首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in leaf solute contents in response to saline (NaCl) and osmotic (polyethylene glycol, PEG, 6000) stresses were measured in three different salt tolerant cultivars of Lycopersicon esculentum (L.) Mill. (Pera, P-73 and Volgogradskij), and its wild relative L. pennellii (Correll) D'Arcy accession PE-47. Iso-osmotic stresses (–0. 5 MPa) of NaCl (140 mM) and PEG 6000 (150 g l-1) were applied to one-month old plants for 3 weeks. Decreasing leaf dry weight was similar in L. pennellii or L. esculentum cv. P-73 and Volgogradskij under both stresses, while leaf dry weight of L. esculentum cv. Pera decreased more under PEG stress than under NaCl stress. Water contents decreased in all the PEG treated populations, while their calculated solute potential (Ψs increased. Under osmotic stress, the total ion contents decreased in relation to control, whereas organic solutes (sugars, amino acids and organic acids) markedly increased in both tomato species, specially in the tomato cultivars, where these solutes represented 50% of the Ψ5 calculated. Soluble sugar increase was three times higher in leaves of L. esculentum than in the leaves of L. pennellii. Free proline increased under both stresses and its content was highest in L. esculentum and in L. pennellii, respectively, under NaCl and PEG stresses. Nevertheless, the contribution of this metabolite to Ψs did not exceed 5%, irrespective of treatment and species. The greater organic solute accumulation in L. esculentum than in L. pennellii– which was not reflected in their Ψ5 values – was not correlated with the tolerances of the two species to osmotic stress. Therefore, osmotic adjustment may not be the only process influencing salt and drought tolerances in tomato; the ability of plants to regulate their metabolic and physiological functions could also play an important role under these harmful conditions. The possible roles of inorganic solutes and metabolites in osmotic adjustment, energetic metabolism and redox regulation are discussed  相似文献   

2.
The growth and ion content of salt sensitive Lycopersicon esculentum Mill. cv. M82 and salt tolerant L. pennellii Correll accession LA716 were examined under both control and stress conditions (150 mM NaCl). L. esculentum grew more vigorously than L. pennellii under optimal conditions, however, L. pennellii was able to maintain its growth better than cultivated tomato when the plants were exposed to salinity. Sodium content of both L. esculentum and L. pennellii increased as a result of NaCl stress. In addition, both species showed reduced potassium and calcium content due to salinity. The physiological traits were also measured in a population of 52 L. pennellii introgression lines grown under both normal and stress conditions. A total of 311 quantitative trait loci (QTL) were identified for the studied traits: plant height, stem diameter, leaf number, leaf and root fresh and dry mass, and sodium, potassium and calcium contents. Some of the loci (124) were identified under both control and stress conditions while 86 QTL were identified only under non-stress conditions and 101 loci were identified only under NaCl stress.  相似文献   

3.
The effects of salicylic acid (SA) and salinity on the activity of apoplastic antioxidant enzymes were studied in the leaves of two wheat (Triticum aestivam L.) cultivars: salt-tolerant (Gerek-79) and salt-sensitive (Bezostaya). The leaves of 10-d-old seedlings grown at nutrient solution with 0 (control), 250 or 500 mM NaCl were sprayed with 0.01 or 0.1 mM SA. Then, the activities of catalase (CAT), peroxidase (POX) and superoxide dismutase (SOD) were determined in the fresh leaves obtained from 15-d-old seedlings. The NaCl applications increased CAT and SOD activities in both cultivars, compared to those of untreated control plants. In addition, the NaCl increased POX activity in the salt-tolerant while decreased in the salt-sensitive cultivar. In control plants of the both cultivars, 0.1 mM SA increased CAT activity, while 0.01 mM SA slightly decreased it. SA treatments also stimulated SOD and POX activity in the salt-tolerant cultivar but significantly decreased POX activity and had no effect on SOD activity in the saltsensitive cultivar. Under salinity, the SA treatments significantly inhibited CAT activity, whereas increased POX activity. The increases in POX activity caused by SA were more pronounced in the salt-tolerant than in the salt-sensitive cultivar. SOD activity was increased by 0.01 mM SA in the salt-tolerant while increased by 0.1 mM SA treatment in the salt-sensitive cultivar.  相似文献   

4.
Chickpea plants were subjected to salt stress for 48 h with 100 mM NaCl, after 50 days of growth. Other batches of plants were simultaneously treated with 0.2 mM sodium nitroprusside (NO donor) or 0.5 mM putrescine (polyamine) to examine their antioxidant effects. Sodium chloride stress adversely affected the relative water content (RWC), electrolyte leakage and lipid peroxidation in leaves. Sodium nitroprusside and putrescine could completely ameliorate the toxic effects of salt stress on electrolyte leakage and lipid peroxidation and partially on RWC. No significant decline in chlorophyll content under salt stress as well as with other treatments was observed. Sodium chloride stress activated the antioxidant defense system by increasing the activities of peroxidase (POX), catalase (CAT) superoxide dismutase (SOD) and ascorbate peroxidase (APX). However no significant effect was observed on glutathione reductase (GR) and dehydro ascorbate reductase (DHAR) activities. Both putrescine and NO had a positive effect on antioxidant enzymes under salt stress. Putrescine was more effective in scavenging superoxide radical as it increased the SOD activity under salt stress whereas nitric oxide was effective in hydrolyzing H2O2 by increasing the activities of CAT, POX and APX under salt stress.  相似文献   

5.
Mitochondria require robust antioxidant defences to prevent lipid peroxidation and to protect tricarboxylic acid cycle enzymes from oxidative damage. Mitochondria from wild, salt‐tolerant tomato, Lycopersicon pennellii (Lpa) did not exhibit lipid peroxidation in response to high salinity (100 mm NaCl), whereas those isolated from cultivated tomato, L. esculentum (Lem), accumulated malondialdehyde. The activity, intraorganellar distribution and salt response of mitochondrial ascorbate peroxidase (mAPX) differed dramatically in the two species. In Lem mitochondria, the majority (84%) of mAPX was associated with membranes, being located either on the inner membrane, facing the intermembrane space, or on the outer membrane. Total mAPX activity did not increase substantially in response to salt, although the proportion of matrix APX increased. In contrast, 61% of Lpa mAPX activity was soluble in the matrix, the remainder being bound to the matrix face of the inner membrane. Salt treatment increased the activity of all mAPX isoforms in Lpa, without altering their intramitochondrial distribution. The membrane‐bound isoforms were detected in mitochondria of both species by western blotting and found to be induced by salt in Lpa. These observations suggest that matrix‐associated APX isoforms could act in concert with other mitochondrial antioxidants to protect against salt‐induced oxidative stress.  相似文献   

6.
The changes in plant growth, relative water content (RWC), stomatal conductance, lipid peroxidation and antioxidant system in relation to the tolerance to salt stress were investigated in salt-tolerant Plantago maritima and salt-sensitive Plantago media. The 60 days old P. maritima and P. media seedlings were subjected to 0, 100 and 200 mM NaCl for 7 days. Reduction in shoot length was higher in P. media than in P. maritima after exposure to 200 mM NaCl, but 100 mM NaCl treatment did not show any effect on shoot length of P. maritima. Shoot dry weight decreased in P. media and did not change in P. maritima. Two hundred millimolar NaCl treatment had no effect on leaf RWC in P. maritima, but it was reduced in P. media. Salt stress caused reduction in stomatal conductance being more pronounced in P. media than in P. maritima. Activities of superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6), glutathione reductase (GR; EC 1.6.4.2) decreased in P. media with increasing salinity. Ascorbate peroxidase (APX; EC 1.11.1.11) activity in leaves of P. media was increased and showed no change under 100 and 200 mM NaCl, respectively. However, activities of CAT, APX and GR increased under 200 mM NaCl while their activities did not change under 100 mM NaCl in P. maritima. SOD activity in leaves of P. maritima increased with increasing salinity. Concomitant with this, four SOD activity bands were identified in leaves of P. maritima, two bands only were observed in P. media. Peroxidase (POX; EC 1.11.1.7) activity increased under both salt concentrations in P. maritima, but only under 200 mM NaCl in P. media. Confirming this, five POX activity bands were identified in leaves of P. maritima, but only two bands were determined in P. media. Malondialdehyde levels in the leaves increased under salt stress in P. media but showed no change and decreased in P. maritima at 100 and 200 mM NaCl, respectively. These results suggest that the salt-tolerant P. maritima showed a better protection mechanism against oxidative damage caused by salt stress by its higher induced activities of antioxidant enzymes than the salt-sensitive P. media.  相似文献   

7.
Oviposition and adult feeding of the leafminer Liriomyza trifollii (Burgess) (Diptera, Agromyzidae) on Lycopersicon pennellii (Corr.) D'Arcy and its F1 hybrid with Lycopersicon esculentum (Mill.) was significantly less than that on the cultivated tomato, L. esculentum. The resistance of L. pennellii and the F1 was reduced following rinsing of foliage with ethanol. Resistant attributes of L. pennellii were transferred to L. esculentum through appression of L. pennellii foliage to L. esculentum leaflets. Application of purified 2,3,4-tri-O-acylglucoses (the principal component of type IV glandular trichome exudate of L. pennellii) to L. esculentum significantly decreased feeding and oviposition on L. esculentum leaflets by 61–99%. Therefore the principal mechanism of resistance to this leafminer by L. pennellii is the secretion of these acylglucoses. Dose response analysis of acylglucoses applied to L. esculentum shows that dosages as low as 10% those found on L. pennellii provide large reductions (91%) in leaf punctures and mines.  相似文献   

8.
Biomass, relative growth rate (RGR), organic and inorganic solute contents in control and NaCl (50–100 mM) affected roots or calli of the wild tomato genotypeLycopersicon pennellii and theLycopersicon esculentum wilty mutantflacca were compared. Under NaCl-stress, the RGR of calli fromL. pennellii was higher than that of the mutantflacca, while the root biomass of the former was lower than that of the latter. Constant water contents were found in calli and roots, irrespective of the genotypes and NaCl concentrations. Taking into account the solute contents of the apoplasm, Na+ accumulation was similar in the sensitive tissues (calli fromL. flacca, roots ofL. pennellii) and the tolerant ones (calli fromL. pennellii, flacca roots). Decreased K+ and Mg2+ and increased proline contents were found in both sensitive tissues. In comparison with sensitiveL. pennellii roots, salt sensitiveflacca calli showed increased total organic acid and amino acid contents.  相似文献   

9.
Two-month-old healthy seedlings of a true mangrove, Bruguiera parviflora, raised from propagules in normal nursery conditions were subjected to varying concentrations of NaCl for 45 d under hydroponic culture conditions to investigate the defence potentials of antioxidative enzymes against NaCl stress imposed oxidative stress. Changes in the activities of the antioxidative enzymes catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (POX), glutathione reductase (GR) and superoxide dismutase (SOD) were assayed in leaves to monitor the temporal regulation. Among the oxidative stress triggered chemicals, the level of H2O2 was significantly increased while total ascorbate and total glutathione content decreased. The ratio of reduced to oxidized glutathiones, however, increased due to decreased levels of oxidized glutathione in the leaf tissue. Among the five antioxidative enzymes monitored, the APX, POX, GR and SOD specific activities were significantly enhanced at high concentration (400 mM NaCl), while the catalase activities declined, suggesting both up and downregulations of antioxidative enzymes occurred due to NaCl imposed osmotic and ionic stress. Analysis of the stress induced alterations in the isoforms of CAT, APX, POX, GR and SOD revealed differential regulations of the isoforms of these enzymes. In B. parviflora one isoform of each of Mn-SOD and Cu/Zn-SOD while three isoforms of Fe-SOD were observed by activity staining gel. Of these, only Mn-SOD and Fe-SOD2 content was preferentially elevated by NaCl treatment, whereas isoforms of Cu/Zn-SOD, Fe-SOD1 and Fe-SOD3 remained unchanged. Similarly, out of the six isoforms of POX, the POX-1,-2,-3 and -6 were enhanced due to salt stress but the levels of POX-4 and -5 remained same as in control plants suggesting preferential upregulation of selective POX isoforms. Activity staining gel revealed only one prominent band of APX and this band increased with increased salt concentration. Similarly, two isoforms of GR (GR1 and GR2) were visualized on activity staining gel and both these isoforms increased upon salt stress. In this mangrove four CAT-isoforms were identified, among which the prominent CAT-2 isoform level was maximally reduced again suggesting differential downregulation of CAT isoforms by NaCl stress. The results presented in this communication are the first report on the resolutions of isoforms APX, POX and GR out of five antioxidative enzymes studied in the leaf tissue of a true mangrove. The differential changes in the levels of the isoforms due to NaCl stress may be useful as markers for recognizing salt tolerance in mangroves. Further, detailed analysis of the isoforms of these antioxidative enzymes is required for using the various isoforms as salt stress markers. Our results indicate that the overproduction of H2O2 by NaCl treatment functions as a signal of salt stress and causes upregulation of APX, POX, GR and deactivations of CAT in B. parviflora. The concentrations of malondialdehyde, a product of lipid peroxidation and lipoxygenase activity remained unchanged in leaves treated with different concentrations of NaCl, which again suggests that the elevated levels of the antioxidant enzymes protect the plants against the activated oxygen species thus avoiding lipid peroxidation during salt stress.  相似文献   

10.
The effect of B toxicity on antioxidant responses of soybean (Glycine max) cv. Athow was investigated by growing plants for 43 days at 0.2 (control), 2 and 12 mg B kg?1. At the end of the treatment period, shoot growth, lipid peroxidation level, the activities of antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POX), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR), and their isoenzymes in leaves were measured. Boron concentration in leaves was significantly increased by the increasing levels of B treatment from 43 to 522 mg kg?1, and shoot dry matter was depressed at 12 mg B kg?1. Significant increases in SOD, CAT, and APX activities were determined in leaves under 12 mg B kg?1; however, GR activities were decreased while POX activity was unchanged. Increased enzymic antioxidant activity arose from a combination of newly formed isoenzymes and activation of existing isoenzymes. By contrast, SOD and GR activities were decreased by 2 mg B kg?1 concentration as compared to the control groups while POX activity was increased and the activity of CAT did not change. Malondialdehyde content increased under 2 mg B kg?1 but decreased under 12 mg B kg?1. These results suggest that higher antioxidant activity observed under 12 than at 2 mg B kg?1 provided higher free radical-scavenging capacity, and thus a lower level of lipid peroxidation in Athow. While the induction of increased antioxidant activity was related to internal boron levels, the signaling and coordination of responses remain unclear.  相似文献   

11.
The salt-sensitive humid tropical biodiesel crop, Jatropha curcas, was subjected to a 28-day exposure to salinity (0, 50, 100, and 200 mM NaCl), and activities of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX), the rate of lipid peroxidation, stomatal conductance, mineral contents, and chlorophyll (Chl) content were compared to corresponding characteristics of J. cinerea, a related wild species of saline-dry areas. Biomass production decreased under the influence of 50 mM NaCl in both species, and the reduction was larger in J. curcas than in J. cinerea at the higher NaCl concentrations. In both species, stomatal conductance and transpiration decreased, leaf temperature and Na+ concentration increased under salt treatment; salinity effect was stronger in J. curcas. Chl degradation was enhanced only in J. curcas. In both Jatropha species, SOD, CAT, and POX activities increased with salinity. J. curcas showed the higher antioxidant activity than J. cinerea. Lipid peroxidation was observed only in J. curcas at concentrations above 100 mM NaCl, partially due to a greater reduction in stomatal conductance and/or the poor ROS-scavenging system. Thus, J. cinerea had more favorable characteristics to adapt to saline environments, and young J. curcas plants could adapt to salt-affected land if soil salinity was moderate (about 50 mM NaCl in solution).  相似文献   

12.
Two tomato species (Lycopersicon esculentum andL. pennellii) were grown under unheated plastic greenhouse and irrigated with 0 or 140 mM NaCl. Salinity induces a more important reduction in predawn leaf water potential (ψpd) inL. esculentum than inL. pennellii. In both species the osmotic adjustment was achieved by active solute accumulation. The leaf water potential at turgor loss point (ψtlp) seemed to be controlled by leaf osmotic potential (ψos). The results revealed the existence of limits to the accumulation of osmotic solutes in leaf tissues and the existence of an ontogenetic effect on the solute accumulation. In both species, but essentially inL. pennellii the inorganic solutes contribution especially Na+ and Cl? accumulation to ψos was higher than the organic solutes. Therefore, wild species save energy more markedly.  相似文献   

13.
In order to assess the role of the antioxidant defense system against salt treatment, the activities of some antioxidative enzymes and levels of some nonenzymatic antioxidants were estimated in Azolla caroliniana subjected to NaCl treatment (50 mM) for 10 days in absence or presence of nitrate. In A. caroliniana, salt treatment in absence of nitrate preferentially enhanced electrolyte leakage, lipid peroxidation, and H2O2 content. Also, the specific activitiy of guaiacol peroxidase (POX), glutathione reductase (GR), catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD) increased. In addition, reduced glutathione level increased and consequently, glutathione/oxidized glutathione (GSH/GSSG) ratio increased. Accumulation of Na+ increased significantly by salinity stress which resulted in a significant decrease in K+ accumulation, accordingly, K+/Na+ ratio decreased. Replacement of potassium chloride by potassium nitrate in nutrient solution under salt stress (50 mM NaCl) exhibited a reduction in electrolyte leakage, lipid peroxidation, and H2O2 contents. Conversely, the specific activity of APX, POX, GR, CAT, and SOD increased. The content of total ascorbate decreased, in contrast, reduced and GSSG increased and the ratio of GSH/GSSG increased 2.3-fold compared to the control value. Sodium ion accumulation was minimized in the presence of nitrate, potassium ion accumulation increased and as a result, K+/Na+ ratio increased when compared with the corresponding salinized plants. The differential changes in the specific activity of antioxidant enzymes due to NaCl treatment and nitrate may be useful as markers for recognizing salt tolerance in A. caroliniana.  相似文献   

14.
The physiological changes induced by a daily increase of NaCl level, over a period of 4 d, were studied in leaves of the salt-sensitive cultivated tomato species Lycopersicon esculentum and its wild salt-tolerant relative Lycopersicon pennellii. A higher solute contribution to the osmotic adjustment was observed in NaCl-treated leaves of L. pennellii than in those of L. esculentum. This response together with the higher accumulation of inorganic solutes in the wild species and of organic solutes in the cultivated species verified the different salt tolerance mechanisms operating in the two species in the short-term. With regard to the changes induced by salt stress on the free polyamine levels, the putrescine and spermine levels increased with salinity, whereas the spermine levels decreased in both tomato species; nevertheless, the main difference between the two species lays in an earlier and greater accumulation of putrescine induced by salinity in L. pennellii than in L. esculentum. The changes in putrescine levels were associated to changes in amino acids related to its synthesis, and the changes were different in both species. In L. esculentum, the high concentrations of some intermediate compounds (glutamate and arginine) were related to the low accumulation rate of both proline and putrescine. In contrast, in L. pennellii, important reductions in glutamate and arginine levels were found at the end of the salinization period. Moreover, in this last situation, a decline in the putrescine level ran parallel to a high proline accumulation, which suggests that the higher the stress level, the higher the deviation of glutamate to proline occurring in the salt tolerant species. It could be concluded that an early accumulation of the diamine putrescine seems to be associated with salt tolerance in the short-term.  相似文献   

15.
Effects of exogenous salicylic acid (SA) on plant growth, contents of Na, K, Ca and Mg, activities of superoxide dismutase (SOD), guaiacol peroxidase (GPX), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR) and catalase (CAT), and contents of ascorbate and glutathione were investigated in tomato (Lycopersicon esculentum L.) plants treated with 100 mM NaCl. NaCl treatment significantly increased H2O2 content and lipid peroxidation indicated by accumulation of thiobarbituric acid reactive substances (TBARS). A foliar spray of 1 mM SA significantly decreased lipid peroxidation caused by NaCl and improved the plant growth. This alleviation of NaCl toxicity by SA was related to decreases in Na contents, increases in K and Mg contents in shoots and roots, and increases in the activities of SOD, CAT, GPX and DHAR and the contents of ascorbate and glutathione.  相似文献   

16.
Pigeonpea [Cajanus cajan (L.) Millsp.] is a waterlogging-sensitive legume crop. We studied the effect of waterlogging stress on hydrogen peroxide (H2O2) content, lipid peroxidation and antioxidant enzyme activities in two pigeonpea genotypes viz., ICPL-84023 (waterlogging resistant) and MAL-18 (waterlogging susceptible). In a pot experiment, waterlogging stress was imposed for 6 days at early vegetative stage (20 days after sowing). Waterlogging treatment significantly increased hydrogen peroxide accumulation and lipid peroxidation, which indicated the extent of oxidative injury posed by stress conditions. Enzyme activities of peroxidase (POX), catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD) and polyphenol oxidase (PPO) increased in pigeonpea roots as a consequence of waterlogged conditions, and all the enzyme activities were significantly higher in waterlogged ICPL-84023 than in MAL-18. POX activity was the maximum immediately after imposing stress, therefore, it was suggested to be involved in early scavenging of H2O2, while rest of the enzymes (CAT, APX, SOD and PPO) were more important in late responses to waterlogging. Present study revealed that H2O2 content is directly related to lipid peroxidation leading to oxidative damage during waterlogging in pigeonpea. Higher antioxidant potential in ICPL-84023 as evidenced by enhanced POX, CAT, APX, SOD and PPO activities increased capacity for reactive oxygen species (ROS) scavenging and indicated relationship between waterlogging resistance and antioxidant defense system in pigeonpea.  相似文献   

17.
Significant differences in the antioxidant systems of the roots of two chickpea (Cicer arietinum L.) cultivars differing in tolerance to drought were observed in under toxic boron (B) conditions. Three-week-old chickpea seedlings were subjected to 0.05 mM (control), 1.6 mM or 6.4 mM B in the form of boric acid (H3BO3) for 7 days. At the end of the treatment period, root length, dry weight, boron concentration, malondialdehyde (MDA) content, and the activities of antioxidant enzymes—superoxide dismutase (SOD), peroxidase (POX), catalase (CAT), ascorbate peroxidase (APOX) and glutathione reductase (GR)—were measured. Root length of the drought-tolerant Gökce cultivar did not change under 1.6 mM B but increased under 6.4 mM B. On the contrary, root length decreased in the drought-sensitive Küsmen cultivar under both B concentrations. While root dry weight was unaffected in Gökce, it decreased in Küsmen under both B concentrations. Boron concentration was significantly higher in Küsmen than in Gökce at both B levels. Significant increases in SOD and POX activities were observed in roots of both cultivars under 1.6 and 6.4 mM B. Root extracts exhibited three SOD and three POX activity bands in both cultivars under B stress when compared to control groups. Although CAT activity in Gökce was increased, it decreased in Küsmen at the highest B concentration as compared to control groups. Roots of both cultivars showed no significant change in APOX activity under B toxicity (except in 1.6 mM B treated roots of Küsmen) when compared to control groups. GR activity in the roots of Küsmen decreased significantly with increasing B concentration. However, a significant increase in GR activity was found in Gökce under 1.6 mM B stress. In addition, lipid peroxidation levels of drought-sensitive Küsmen increased, indicating more damage to membrane lipids due to B toxicity. Lipid peroxidation did not change in the drought-tolerant Gökce cultivar at either B concentration. These results suggest that roots of Gökce are better protected from B-stress-induced oxidative stress due to enhanced SOD, CAT and POX activities under high B levels.  相似文献   

18.
The present study was carried out to compare the effect of NaCl on growth, cell membrane damage, and antioxidant defences in the halophyte Crithmum maritimum L. (sea fennel). Physiological and biochemical changes were investigated under control (0 mM NaCl) and saline conditions (100 and 300 mM NaCl). Biomass and growth of roots were more sensitive to NaCl than leaves. Roots were distinguished from leaves by increased electrolyte leakage and high malondialdehyde (MDA) concentration. Superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) activities, ascorbic acid (AA) and glutathione (GSH) concentrations were lower in the roots than in the leaves of control plants. The different activity patterns of antioxidant enzymes in response to 100 and 300 mM NaCl indicated that leaves and roots reacted differently to salt stress. Leaf CAT, APX and glutathione reductase (GR) activities were lowest at 300 mM NaCl, but they were unaffected by 100 mM NaCl. Only SOD activity was reduced in the latter treatment. Root SOD activity was significantly decreased in response to 300 mM NaCl and root APX activity was significantly higher in plants treated with 100 and 300 mM compared to the controls. The other activities in roots were insensitive to salt. The concentration of AA decreased in leaves at 100 and 300 mM NaCl, and in roots at 300 mM NaCl, when compared to control plants. The concentrations of GSH in NaCl-treated leaves and roots were not significantly different from the controls. In both organs, AA and GSH were predominating in the total pool in ascorbic acid and glutathione, under control or saline conditions.  相似文献   

19.
In this study, physiological and biochemical responses of Centaurea tuzgoluensis, a Turkish endemic halophyte, to salinity were studied. Therefore, the changes in shoot growth, leaf relative water content (RWC), ion concentrations, lipid peroxidation, hydroxyl (OH.) radical scavenging activity, proline (Pro) content, and antioxidant system [superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR)] were investigated. The 60 days (d) old C. tuzgoluensis seedlings were subjected to 0, 150 and 300 mM NaCl for 7 d and 14 d. The relative shoot growth was generally did not change in the 150 mM NaCl, but reduced with 300 mM NaCl stress at 7 d and 14 d. RWC was higher in 150 mM NaCl-treated leaves than that of 300 mM NaCl. Salinity decreased K+/Na+ ratio, but increased Na+, Cl?, Ca+2 and Na+/Cl? ratio in the leaves. On the other hand, it did not change or increase the K+ content at 150 and 300 mM NaCl, respectively. MDA content in the 150 and 300 mM NaCl-treated leaves remained close to control at 7 d. This was related to enhanced activities of SOD, CAT, APX and GR enzymes, and their isoenzymes especially Fe-SOD in the leaves. On the other hand, the higher sensitivity to 300 mM NaCl at 14 d was associated with inadequate increase in antioxidant enzymes and the decreased OH radical scavenging activity. All these results suggest that C. tuzgoluensis has different antioxidant metabolisms between short- (7 d) and long-term (14 d) salt treatments and salinity tolerance of C. tuzgoluensis might be closely related to increased capacity of antioxidative system to scavenge reactive oxygen species (ROS) and accumulation of osmoprotectant proline under salinity conditions.  相似文献   

20.
The role of mannitol as an osmoprotectant, a radical scavenger, a stabilizer of protein and membrane structure, and protector of photosynthesis under abiotic stress has already been well described. In this article we show that mannitol applied exogenously to salt-stressed wheat, which normally cannot synthesize mannitol, improved their salt tolerance by enhancing activities of antioxidant enzymes. Wheat seedlings (3 days old) grown in 100 mM mannitol (corresponding to −0.224 MPa) for 24 h were subjected to 100 mM NaCl treatment for 5 days. The effect of exogenously applied mannitol on the salt tolerance of plants in view of growth, lipid peroxidation levels, and activities of antioxidant enzymes in the roots of salt-sensitive wheat (Triticum aestivum L. cv. Kızıltan-91) plants with or without mannitol was studied. Although root growth decreased under salt stress, this effect could be alleviated by mannitol pretreatment. Peroxidase (POX) and ascorbate peroxidase (APX) activities increased, whereas superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR) activities decreased in Kızıltan-91 under salt stress. However, activities of antioxidant enzymes such as SOD, POX, CAT, APX, and GR increased with mannitol pretreatment under salt stress. Although root tissue extracts of salt-stressed wheat plants exhibited only nine different SOD isozyme bands of which two were identified as Cu/Zn-SOD and Mn-SOD, mannitol treatment caused the appearance of 11 different SOD activity bands. On the other hand, five different POX isozyme bands were determined in all treatments. Enhanced peroxidation of lipid membranes under salt stress conditions was reduced by pretreatment with mannitol. We suggest that exogenous application of mannitol could alleviate salt-induced oxidative damage by enhancing antioxidant enzyme activities in the roots of salt-sensitive Kızıltan-91.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号