compound. Experiments with inhibitors (CN-, N3-, CO, metyrapone and imidazole) suggest that the major mechanism of peroxyl radical production involves high-valence-state iron complexes in a reaction analogous to the classical peroxidase pathway. The production of alkoxyl radicals is shown to arise mainly from the breakdown of peroxyl radical spin adducts, with direct production from the hydroperoxide being a relatively minor process. 相似文献
2.
Electron paramagnetic resonance (EPR) spin trapping was used to detect lipid-derived free radicals generated by iron-induced oxidative stress in intact cells. Using the spin trap alpha-(4-pyridyl 1-oxide)-N-tert-butylnitrone (POBN), carbon-centered radical adducts were detected. These lipid-derived free radicals were formed during incubation of ferrous iron with U937 cells that were enriched with docosahexaenoic acid (22:6n-3). The EPR spectra exhibited apparent hyperfine splittings characteristic of a POBN/alkyl radical, aN = 15.63 +/- 0.06 G and aH = 2.66 +/- 0.03 G, generated as a result of beta-scission of alkoxyl radicals. Spin adduct formation depended on the FeSO4 content of the incubation medium and the number of 22:6-enriched cells present; when the cells were enriched with oleic acid (18:1n-9), spin adducts were not detected. This is the first direct demonstration, using EPR, of a lipid-derived radical formed in intact cells in response to oxidant stress. 相似文献
3.
Detection of peroxyl and alkoxyl radicals produced by reaction of hydroperoxides with rat liver microsomal fractions. 总被引:2,自引:0,他引:2
下载免费PDF全文

M J Davies 《The Biochemical journal》1989,257(2):603-606
E.s.r. spin trapping using the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) was used to detect peroxyl, alkoxyl and carbon-centred radicals produced by reaction of t-butyl hydroperoxide (tBuOOH) with rat liver microsomal fraction. The similarity of the hyperfine coupling constants of the peroxyl and alkoxyl radical adducts to those obtained previously with isolated enzymes suggests that these species are the tBuOO. and tBuO. adducts. The effects of metal-ion chelators, heat denaturation, enzyme inhibitors and reducing equivalents demonstrate that these species arise from reaction of tBuOOH with a haem enzyme such as cytochrome P-450 or cytochrome b5. In the absence of NADPH or NADH the previously undetected peroxyl radical adduct is the major species observed. In the presence of these reducing equivalents the alkoxyl and carbon-centred radical adducts predominate, which is in accord with product studies on similar systems. These results demonstrate that both reductive and oxidative decomposition of tBuOOH can occur in rat liver microsomal fraction with the reductive pathway favoured in the presence of NADH or NADPH. 相似文献
4.
Lipid peroxyl radicals resulting from the peroxidation of polyunsaturated fatty acids by soybean lipoxygenase were directly detected by the method of rapid mixing, continuous-flow electron spin resonance spectroscopy. When air-saturated borate buffer (pH 9.0) containing linoleic acid or arachidonate acid was mixed with lipoxygenase, fatty acid-derived peroxyl free radicals were readily detected; these radicals have a characteristic g-value of 2.014. An organic free radical (g = 2.004) was also detected; this may be the carbon-centered fatty acid free radical that is the precursor of the peroxyl free radical. The ESR spectrum of this species was not resolved, so the identification of this free radical was not possible. Fatty acids without at least two double bonds (e.g. stearic acid and oleic acid) did not give the corresponding peroxyl free radicals, suggesting that the formation of bisallylic carbon-centered radicals precedes peroxyl radical formation. The 3.8-G doublet feature of the fatty acid peroxyl spectrum was proven (by selective deuteration) to be a hyperfine coupling due to a gamma-hydrogen that originated as a vinylic hydrogen of arachidonate. Arachidonate peroxyl radical formation was shown to be dependent on the substrate, active lipoxygenase, and molecular oxygen. Antioxidants are known to protect polyunsaturated fatty acids from peroxidation by scavenging peroxyl radicals and thus breaking the free radical chain reaction. Therefore, the peroxyl signal intensity from micellar arachidonate solutions was monitored as a function of the antioxidant concentration. The reaction of the peroxyl free radical with Trolox C was shown to be 10 times slower than that with vitamin E. The vitamin E and Trolox C phenoxyl radicals that resulted from scavenging the peroxyl radical were also detected. 相似文献
5.
2-Methyl-2-nitrosopropane (tNB)-radical adducts from incubation mixtures of fatty acids and soybean lipoxygenase in borate buffer (pH 9.0) were measured by electron paramagnetic resonance (EPR). In addition to the previously reported six-line signal of secondary carbon-centered radicals (RCHR'), a weak signal submerged in the baseline was detected after the peroxidation phase was finished. We propose that this radical is a decomposition product formed via beta-scission of fatty acid alkoxyl radicals. EPR spectra of tNB-radical adducts formed in mixtures of either linoleic acid, arachidonic acid, or 15-hydroperoxyeicosatetraenoic acid with lipoxygenase exhibited hyperfine structure characteristic of tNB/.CH2CH2-R with hyperfine coupling constants: aN = 17.1 G; aH beta = 11.2 G (2H); and aH gamma = 0.6 G (2H). In the case of linolenic acid, this radical tNB/.CH=CH-R' with hyperfine coupling constants: aN = 17.1 G; aH beta = 10.9 G (2H); aH gamma = 1.1 G; and aH delta = 0.5 G. In accord with the decomposition scheme of hydroperoxides derived from unsaturated fatty acids, the radical adducts tNB/.CH2CH2-R and tNB/.CH2-CH=CH-R' were assigned as the pentyl and 2-pentenyl radicals, respectively. 相似文献
6.
Studies on the metal-ion and lipoxygenase-catalysed breakdown of hydroperoxides using electron-spin-resonance spectroscopy. 总被引:2,自引:1,他引:2
下载免费PDF全文

The breakdown of cumene hydroperoxide and peroxidized fatty acids by iron is shown, by use of the spin trap 5,5-dimethyl-l-pyrroline-N-oxide, to be sensitive to (a) the oxidation state of the metal and (b) the nature of the chelating ligands. The initial step in the Fe2+-catalysed breakdown is the production of an alkoxyl radical by one-electron reduction, and this type of radical has been successfully trapped from each substrate. Subsequent reactions of this alkoxyl species produce both carbon-centred and peroxyl radicals, depending on the concentrations of the reagents present. The use of the same spin trap in microsomal systems undergoing either NADPH-supported or Fe2+-induced peroxidation led to the detection of low concentrations of radical adducts, among which are signals that are believed to be due to lipid alkoxyl radicals. Reaction of polyunsaturated fatty acid hydroperoxides with both Fe2+ and lipoxygenase under anaerobic conditions gives rise to signals not only from the alkoxy-radical adduct, but also from a further species which is tentatively identified as being due to an acyl [RC(O).]-radical adduct; chemical studies lend support to this assignment. 相似文献
7.
The formation of hydroxyl radicals in beta-glucan solutions treated with ascorbic acid and iron(II) was demonstrated by ESR spin trapping based methods. Two different spin traps were tested, namely DMPO which is commonly used to detect hydroxyl radicals, and POBN often used to detect carbon centered radicals. The experiments performed showed that the presence of iron(II) with DMPO led to low DMPO-OH adduct stability and further to DMPO dimerization. The level of hydroxyl radicals formed during the beta-glucan radical mediated degradation was evaluated using two ESR spin trapping methods based on the use POBN together with either 2% (v/v) EtOH or DMSO. The addition of ascorbic acid together with iron(II) in beta-glucan solution led to an immediate maximal production of hydroxyl radicals while the presence of ascorbic acid alone led to a progressive production of radical. Further hydroxyl radicals were found to be formed when iron(II) was added alone in beta-glucan solutions. The viscosity loss observed in the three last mentioned beta-glucan solutions were found to relate with the formation of hydroxyl radicals. These data confirm the involvement of hydroxyl radical in the beta-glucan degradation. 相似文献
8.
Free radicals produced during the autoxidation of 3,4-dihydroxyphenylalanine (DOPA) and other catechol(amine)s to melanins have been studied using electron spin resonance spectroscopy. Magnetic parameters for the radical intermediates have been determined, allowing the radicals to be unambiguously identified. Three types of radical are formed: the primary radical from one-electron oxidation of the parent catechol(amine); and two secondary radicals, one formed via OH- substitution, the other via cyclization. The formation of these radical species can be linked to molecular products formed during catecholamine oxidation and melanin formation. 相似文献
9.
Roger C. Sealy W. Puzyna B. Kalyanaraman Christopher C. Felix 《Biochimica et Biophysica Acta (BBA)/General Subjects》1984,800(3):269-276
Free radicals produced during the autoxidation of 3,4-dihydroxyphenylalanine (DOPA) and other catechol(amine)s to melanins have been studied using electron spin resonance spectroscopy. Magnetic parameters for the radical intermediates have been determined, allowing the radicals to be unambiguously identified. Three types of radical are formed: the primary radical from one-electron oxidation of the parent catechol(amine); and two secondary radicals, one formed via OH− substitution, the other via cyclization. The formation of these radical species can be linked to molecular products formed during catecholamine oxidation and melanin formation. 相似文献
10.
Chondrocytes have been shown to produce superoxide and hydrogen peroxide, suggesting possible formation of hydroxyl radical in these cells. In this study, we used electron spin resonance/spin trapping technique to detect hydroxyl radicals in chondrocytes. We found that hydroxyl radicals could be detected as α-hydroxyethyl spin trapped adduct of 4-pyridyl 1-oxide N-tert-butylnitrone (4-POBN) in chondrocytes stimulated with phorbol 12-myristate 13-acetate in the presence of ferrous ion. The formation of hydroxyl radical appears to be mediated by the transition metal-catalyzed Haber-Weiss reaction since no hydroxyl radical was detected in the absence of exogenous iron. The hydroxyl radical formation was inhibited by catalase but not by superoxide dismutase, suggesting that the hydrogen peroxide is the precursor. Cytokines, IL-1 and TNF enhanced the hydroxyl radical formation in phorbol 12-myristate 13-acetate treated chondrocytes. Interestingly, hydroxyl radical could be detected in unstimulated fresh human and rabbit cartilage tissue pieces in the presence of iron. These results suggest that the formation of hydroxyl radical in cartilage could play a role in cartilage matrix degradation. 相似文献
11.
12.
The hydroxyl and superoxide anion spin adducts of DMPO and 4-MePyBN, respectively, were obtained during photoirradiation of adriamycin and daunomycin solutions with visible light. Ethanol and dimethyl sulfoxide did not scavenge hydroxyl radicals in the photoirradiated drug solutions. Furthermore, the hydroxyl-DMPO spin adduct is not formed in the photolysis of air-free drug solutions, indicating that hydroxyl radicals are not directly produced in the photochemical reactions. Instead, the observed hydroxyl-DMPO is formed from the decay of the superoxide anion-DMPO spin adduct. The mechanism for generating the superoxide anion radical appears to be a direct electron transfer from the photoexcited adriamycin and daunomycin to dissolved oxygen. 相似文献
13.
Metal-catalysed radical oxidation of diacyl-glycerophosphatidylcholines (GPC) with ω-6 acyl polyunsaturated fatty acids (PAPC, palmitoyl-arachidonoyl-glycerophosphatidylcholine and PLPC, palmitoyl-lineloyl-glycerophosphatidylcholine) was studied. Free radical oxidation products were trapped by spin trapping with 5,5-dimethyl-1-pyrrolidine-N-oxide (DMPO) and identified by electrospray mass spectrometry (ES-MS). The spin adducts of oxidised GPC containing one and two oxygen atoms and one and two DMPO molecules were observed as doubly charged ions. Structural characterisation by tandem mass spectrometry (MS/MS) of these ions revealed product ions corresponding to loss of the acyl chains (sn-1-palmitoyl and sn-2-oxidised spin adduct of lineloyl or arachidonoyl), loss of the spin trap (DMPO) and product ions attributed to oxidised sn-2 fatty acid spin adduct (lineloyl and arachidonoyl). Product ions formed by homolytic cleavages near the spin trap and also from 1,4 hydrogen elimination cleavages involving the hydroxy group in the sn-2 fatty acid spin adduct allowed to infer the nature of the radical. Altogether, the presence of GPC hydroxy-alkyl/DMPO and hydroxy-alkoxyl/DMPO spin adducts was proposed. 相似文献
14.
Direct detection of circulating free radicals in the rat using electron spin resonance spectrometry.
We developed a new technique for directly observing in vivo free radical formation in the circulating blood of living rats using electron spin resonance (ESR) spectrometry without any labeling or trapping agents. It was found that a doublet peak spectrum was obtained following ferric citrate and ascorbic acid injection. The signals were confirmed in different ways to be due to ascorbic acid radicals. These results provide evidence to support the involvement of free radical intermediates in iron-ascorbic acid reactions, and further confirm the suggested mechanisms of both the adverse and protective effects of ascorbic acid in biological systems. Furthermore, this method of direct observation is a new application of ESR spectrometry to living animals. 相似文献
15.
Applications of electron spin resonance spectroscopy to the identification of radicals produced during lipid peroxidation 总被引:1,自引:0,他引:1
M J Davies 《Chemistry and physics of lipids》1987,44(2-4):149-173
Electron spin resonance (ESR) spectroscopy, which is the only commonly available method for directly detecting free radicals in biological systems, has now been quite extensively used to study radicals produced by metabolism of xenobiotic chemicals and the interaction of such species with lipid molecules. This review examines a variety of different xenobiotic systems and tissues and summarises the information obtained from these studies, with particular reference to the elucidation of the nature of the radicals involved in the initiation and propagation of lipid peroxidation. 相似文献
16.
The mechanism of free radical generation in the reaction of ferrous ion with t-butyl and linolenic acid hydroperoxide was investigated by spin trapping method. The t-butoxyl, methyl, linolenic acid alkoxyl and alkyl radical spin adducts EPR spectra were observed and identified. 相似文献
17.
18.
W Chamulitrat M F Hughes T E Eling R P Mason 《Archives of biochemistry and biophysics》1991,290(1):153-159
Soybean lipoxygenase is shown to catalyze the breakdown of polyunsaturated fatty acid hydroperoxides to produce superoxide radical anion as detected by spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). In addition to the DMPO/superoxide radical adduct, the adducts of peroxyl, acyl, carbon-centered, and hydroxyl radicals were identified in incubations containing linoleic acid and lipoxygenase. These DMPO radical adducts were observed just prior to the system becoming anaerobic. Only a carbon-centered radical adduct was observed under anaerobic conditions. The superoxide radical production required the presence of fatty acid substrates, fatty acid hydroperoxides, active lipoxygenase, and molecular oxygen. Superoxide radical production was inhibited when nordihydroguaiaretic acid, butylated hydroxytoluene, or butylated hydroxyanisole was added to the incubation mixtures. We propose that polyunsaturated fatty acid hydroperoxides are reduced to form alkoxyl radicals and that after an intramolecular rearrangement, the resulting hydroxyalkyl radical reacts with oxygen, forming a peroxyl radical which subsequently eliminates superoxide radical anion. 相似文献
19.
Free radicals from the one-electron reduction of adrenochrome have been studied in aqueous solutions. These radicals have been detected and identified by electron spin resonance spectroscopy, using spin stabilization methods (complexation with diamagnetic metal ions) to enhance radical concentrations. It is shown that the radicals have a characteristic ESR spectrum enabling their identification in complex systems. The spin density distribution in the radicals has been studied as a function of complexing metal ions and solvent composition. In the presence of oxidants (e.g., oxygen) the spectrum of the radical is replaced by that derived from the one-electron exidation of adrenochrome. 相似文献
20.
I Simon 《Biochimica et biophysica acta》1979,556(3):408-422
The fatty acid composition and some physical properties of intact cells and isolated plasma membranes of two types of mouse myeloid leukemia cell clone grown in culture have been examined. One clone type, MGI+D+, can be induced by the macrophage and granulocyte-inducing protein (MGI) to differentiate into mature macrophages and granulocytes. The other clone type, MGI+D-, could not be induced to differentiate into mature cells. A two-fold increase in the ratio of saturated fatty acid to unsaturated fatty acid was found in the MGI+D- compared to the MGI+D+ clones. The MGI+D- clones produced an unusual polyunsaturated C20:5 fatty acid at 28 degrees C, whereas the MGI+D+ clones did not grow at this temperature. The cells and their isolated plasma membranes were studied by electron spin resonance. The motion of the 5-nitroxide stearate spin label was found to be higher in the intact cells and in the membranes of MGI+D- clones than of the MGI+D+ clones. The cells of MGI+D+ clones showed a similar freedom of motion to normal myeloblasts from the bone marrow. The results indicate that myeloid leukemia cells which differ in their competence to be induced to differentiate into mature cells have different physical properties of their plasma membranes and that this is correlated with their fatty acid acyl chain composition. 相似文献