首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enhancer trap approach utilizing transposons yields us information about gene functions and gene expression patterns. In the ascidian Ciona intestinalis, transposon-based transgenesis and insertional mutagenesis were achieved with a Tc1/mariner transposon Minos. We report development of a novel technique for enhancer trap in C. intestinalis. This technique uses remobilization of Minos in the Ciona genome. A Minos vector for enhancer trap was constructed and a tandem array insertion of the vector was introduced into the Ciona genome to create a mutator line. Minos was remobilized in Ciona chromosomes to create new insertions by providing transposases. These transposase-introduced animals were crossed with wild-type animals. Nearly 80% of F1 families showed novel GFP expression patterns. This high-throughput enhancer trap screen will be useful to create new marker transgenic lines showing reporter gene expression in specific tissues and to identify novel patterns of gene expression.  相似文献   

2.
Summary

Morphology of the germinal epithelium and the early follicular oocyte in the ascidian Ciona savignyi as examined by electron microscopy. The oogenetic part of the germinal epithelium contains oocytes at two different stages and the dark and clear cells. The smaller oocyte contains synaptonemal complexes. The larger oocyte in the initial phase of growth has a conspicuous nucleolus, electron-dense materials and some mitochondria close to the nuclear envelope. The nucleus of the larger oocyte is round and has the smooth contour. The dark cell contains a relatively large nucleus and is sometimes connected to each other by an intercellular bridge. Therefore, the dark cell, which has been suggested to be the progenitor cell of two kinds of accessory cells, may be also the oogonium. The early follicular oocyte just after migration from the germinal epithelium retains most of cytological features similar to those of the larger oocyte. However, the nuclear contour of the early follicular oocyte is uneven. This difference in the nuclear contour probably indicates that such a follicular oocyte is in the second phase of growth.  相似文献   

3.
An ascidian, Ciona savignyi, is regarded as a good experimental animal for genetics because of its small and compact genome for which a draft sequence is available, its short generation time and its interesting phylogenic position. ENU-based mutagenesis has been carried out using this animal. However, insertional mutagenesis using transposable elements (transposons) has not yet been introduced. Recently, one of the Tc1/mariner superfamily transposons, Minos, was demonstrated to cause germline transgenesis in the related species Ciona intestinalis. In this report, we show that Minos has the ability to transpose from DNA to DNA in Ciona savignyi in transposition assays. Although the activity was slightly weaker than in Ciona intestinalis, Minos still caused germline transgenesis in Ciona savignyi. In addition, one insertion seemed to have caused an enhancer trapping. These results indicate that Minos provides a potential tool for transgenic techniques such as insertional mutagenesis in Ciona savignyi.  相似文献   

4.
Nuclear localization of beta-catenin is most likely the first step of embryonic axis formation or embryonic cell specification in a wide variety of animal groups. Therefore, the elucidation of beta-catenin target genes is a key research subject in understanding the molecular mechanisms of the early embryogenesis of animals. In Ciona savignyi embryos, nuclear accumulation of beta-catenin is the first step of endodermal cell specification. Previous subtractive hybridization screens of mRNAs between beta-catenin-overexpressed embryos and nuclear beta-catenin-depleted embryos have resulted in the identification of beta-catenin downstream genes in Ciona embryos. In the present study, I characterize seven additional beta-catenin downstream genes, Cs-cadherinII, Cs-protocadherin, Cs-Eph, Cs-betaCD1, Cs-netrin, Cs-frizzled3/6, and Cs-lefty/antivin. All of these genes were expressed in vegetal blastomeres between the 16-cell and 110-cell stages, although their spatial and temporal expression patterns were different from one another. In situ hybridizations and real-time PCR revealed that the expression of all of these genes was up-regulated in beta-catenin-overexpressed embryos, and down-regulated in beta-catenin-suppressed embryos. Therefore, the accumulation of beta-catenin in the nuclei of vegetal blastomeres activates various vegetally expressed genes with potentially important functions in the specification of these cells.  相似文献   

5.
A Stolfi  L Christiaen 《Genetics》2012,192(1):55-66
The experimental malleability and unique phylogenetic position of the sea squirt Ciona intestinalis as part of the sister group to the vertebrates have helped establish these marine chordates as model organisms for the study of developmental genetics and evolution. Here we summarize the tools, techniques, and resources available to the Ciona geneticist, citing examples of studies that employed such strategies in the elucidation of gene function in Ciona. Genetic screens, germline transgenesis, electroporation of plasmid DNA, and microinjection of morpholinos are all routinely employed, and in the near future we expect these to be complemented by targeted mutagenesis, homologous recombination, and RNAi. The genomic resources available will continue to support the design and interpretation of genetic experiments and allow for increasingly sophisticated approaches on a high-throughput, whole-genome scale.  相似文献   

6.
The ascidian Ciona intestinalis is one of the model organisms of choice for comparative investigations of chordate development and for unraveling the molecular mechanisms underlying morphogenesis and cell fate specification. Taking advantage of the availability of various genetically encoded fluorescent proteins and of defined cis-regulatory elements, we combined transient transgenesis with laser scanning confocal imaging to acquire and quantitate 3D time-lapse data from living Ciona embryos. We used Ciona tissue-specific enhancers to drive expression of spectrally distinct fluorescent protein reporters to label and simultaneously visualize axially and paraxially positioned mesodermal derivatives, as well as neural precursors in individual embryos. We observed morphogenetic movements, without perturbing development, from the early gastrula throughout the larval stage, including gastrulation, neurulation, convergent extension of the presumptive notochord, and tail elongation. These multidimensional data allowed us to establish a reference system of metrics to quantify key developmental events including blastopore closure and muscle extension. The approach we describe can be used to document morphogenetic cell and tissue rearrangements in living embryos and paves the way for a live digitized anatomical atlas of Ciona.  相似文献   

7.
Summary: Targeted mutagenesis of genes‐of‐interest, or gene‐knockout, is a powerful method to address the functions of genes. Engineered nucleases have enabled this approach in various organisms because of their ease of use. The ascidian Ciona intestinalis is an excellent organism to analyze gene functions by means of genetic technologies. In our previous study, we reported mutagenesis of Ciona somatic cells with TALE nucleases (TALENs) by electroporating expression constructs. In this study, we report germ cell mutagenesis of Ciona by microinjecting mRNAs encoding TALENs. TALEN mRNAs introduced mutations to target genes in both somatic and germ cells. TALEN‐mediated mutations in the germ cell genome were inherited by the next generation. We conclude that knockout lines of Ciona that have disrupted target genes can be established through TALEN‐mediated germ cell mutagenesis. genesis 52:431–439, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
We present evidence that notochord and muscle differentiation are crucial for morphogenesis of the ascidian tail. We developed a novel approach for embryological manipulation of the developing larval tissues using a simple method to introduce DNA into Ciona intestinalis and the several available tissue-specific promoters. With such promoters, we misexpressed the Xenopus homeobox gene bix in notochord or muscle of Ciona embryos as a means of interfering with development of these tissues. Ciona embryos expressing bix in the notochord from the 64-cell stage develop into larvae with very short tails, in which the notochord precursors fail to intercalate and differentiate. Larvae with mosaic expression of bix have intermediate phenotypes, in which a partial notochord is formed by the precursor cells that did not receive the transgene while the precursors that express the transgene cluster together and fail to undergo any of the cell-shape changes associated with notochord differentiation. Muscle cells adjacent to differentiated notochord cells are properly patterned, while those next to the notochord precursor cells transformed by bix exhibit various patterning defects. In these embryos, the neural tube extends in the tail to form a nerve cord, while the endodermal strand fails to enter the tail region. Similarly, expression of bix in muscle progenitors impairs differentiation of muscle cells, and as a result, notochord cells fail to undergo normal extension movements. Hence, these larvae have a shorter tail, due to a block in the elongation of the notochord. Taken together, these observations suggest that tail formation in ascidian larvae requires not only signaling from notochord to muscle cells, but also a "retrograde" signal from muscle cells to notochord.  相似文献   

9.
In the ascidian embryo, a fibroblast growth factor (FGF)-like signal from presumptive endoderm blastomeres between the 32-cell and early 64-cell stages induces the formation of notochord and mesenchyme cells. However, it has not been known whether endogenous FGF signaling is involved in the process. Here it is shown that 64-cell embryos exhibit a marked increase in endogenous extracellular signal-regulated kinase (ERK/MAPK) activity. The increase in ERK activity was reduced by treatment with an FGF receptor 1 inhibitor, SU5402, and a MEK (ERK kinase/MAPKK) inhibitor, U0126. Both drugs blocked the formation of notochord and mesenchyme when embryos were treated at the 32-cell stage, but not at the 2- or 110-cell stages. The dominant-negative form of Ras also suppressed notochord and mesenchyme formation. Both inhibitors suppressed induction by exogenous basic FGF. These results suggest that the FGF signaling cascade is indeed necessary for the formation of notochord and mesenchyme cells during ascidian embryogenesis. It is also shown that FGF signaling is required for formation of the secondary notochord, secondary muscle and neural tissues, and at least ERK activity is necessary for the formation of trunk lateral cells and posterior endoderm. Therefore, FGF and MEK signaling are required for the formation of various tissues in the ascidian embryo.  相似文献   

10.
Notochord cells in ascidian embryos are formed by the inducing action of cells of presumptive endoderm, as well as neighboring presumptive notochord, at the 32-cell stage. Studies of the timing of induction using recombinations of isolated blastomeres have suggested that notochord induction must be initiated before the decompaction of blastomeres at the 32-cell stage and is completed by the 64-cell stage. However, it is not yet clear how the duration of notochord induction is strictly limited. In the present paper, the aim was to determine in detail when the presumptive notochord blastomeres lost their competence to respond, and when the presumptive endoderm blastomeres produced inducing signals for the notochord. Presumptive notochord blastomeres and presumptive endoderm blastomeres were isolated from early 32-cell embryos, and were heterochronously recombined at various stages ranging from the early 32-cell stage to the 64-cell stage. Presumptive notochord blastomeres could respond to inductive signals at the early 32-cell stage, and started to lose their responsiveness at the decompaction stage. By contrast, the presumptive endoderm blastomeres persisted in their inducing capacity even at the 64-cell stage. These observations suggest that the loss of competence in presumptive notochord blastomeres limits the duration of notochord induction in intact ascidian embryos.  相似文献   

11.
12.
Sperm proteasomes are thought to be involved in sperm binding to and in sperm penetration through the vitelline coat of the eggs of the stolidobranch ascidian Halocynthia roretzi. However, it is not known whether they are involved in the fertilization of eggs of other ascidians. Therefore, we investigated whether sperm proteasomes are also involved in the fertilization of the eggs of the primitive phlebobranch ascidian Ciona intestinalis. Fertilization of the eggs of C. intestinalis was potently inhibited by the proteasome inhibitors MG115 and MG132 but not by the cysteine protease inhibitor E-64-d. On the other hand, neither fertilization of the vitelline coat-free eggs nor sperm binding to the vitelline coat was inhibited by the two proteasome inhibitors at a concentration sufficient to inhibit fertilization of intact eggs. These results indicate that the proteasome plays an essential role in sperm penetration through the vitelline coat rather than in sperm binding to the coat or in sperm-egg membrane fusion. The proteasome activity, which was detected in the sperm extract using Suc-Leu-Leu-Val-Tyr-MCA as a substrate, was strongly inhibited by both MG115 and MG132, and was weakly inhibited by chymostatin, whereas neither leupeptin nor E-64-d inhibited the activity. The molecular mass of the enzyme was estimated to be 600-kDa by Superose 12 gel filtration, and the activity in sperm extract was immunoprecipitated with an anti-proteasome antibody. These results indicate that the proteasome present in sperm of C. intestinalis is involved in fertilization, especially in the process of sperm penetration through the vitelline coat, probably functioning as a lysin. Mol. Reprod. Dev. 50:493–498, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
14.
15.
Cortical deformation and polar body extrusion are the principal events that occur at fertilization in the ascidian egg. We demonstrated that the intracellular Ca2+ concentration ([Ca2+]i) in the fertilized egg of Ciona savignyi increased at egg deformation (main peak) and then several small Ca2+ spikes (1st spikes) appeared before the first polar body extrusion. Brief Ca2+ spikes (2nd spikes), then appeared in the period between the first and second polar body extrusion. When eggs were fertilized in Ca2+-free artificial seawater, the main peak and 1st spikes appeared, but the 2nd spikes did not, suggesting that the Ca2+ required for the main peak and 1st spikes is released from the intracellular store in this species and that extracellular Ca2+ is required for the 2nd spikes. When [Ca2+]i was clamped at a low level (0.03–0.13 μmol/L) by injecting the egg with low-Ca2+ buffers and the egg was then inseminated, deformation, polar body extrusion and pronucleus formation were suppressed. In contrast, egg deformation and first polar body extrusion were induced without insemination when [Ca2+]i was 0.9 μmol/L. A higher Ca2+ concentration of 1.2–10.1 μmol/L was required for extrusion of the second polar body and pronucleus formation. These data suggest that sequential Ca2+ increases (i.e. main peak and 1st and 2nd spikes) are prerequisite for the deformation and polar body extrusion of the egg. Furthermore, in eggs arrested at the second meiotic metaphase after first polar body extrusion by the injection of Ca2+ buffer, subsequent injection of excess Ca2+ caused formation of an irregular second polar body-like protrusion, suggesting latent arrest at the second meiotic metaphase in the ascidian egg.  相似文献   

16.
Ascidians are marine protochordates at the evolutionary boundary between invertebrates and vertebrates. Ascidian larvae provide a simple system for unraveling gene regulation networks underlying the formation of the basic chordate body plan. After being used for over a century as a model for embryological studies, ascidians have become, in the past decade, an increasingly popular organism for studying gene regulation. Part of the renewed appeal of this system is the use of electroporation to introduce transgenic DNAs into developing embryos. This method is considerably more efficient than conventional microinjection assays and permits the simultaneous transformation of hundreds of embryos. Electroporation has allowed the identification and characterization of cis-regulatory DNAs that mediate gene expression in a variety of tissues, including the notochord, tail muscles, CNS, and endoderm. Electroporation has also provided a simple method for misexpressing patterning genes and producing dominant mutant phenotypes. Recent studies have used electroporation to create "knock-out" phenotypes by overexpressing dominant negative forms of particular proteins. Here we review the past and present uses of electroporation in ascidian development, and speculate on potential future uses.  相似文献   

17.
The central and peripheral nervous systems (CNS and PNS) of the ascidian tadpole larva are comparatively simple, consisting of only about 350 cells. However, studies of the expression of neural patterning genes have demonstrated overall similarity between the ascidian CNS and the vertebrate CNS, suggesting that the ascidian CNS is sufficiently complex to be relevant to those of vertebrates. Recent progress in the Ciona intestinalis genome project and cDNA project together with considerable EST information has made Ciona an ideal model for investigating molecular mechanisms underlying the formation and function of the chordate nervous system. Here, we characterized 56 genes specific to the nervous system by determining their full-length cDNA sequences and confirming their spatial expression patterns. These genes included those that function in the nervous systems of other animals, especially those involved in photoreceptor-mediated signaling and neurotransmitter release. Thus, the nervous system-specific genes in Ciona larvae will provide not only probes for determining their function but also clues for exploring the complex network of nervous system-specific genes.  相似文献   

18.
19.
20.
Chondroitin sulfate (CS) is a carbohydrate component of proteoglycans. Several types of sulfotransferases determine the pattern of CS sulfation, and thus regulate the biological functions of proteoglycans. The protochordate ascidians are the closest relatives of vertebrates, but the functions of their sulfotransferases have not been investigated. Here, we show that two chondroitin 4‐O‐sulfotransferases (C4STs) play important roles in the embryonic morphogenesis of the ascidian Ciona intestinalis. Ci‐C4ST‐like1 is predominantly expressed in the epidermis and muscle. Epidermal and muscle cells became spherical upon the injection of a Ci‐C4ST‐like1‐specific morpholino oligo (MO), thus suggesting weakened cell adhesion. Co‐injection of a Ci‐C4ST‐like1‐expressing transgene rescued the phenotype, suggesting that the effects of the MO were specific. Ci‐C4ST‐like3 was expressed in the central nervous system, muscle, and mesenchyme. A specific MO appeared to affect cell adhesion in the epidermis and muscle. Convergent extension movement of notochordal cells was also impaired. Forced expression of Ci‐C4ST‐like3 restored normal morphogenesis, suggesting that the effects of the MO were specific. The present study suggests that Ci‐C4ST‐like1 and Ci‐C4ST‐like3 are required for cell adhesion mainly in the epidermis and muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号