首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 756 毫秒
1.
Irreversible destruction of joint structures is a major feature of osteoarthritis and rheumatoid arthritis. Fibrillar collagens in bone, cartilage and other soft tissues are critical for optimal joint form and function. Several approaches can be used to ascertain the role of collagenases, matrix metalloproteinases, in proteolysis of joint collagens in arthritis. These approaches include identifying spontaneous genetic disorders of the enzymes and substrates in humans and animals, as well as engineering mutations in the genes that encode these proteins in mice. Insights gained from such studies can be used to design new therapies to interrupt these catabolic events.  相似文献   

2.

Background  

Due to the rapid data accumulation on pathogenesis and progression of chronic inflammation, there is an increasing demand for approaches to analyse the underlying regulatory networks. For example, rheumatoid arthritis (RA) is a chronic inflammatory disease, characterised by joint destruction and perpetuated by activated synovial fibroblasts (SFB). These abnormally express and/or secrete pro-inflammatory cytokines, collagens causing joint fibrosis, or tissue-degrading enzymes resulting in destruction of the extra-cellular matrix (ECM).  相似文献   

3.
Collagens, the most abundant proteins in animals, also occur in some recently described nucleocytoplasmic large DNA viruses such as Mimiviridae, which replicate in amoebae. To clarify the impact of viral collagens on the immune response of animals exposed to Mimiviridae, we have investigated the localization of collagens in Acanthamoeba polyphaga mimivirus particles and the response of mice to immunization with mimivirus particles. Using protein biotinylation, we have first shown that viral collagen encoded by open reading frame L71 is present at the surface of mimivirus particles. Exposure to mimivirus collagens elicited the production of anti-collagen antibodies in DBA/1 mice immunized intradermally with mimivirus protein extracts. This antibody response also targeted mouse collagen type II and was accompanied by T-cell reactivity to collagen and joint inflammation, as observed in collagen-induced arthritis following immunization of mice with bovine collagen type II. The broad distribution of nucleocytoplasmic large DNA viruses in the environment suggests that humans are constantly exposed to such large virus particles. A survey of blood sera from healthy human subjects and from rheumatoid arthritis patients indeed demonstrated that 30% of healthy-subject and 36% of rheumatoid arthritis sera recognized the major mimivirus capsid protein L425. Moreover, whereas 6% of healthy-subject sera recognized the mimivirus collagen protein L71, 22% of rheumatoid arthritis sera were positive for mimivirus L71. Accordingly, our study shows that environmental exposure to mimivirus represents a risk factor in triggering autoimmunity to collagens.  相似文献   

4.
Degradation of fibrillar collagens is a central process in joint destruction in rheumatoid arthritis. Collagenase responsible for the collagenolysis has been immunolocalized on the extracellular matrix components at the cartilage/pannus junction in the rheumatoid joint, but very little is known about cellular source of the proteinase. In this paper monospecific antibodies against collagenase and tissue inhibitor of metalloproteinases (TIMP) were applied to rheumatoid and normal synovium to identify cells synthesizing and secreting the enzyme and its inhibitor. By treating the specimens with the monovalent ionophore, monensin, both collagenase and TIMP could be immunolocalized in hyperplastic synovial lining cells in rheumatoid synovium, but not in the cells of normal synovium. Dual immunolocalization studies demonstrated that the majority of the lining cells (approximately 64%) produce both collagenase and TIMP, while approximately 3% of the cells were positive only for collagenase, and 11% only for TIMP. Neither collagenase nor TIMP was immunolocalized on the extracellular matrix components in the synovia examined. These data suggest that synovial lining cells in rheumatoid arthritis secrete both collagenase and TIMP into the joint cavity. The role of collagenase in joint destruction in rheumatoid arthritis is discussed with reference to the regulation of the activity by TIMP.  相似文献   

5.
Transformation of peripheral blood lymphocytes after exposure to connective tissue antigens was measured in patients with adult (n = 35) and juvenile rheumatoid arthritis (n = 34), osteoarthritis (n = 21), ankylosing spondylitis (n = 15), and systemic lupus erythematosus (n = 26) and in control subjects (n = 36). The connective tissue antigens included homologous cartilage-type proteoglycan, cyanogen bromide-derived peptides of type I, II, and III collagens, and type I and II helical collagens. Lymphocyte transformation was not detected in the osteoarthritic and control groups, with one exception. Sensitization to at least one connective tissue antigen was detected in approximately one-third of the rheumatoid arthritic and lupus patients and in one-quarter of the juvenile rheumatoid patients. In ankylosing spondylitis, positive responses occurred to proteoglycan in 20% of patients tested but never to collagens or peptides. Sensitivity to proteoglycan was detected only in ankylosing spondylitis except for one patient with juvenile rheumatoid arthritis. In patients with systemic lupus erythematosus and both forms of rheumatoid arthritis, lymphocyte transformation was usually more frequently detected to peptides than to the helical collagens. In adult rheumatoid arthritis, type II peptides elicited an elevated number of responses (14%) as did type I (9%) and III (8%) peptides to lesser degrees. Responses to type I (4%) and II (4%) helical collagens were infrequent. Rheumatoid arthritic patients usually exhibited sensitivity to only one antigen and lymphocyte transformation was often detected when the arthritis was improving. In juvenile rheumatoid arthritis, lymphocyte transformation was detected to peptides of type I (16%), II (9%), and III (29%) collagens and to helical type I (12%) and II (8%) collagens. In systemic lupus erythematosus, sensitization was detected to peptides of type I (13%), II (20%), and III (14%) collagens and to helical type I collagen (18%) but not type II collagen. Simultaneous sensitivity to several antigens often occurred in both systemic lupus erythematosus and juvenile rheumatoid arthritis. Examination of individual patients in all three rheumatic disease groups revealed that immune sensitivity developed to collagen peptides rather than to the helical molecules, particularly in the case of type II collagen. Thus, some patients with inflammatory arthritis exhibit immune responses to connective tissue components which are, as a group, characteristic for each type of arthritis. These responses, which were not obviously associated with disease activity, may develop as a result of inflammation or trauma which destroys connective tissue and exposes molecules, in either a native or degraded state, to cells of the immune system. Expression of sensitivity to these tissue antigens may contribute to the chronicity of the inflammatory arthritides.  相似文献   

6.
Recently, a different class of collagen-like molecules has been identified in numerous bacteria. Initial studies have shown that these collagens are readily produced in Escherichia coli and they have been isolated and purified by various small-scale chromatography approaches. These collagens are non-cytotoxic, are non-immunogenic, and can be produced in much higher yields than mammalian collagens, making them potential new collagens for biomedical materials. One of the major drawbacks with large-scale fermentation of collagens has been appropriate scalable down-stream processing technologies. Like other collagens, the triple helical domains of bacterial collagens are particularly resistant to proteolysis. The present study describes the development and optimization of a simple, scalable procedure using a combination of acid precipitation of the E. coli host proteins, followed by proteolysis of residual host proteins to produce purified collagens in large scale without the use of chromatographic methods.  相似文献   

7.
Diseases such as degenerative or rheumatoid arthritis are accompanied by joint destruction. Clinically applied tissue engineering technologies like autologous chondrocyte implantation, matrix-assisted chondrocyte implantation, or in situ recruitment of bone marrow mesenchymal stem cells target the treatment of traumatic defects or of early osteoarthritis. Inflammatory conditions in the joint hamper the application of tissue engineering during chronic joint diseases. Here, most likely, cartilage formation is impaired and engineered neocartilage will be degraded. Based on the observations that mesenchymal stem cells (a) develop into joint tissues and (b) in vitro and in vivo show immunosuppressive and anti-inflammatory qualities indicating a transplant-protecting activity, these cells are prominent candidates for future tissue engineering approaches for the treatment of rheumatic diseases. Tissue engineering also provides highly organized three-dimensional in vitro culture models of human cells and their extracellular matrix for arthritis research.  相似文献   

8.
Stem-cell-driven regeneration of synovial joints   总被引:5,自引:0,他引:5  
Mammalian skeletal motion is made possible by synovial joints. Widespread suffering from arthritis and joint injuries has motivated recent effort to regenerate a stem-cell-driven synovial joint condyle implantable in total joint replacement. A single adult stem cell lineage, mesenchymal stem cells, differentiate to form all components of a synovial joint. Whereas localized joint lesions may be repaired by either cell-based or cell-free approaches, regeneration of the entire articular condyle of the synovial joint is unattainable without tissue-forming cells. A series of experiments are presented here to describe our initial attempts to regenerate a synovial joint condyle in the shape and dimensions of a human mandibular condyle, with both cartilaginous and osseous components derived from a single population of rat mesenchymal stem cells. Upcoming challenges are along several intertwining fronts including structural integrity, tissue maturation, mechanical strength and host integration. The synovial joint condyle may turn out to be one of the first 'human body parts' or organs truly regeneratable by stem-cell-derived approaches. Current approaches to regenerate the synovial joint condyle from stem-cell-derived multiple cell lineages may also offer clues for engineering complex organs such as the kidney or liver.  相似文献   

9.
Calf skin and rat tendon type I, bovine cartilage type II, and human amnion type III collagens have been radiolabeled by reaction with [3H]acetic anhydride, [3H]formaldehyde, and succinimidyl 2,3-[3H]propionate. All three reactions produce collagens with high specific activities that are suitable for use as substrates in collagenase assays. The identity of the radiolabel and the labeling indices do not alter the molecular weights or thermal stabilities of the collagens or the solubilities of the collagens or gelatins in dioxane-water mixtures at 4 degrees C. However, in contrast to native or sparsely labeled collagens, those with 40 or more lysine + hydroxylysine residues labeled per molecule do not undergo fibrillogenesis in the presence of 0.2-0.4 M NaCl in the 4-35 degree C temperature range. Thus, the modification reactions not only serve to introduce the radiolabel, but also to keep the collagens soluble over a wide range of temperatures and concentrations. The TCA, TCB fragments produced on partial reaction of each collagen type with tissue collagenases can be selectively denatured by a 10-minute incubation under specific conditions and the intact collagens selectively precipitated by addition of 50% v/v dioxane. This serves as the basis for soluble collagenase assays. The effect of labeling index on the properties of the collagens has been investigated and the results establish the range of conditions over which these collagens can be used as substrates for soluble versus fibrillar collagenase assays.  相似文献   

10.
Homeostasis of connective joint tissues depends on the maintenance of an extracellular matrix, consisting of an integrated assembly of collagens, glycoproteins, proteoglycans, and glycosaminoglycans (GAGs). Isomeric chondroitin sulfate (CS) glycoforms differing in position and degree of sulfation and uronic acid epimerization play specific and distinct functional roles during development and disease onset. This work profiles the CS epitopes expressed by different joint tissues as a function of age and osteoarthritis. GAGs were extracted from joint tissues (cartilage, tendon, ligment, muscle, and synovium) and partially depolymerized using chondroitinase enzymes. The oligosaccharide products were differentially stable isotope labeled by reductive amination using 2-anthranilic acid-d(0) or -d(4) and subjected to amide-hydrophilic interaction chromatography (HILIC) online LC-MS/MS. The analysis presented herein enables simultaneous profiling of the expression of nonreducing end, linker region, and Delta-unsaturated interior oligosaccharide domains of the CS chains among the different joint tissues. The results provide important new information on the changes to the expression of CS GAG chains during disease and development.  相似文献   

11.
The selectins, along with very late antigen-4 and CD44, have been implicated in mediating leukocyte rolling interactions that lead to joint recruitment and inflammation during the pathogenesis of rheumatoid arthritis. Previously, we showed that P-selectin deficiency in mice resulted in accelerated onset of joint inflammation in the murine collagen-immunized arthritis model. Here, we report that mice deficient either in E-selectin or in E-selectin and P-selectin (E/P-selectin mutant) also exhibit accelerated development of arthritis compared with wild type mice in the CIA model, suggesting that these adhesion molecules perform overlapping functions in regulating joint disease. Analyses of cytokine and chemokine expression in joint tissue from E/P-selectin mutant mice before the onset of joint swelling revealed significantly higher joint levels of macrophage inflammatory protein-1α and IL-1β compared to wild-type mice. IL-1β remained significantly increased in E/P-selectin mutant joint tissue during the early and chronic phases of arthritis. Overall, these data illustrate the novel finding that E-selectin and P-selectin expression can significantly influence cytokine and chemokine production in joint tissue, and suggest that these adhesion molecules play important regulatory roles in the development of arthritis in E/P-selectin mutant mice.  相似文献   

12.
Cyclooxygenase (Cox) is a key enzyme in the biosynthetic metabolism of prostaglandins. The inducible isoform of Cox-2 has been implicated in inflammation and its specific inhibition can be used to treat noninfectious inflammatory diseases, such as rheumatoid arthritis. Borrelia burgdorferi, the agent of Lyme disease, can induce joint inflammation. Here we show that B. burgdorferi induced the upregulation of cox-2 gene expression in murine joints at the onset of arthritis in infected mice. The level of mRNA expression correlated with the degree of inflammation. The specific inhibition of Cox-2 diminished the degree of joint inflammation, without affecting B. burgdorferi-specific antibody or cytokine responses. Cox-2 activity is therefore associated with the genesis of infectious arthritis caused by B. burgdorferi.  相似文献   

13.
Collagen is a major structural component of the extracellular matrix that supports tissue formation and maintenance. Although collagen remodeling is an integral part of normal tissue renewal, excessive amount of remodeling activity is involved in tumors, arthritis, and many other pathological conditions. During collagen remodeling, the triple helical structure of collagen molecules is disrupted by proteases in the extracellular environment. In addition, collagens present in many histological tissue samples are partially denatured by the fixation and preservation processes. Therefore, these denatured collagen strands can serve as effective targets for biological imaging. We previously developed a caged collagen mimetic peptide (CMP) that can be photo-triggered to hybridize with denatured collagen strands by forming triple helical structure, which is unique to collagens. The overall goals of this procedure are i) to image denatured collagen strands resulting from normal remodeling activities in vivo, and ii) to visualize collagens in ex vivo tissue sections using the photo-triggered caged CMPs. To achieve effective hybridization and successful in vivo and ex vivo imaging, fluorescently labeled caged CMPs are either photo-activated immediately before intravenous injection, or are directly activated on tissue sections. Normal skeletal collagen remolding in nude mice and collagens in prefixed mouse cornea tissue sections are imaged in this procedure. The imaging method based on the CMP-collagen hybridization technology presented here could lead to deeper understanding of the tissue remodeling process, as well as allow development of new diagnostics for diseases associated with high collagen remodeling activity.  相似文献   

14.
Electrophoretic and immunoblotting techniques, while now used routinely for the biochemical characterization of many proteins, have not been used for the identification of native collagens. We present here an acidic electrophoresis system using very low percentage acrylamide gels which maintains collagen solubility and allows migration of native dermal collagens. The method gives uniform gels which can be made mechanically stable for subsequent electroblotting. The resulting nitrocellulose transfer allows immunological detection of collagens using either polyclonal or monoclonal antibodies and can be used to screen antibody specificities. The majority of murine monoclonal antibodies directed against collagen bind only to conformational epitopes on the native triple-helical collagen, and thus cannot be screened by Western blotting. This method therefore enables the electrophoretic screening of these monoclonal antibodies and provides an alternative approach for their characterization.  相似文献   

15.
Summary The collateral ligaments can be clearly distinguished in the 25-day fetal rabbit knee joint. Types I and V collagens are present in the extracellular matrix between the cells of the lateral and medial collateral ligaments and this distribution persists until the rabbit is skeletally mature. From 8 months onwards type III collagen is also present, particularly around the cells. Type I collagen mRNA is expressed by the cells from the 25-day fetal to 8-month-old adult ligament. The ligament sheath is composed of types III and V collagens. The cruciate ligaments are present between the femur and tibia in the 20-day fetus. The matrix is composed of types I and V collagens from the 25-day fetus until at 12- to 14-weeks postnatal, type III collagen appears in the pericellular regions together with type V. At 8 months and 2 years, the amount of type III collagen has increased. All the cells express the mRNA for type I collagen at 12- to 14-weeks, but only isolated cells express this mRNA at 8 months. Thus, both the collateral and cruciate ligaments undergo changes in their complement of collagens during postnatal development and ageing. The implications of these complex interactions of different types of collagen are discussed in relation to healing and the surgical replacement of torn ligaments by tendons.  相似文献   

16.
Osteoarthritis (OA) is a multi-factor disorder of sinovial joints, which characterized by escalated degeneration and loss of articular cartilage. Treatment of OA is a critical unmet need in medicine for regeneration of damaged articular cartilage in elderly. On the other hand, lubricin, a glycoprotein specifically synthesized by chondrocytes located at the surface of articular cartilage, has been shown to provide boundary lubrication of congruent articular surfaces under conditions of high contact pressure and near zero sliding speed. Lubrication of these surfaces is critical to normal joint function, while different gene expressions of lubricin had been found in the synovium of rheumatoid arthritis (RA) and OA. Moreover, mutations or lacking of lubricin gene have been shown to link to the joint disease such as camptodactyly-arthropathy-coxa vara-pericarditis syndrome (CACP), synovial hyperplasia and failure of joint function, suggesting an important role of lubricin in the pathogenesis of these joint disease. Recent studies demonstrate that administration with recombinant lubricin in the joint cavity would be effective in the prevention of cartilage degeneration in animal OA models. Therefore, a treatment with lubricin which would protect cartilage in vivo would be desirable. This article reviews recent findings with regard to the possible role of lubricin in the progression of OA, and further discusses lubricin as a novel potential biotherapeutic approaches for the treatment of OA.  相似文献   

17.
There are two cyclooxygenase (COX) genes encoding characterized enzymes, COX-1 and COX-2. Nonsteroidal anti-inflammatory drugs are commonly used as analgesics in inflammatory arthritis, and these often inhibit both cyclooxygenases. Recently, inhibitors of COX-2 have been used in the treatment of inflammatory arthritis, as this isoform is thought to be critical in inflammation and pain. The objective of this study was to determine the effect of COX-1 or COX-2 gene disruption on the development of chronic Freund's adjuvant-induced arthritis and inflammatory pain in male and female mice. The effect of COX-1 or COX-2 gene disruption on inflammatory hyperalgesia, allodynia, inflammatory edema, and arthritic joint destruction was studied. COX-2 knockout mice (COX-2-/-) showed reduced edema and joint destruction in female, but not male, animals. In addition, neither male nor female COX-2-/- mice developed thermal hyperalgesia or mechanical allodynia, either ipsilateral or contralateral to the inflammation. COX-1 gene disruption also reduced inflammatory edema and joint destruction in female, but not male mice, although females of both COX-/- lines did show some bony destruction. There was no difference in ipsilateral allodynia between COX-1 knockout and wild-type animals, but female COX-1-/- mice showed reduced contralateral allodynia compared with male COX-1-/- or wild-type mice. These data show that the gene products of both COX genes contribute to pain and local inflammation in inflammatory arthritis. There are sex differences in some of these effects, and this suggests that the effects of COX inhibitors may be sex dependent.  相似文献   

18.
J. S. H. Gaston 《Biotherapy》1998,10(3):197-203
Whether heat shock proteins (hsp) will be therapeutic targets in arthritis depends on their role in pathogenesis. In this article, three possibilities are considered. Firstly, an excessive immune response to bacterial hsp could be arthritogenic — as may occur in reactive arthritis. In these circumstances therapy would be directed to down-regulating this immune response, or altering the nature of the immune response e.g. by changing cytokine production from interferon-g to IL-4. However this approach depends on the immune response to bacterial hsp not being critical for control of the bacterial infection. Secondly, an immune response to bacterial hsp may induce autoimmunity by cross-reactivity, e.g. with the homologous human. This could also be modulated in the same way with a lower likelihood of interfering with control of the infectious agent, since only a component of the immune response against the bacterial hsp will be cross-reactive with self. Thirdly, recent experiments raise the possibility that joint inflammation might be controlled by T cells which recognizes self hsp, particularly hsp60. Therapies might enhance this response; protection from experimental arthritis by prior immunization with hsp60 is well established. Whether similar approaches will be viable after arthritis is established remains to be seen.  相似文献   

19.
A 44-year-old diabetic man with isolated septic arthritis of the left acromioclavicular joint (A-C) caused by Staphylococcus aureus is described. He was admitted to the Department of Rheumatology with clinical symptoms of left shoulder arthritis and fever. Laboratory findings showed leukocytosis, elevated levels of erythrocyte sedimentation rate and C-reactive protein, all indicating septic arthritis. Blood culture was positive for Staphylococcus aureus. Left A-C joint x-ray and ultrasonography, and whole body scintigraphy with 99 mTc radiolabeled autologous leukocytes pointed to septic arthritis of the A-C joint. The patient was treated for six weeks with antibiotics successfully. Infection of the A-C joint is uncommon, even in conditions such as immunodeficiency, renal dialysis and intravenous drug abuse which are associated with unusual joint infections, and can be differentiated from shoulder joint infection, by maximal tenderness over the A-C joint on examination, and findings of A-C joint widening, effusion, and bony erosions on imaging studies.  相似文献   

20.
Peripheral blood mononuclear cells from patients with rheumatoid arthritis (n = 27), systemic lupus erythematosus (n = 24), juvenile rheumatoid arthritis (n = 30), osteoarthritis (n = 20), apparently healthy adults (n = 12), and nonarthritic children (n = 8) were exposed to several putative connective tissue antigens to determine if the monokine, mononuclear cell factor, was released. Release of this factor was detected by bioassay in which enhancement of collagenase production from human synovial cells or dermal fibroblasts was measured. The antigens, all of homologous tissue origin, included cyanogen bromide-derived peptides of type I, II, and III collagens, type I and II helical collagens, and cartilage proteoglycan. Of the subjects examined, 44% of the rheumatoid group, 42% of the systemic lupus group, 33% of the juvenile rheumatoid group but only 10% of the osteoarthritic group and 5% of the control group released monokine after exposure of peripheral blood mononuclear cells to at least one of these connective tissue antigens. Patients with rheumatoid arthritis most frequently responded to type II peptides (but not to type II helical collagen) although the frequencies of responses to type I peptides, type I helical collagen and proteoglycan were also elevated over levels observed in the control population. Positive responses in these patients typically occurred to only one antigen, were transient, often occurred close to the onset of arthritis, and appeared to be unrelated to disease activity. The profiles of responses in patients with juvenile rheumatoid arthritis and systemic lupus shared many features in common and were distinct from those of adult rheumatoid arthritis. Patients with systemic lupus or juvenile rheumatoid arthritis responded to all of the antigens tested. Positive responses often occurred simultaneously to several antigens. Responses to type II helical collagen were most common while sensitization to type II peptides was infrequently detected. Positive responses were transient, unrelated to overall disease activity, type of juvenile arthritis, or duration of disease in lupus patients. Stimulation of mononuclear cell factor release by connective tissue molecules and their degradation products may make an important contribution to the chronic inflammation commonly seen in these diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号