首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A family of mutants of Salmonella typhimurium with altered lipopolysaccharide (LPS) core chain lengths were assessed for sensitivity to freeze-thaw and other stresses. Deep rough strains with decreased chain length in the LPS core were more susceptible to novobiocin, polymyxin B, bacitracin, and sodium lauryl sulfate during growth, to ethylenediaminetetraacetic acid and sodium lauryl sulfate in resting suspension, and to slow and rapid freeze-thaw in water and saline, and these strains exhibited more outer membrane damage than the wild type or less rough strains. Variations in the LPS chain length did not dramatically affect the sensitivity of the strains to tetracycline, neomycin, or NaCl in growth conditions or the degree of freeze-thaw-induced cytoplasmic membrane damage. The deeper rough isogenic strains incorporated larger quantities of less-stable LPS and less protein into the outer membrane than did the wild type or less rough mutants, indicating that the mutations affected outer membrane synthesis or organization or both. Nikaido's model of the role of LPS and protein in determining the resistance of gram-negative bacteria to low-molecular-weight hydrophobic antibiotics is discussed in relation to the stress of freeze-thaw.  相似文献   

2.
The majority of Pseudomonas aeruginosa strains synthesize two antigenically distinct types of lipopolysaccharide (LPS), namely, a serotype-specific B-band LPS and a common antigen A-band LPS. A-band LPS consists of uncharged poly-D-rhamnan, which does not bind uranyl ions and is difficult to stain for electron microscopy; the highly charged B-band LPS is more easily visualized. We selected two wild-type strains, PAO1 (serotype O5) and IATS O6 (serotype O6), generated isogenic mutants from them, and examined the distribution of LPS on the surface of these organisms by freeze-substitution and electron microscopy. On PAO1 cells, which express both A-band and B-band LPSs, a 31- to 36-nm-wide fringe extending perpendicularly from the outer membrane was observed. A fine fibrous material was also observed on the surface of serotype O6 (A+ B+) cells, although this material did not form a uniform layer. When the LPS-deficient mutants, strains AK1401 (A+ B-), AK 1012 (A- B-), rd7513 (A- B-), and R5 (an IATS O6-derived rough mutant; A- B-), were examined, no extraneous material was apparent above the bilayer. However, an asymmetrical staining pattern was observed on the outer leaflet of the outer membrane of each of these mutants, presumably conforming to the anionic charge distribution of the core region of the rough LPS. In all cases, expression of the LPS types was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining. When optical densitometry on electron microscopy negatives was used to analyze the outer membrane staining profiles, subtle differences in the degrees of core deficiency among rough mutants were detectable. This is the first time an electron microscopy technique has preserved the infrastructure produced in the outer membrane by its constituent macromolecules. We conclude that freeze-substitution electron microscopy is effective in the visualization of LPS morphotypes.  相似文献   

3.
Two families of Escherichia coli mutants with altered outer membrane protein components were examined for sensitivity to freezing and thawing and other stresses. A mutant unable to make the lipoprotein (lpo) was extremely sensitive to freezing and thawing in water or saline and to challenge with detergent, while the mutant unable to make the porin proteins (ompB) was more resistant than the isogenic wild type; strains unable to make the tsx and ompA proteins were slightly more sensitive to the stresses. Similarly, the lpo deficient strain exhibited more and the ompB less wall and membrane damage than the wild-type strains. Little difference in the extent of wall damage, but more membrane damage, was seen for the two tsx and the ompA strains when compared with the wild-type strain. The roles of the specific proteins in determining sensitivity to freeze-thaw are discussed.  相似文献   

4.
J Smit  Y Kamio    H Nikaido 《Journal of bacteriology》1975,124(2):942-958
The outer membrane layer of the cell wall was isolated from wild-type Salmonella typhimurium LT2 as well as from its mutants producing lipopolysaccharides with shorter saccharide chains. Chemical analysis of these preparations indicated the following. (i) The number of lipopolysaccharide molecules per unit area was constant, regardless of the length of the saccharide side chain in lipopolysaccharide. (ii) In contrast, in "deep rough" (Rd or Re) mutants producing the lipopolysaccharides with very short saccharide chains, the amount of outer membrane protein per unit surface area decreased to about 60% of the value in the wild type. (iii) In the wild type, the amount of phospholipids is slightly less than what is needed to cover one side of the membrane as a monolayer. In comparison with the wild type, the outer membrane of Rd and Re mutants contains about 70% more phospholipids, which therefore must be distributed in both the outer and inner leaflets of the membrane. Freeze-fracture studies showed that the outer membrane of Re mutants were easily fractured, but fracture became increasingly difficult in strains producing lipopolysaccharides with longer side chains. The convex fracture face was always nearly smooth, but the concave fracture face or the outer half of the membrane was densely covered with particles 8 to 10 nm in diameter. The density of particles was decreased in Re mutants to the same extent as the reduction in proteins, suggesting the largely proteinaceous nature of particles. A model for the supramolecular structure of the outer membrane is presented on the basis of these and other results.  相似文献   

5.
In this study we disrupted two Herbaspirillum seropedicae genes, rfbB and rfbC, responsible for rhamnose biosynthesis and its incoporation into LPS. GC-MS analysis of the H. seropedicae wild-type strain LPS oligosaccharide chain showed that rhamnose, glucose and N-acetyl glucosamine are the predominant monosaccharides, whereas rhamnose and N-acetyl glucosamine were not found in the rfbB and rfbC strains. The electrophoretic pattern of the mutants LPS was drastically altered when compared with the wild type. Knockout of rfbB or rfbC increased the sensitivity towards SDS, polymyxin B sulfate and salicylic acid. The mutants attachment capacity to maize root surface plantlets was 100-fold lower than the wild type. Interestingly, the wild-type capacity to attach to maize roots was reduced to a level similar to that of the mutants when the assay was performed in the presence of isolated wild-type LPS, glucosamine or N-acetyl glucosamine. The mutant strains were also significantly less efficient in endophytic colonization of maize. Expression analysis indicated that the rfbB gene is upregulated by naringenin, apigenin and CaCl(2). Together, the results suggest that intact LPS is required for H. seropedicae attachment to maize root and internal colonization of plant tissues.  相似文献   

6.
A temperate phage, phi CTX, is a cytotoxin-converting phage of Pseudomonas aeruginosa. In this study, we characterized the lipopolysaccharide (LPS) structures of phi CTX-resistant mutants derived from phi CTX-sensitive strains. phi CTX infectivity was neutralized by LPS preparations derived from sensitive strains but not by those from resistant strains. phi CTX-resistant mutants had lower-molecular-weight rough (R)-type LPS than the parental strains and lacked the reactivity of some anti-LPS core monoclonal antibodies. Some LPS core components were lacking or significantly decreased in the resistant mutants. These results suggested that a receptor site of the cytotoxin-converting phage phi CTX was the LPS core region and that especially L-rhamnose and D-glucose residues in the outer core were involved in phage binding. The host range of phi CTX was nearly O-serotype dependent, probably because of the diversity of the LPS core structure among P. aeruginosa strains. phi CTX bound to most strains of Homma serotypes A, G, and I but not to strains of serotypes B and E. Furthermore, we found that a genetic locus specifying phi CTX sensitivity (and consequently participating in the biosynthesis of part of the LPS core) existed in or near the locus participating in the determination of O-serotype specificity (somA), which has been mapped between leu-10 and eda-9001. phi CTX, as well as anti-LPS core monoclonal antibodies, will be a good tool for structural characterization of the P. aeruginosa LPS core region.  相似文献   

7.
Mutants of Pseudomonas aeruginosa PAC1R (serotype O:3) which were resistant to bacteriophage D were isolated and shown to react with O:5d, O:9 and O:13 antisera as well as O:3. Antisera to the parent strain and to the three polyagglutinating (PA) mutants also showed cross-reactions. The mutants differed from the parent strain in their lipopolysaccharide (LPS) composition. The LPS from two of the three mutants yielded high molecular weight polysaccharide fractions. Although the high molecular weight fraction from one of the mutants contained the amino sugars and other components characteristic of the O:3 serotype strains, its mobility on Sephadex G75 was different from that of the parent strain. The high molecular weight material from the second mutant lacked the O-antigenic determinants but these were present in a semi-rough LPS fraction. The third mutant appeared rough and completely lacked the O-antigenic components. These three mutants were compared with the parent strain and with a non-agglutinating LPS-defective mutant which lacked both O-antigenic side chains and all neutral sugars in the outer core. Agglutination with absorbed sera and haemagglutination using purified LPS and ELISA detection suggested that wall components other than LPS were responsible for some of the cross-reactions observed. The components responsible were detected after SDS-PAGE of crude outer membrane fractions by a combination of Coomassie blue and silver-staining and antigenic components were detected by immunoelectrophoresis and ELISA-linked immunoblotting of the gels. The main antigenic determinants detected by antiserum to the parent strain were in the high molecular weight O-polysaccharide fractions and in the semirough fractions of the LPS, with some activity due to the H protein of the outer membrane. O:5d antisera reacted with unidentified high molecular weight polysaccharide fractions. Cross-reactions with the O:9 antiserum appeared to be due mainly to the F porin and, to a lesser extent, to the G and E proteins of the outer membrane. O:13 antiserum reacted with high molecular weight polysaccharide fractions but also with the rough core and F and H protein. Cross-reactivity of the other three mutant antisera could largely be interpreted in terms of the outer membrane components exposed in each strain. One reacted strongly with the F porin and the rough core, while the others reacted with a number of protein and LPS-derived fractions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
ECA, the enterobacterial common antigen   总被引:26,自引:0,他引:26  
Enterobacterial common antigen (ECA) is a family-specific surface antigen shared by all members of the Enterobacteriaceae and is restricted to this family. It is found in freshly isolated wild-type strains as well as in laboratory strains like Escherichia coli K-12. The family specificity of ECA can be used for taxonomic and diagnostic purposes. ECA is located in the outer leaflet of the outer membrane. It is a glycophospholipid built up by an aminosugar heteropolymer linked to an L-glycerophosphatidyl residue. In a few rough mutants, in addition, the sugar chain can be bound to the complete lipopolysaccharide (LPS) core. Recently, for Shigella sonnei a lipid-free cyclic form of ECA was reported. The genetical determination of ECA is closely related to that of lipopolysaccharide. For biosynthesis of ECA and LPS partly the same sugar precursors and the same carrier lipid is used.  相似文献   

9.
After freezing and thawing, Pseudomonas aeruginosa harboring a drug resistance plasmid (Hg2+r, Strr), became acutely sensitive to mercuric ions but not to streptomycin in the plating medium, whereas its sensitivity to both agents became more pronounced indicating a synergistic effect. This freeze-thaw-induced sensitivity was transient and capable of being repaired to a simple salts medium. Transient outer and cytoplasmic membrane damage was also observed in frozen and thawed preparations. From kinetics studies, repair of cytoplasmic membrane damage superseded repair of outer membrane damage and damage measured by mercuric ions and mercuric ions plus streptomycin. Osmotically shocked cells were also sensitive to mercuric ions, mercuric ions plus streptomycin, and sodium lauryl sulfate, but not to sodium chloride or streptomycin alone. This sensitivity was again transient and capable of repair in the same simple salts medium. Active transport of a non-metabolizable amino acid, alpha-amino isobutyric acid, was sensitive to mercuric ions and became more so after freezing and thawing. A freeze-thaw-resistant mercuric ion-dependent reduced nicotinamide adenine dinucleotide phosphate oxidoreductase was localized in the cytoplasm of this organism. This enzyme and an intact outer membrane appear to be required for mercuric ion resistance in this strain.  相似文献   

10.
After freezing and thawing, Pseudomonas aeruginosa harboring a drug resistance plasmid (Hg2+r, Strr), became acutely sensitive to mercuric ions but not to streptomycin in the plating medium, whereas its sensitivity to both agents became more pronounced indicating a synergistic effect. This freeze-thaw-induced sensitivity was transient and capable of being repaired to a simple salts medium. Transient outer and cytoplasmic membrane damage was also observed in frozen and thawed preparations. From kinetics studies, repair of cytoplasmic membrane damage superseded repair of outer membrane damage and damage measured by mercuric ions and mercuric ions plus streptomycin. Osmotically shocked cells were also sensitive to mercuric ions, mercuric ions plus streptomycin, and sodium lauryl sulfate, but not to sodium chloride or streptomycin alone. This sensitivity was again transient and capable of repair in the same simple salts medium. Active transport of a non-metabolizable amino acid, alpha-amino isobutyric acid, was sensitive to mercuric ions and became more so after freezing and thawing. A freeze-thaw-resistant mercuric ion-dependent reduced nicotinamide adenine dinucleotide phosphate oxidoreductase was localized in the cytoplasm of this organism. This enzyme and an intact outer membrane appear to be required for mercuric ion resistance in this strain.  相似文献   

11.
We reported previously that the core oligosaccharide region of the lipopolysaccharide (LPS) is essential for optimal adhesion of Actinobacillus pleuropneumoniae, an important swine pathogen, to respiratory tract cells. Rough LPS and core LPS mutants of A. pleuropneumoniae serotype 1 were generated by using a mini-Tn10 transposon mutagenesis system. Here we performed a structural analysis of the oligosaccharide region of three core LPS mutants that still produce the same O-antigen by using methylation analyses and mass spectrometry. We also performed a kinetic study of proinflammatory cytokines production such as interleukin (IL)-6, tumor necrosis factor-alpha, IL1-beta, MCP-1, and IL8 by LPS-stimulated porcine alveolar macrophages, which showed that purified LPS of the parent strain, the rough LPS and core LPS mutants, had the same ability to stimulate the production of cytokines. Most interestingly, an in vitro susceptibility test of these LPS mutants to antimicrobial peptides showed that the three core LPS mutants were more susceptible to cationic peptides than both the rough LPS mutant and the wild type parent strain. Furthermore, experimental pig infections with these mutants revealed that the galactose (Gal I) and d,d-heptose (Hep IV) residues present in the outer core of A. pleuropneumoniae serotype 1 LPS are important for adhesion and overall virulence in the natural host, whereas deletion of the terminal GalNAc-Gal II disaccharide had no effect. Our data suggest that an intact core-lipid A region is required for optimal protection of A. pleuropneumoniae against cationic peptides and that deletion of specific residues in the outer LPS core results in the attenuation of the virulence of A. pleuropneumoniae serotype 1.  相似文献   

12.
Whole cells of Escherichia coli strains 0111, K12 and B as well as the ampicillin-resistant mutant K12 D21 and several lipopolysaccharide (LPS) mutants derived from this strain were analyzed for their molar LPS content per mg dry weight. An increase of the LPS concentration in some LPS mutants was substantiated by analyzing isolated cell walls and relating the molar LPS content to the murein subunit as measure of cell surface area. The increase of LPS was paralleled by increasing amounts of phospholipid while the overall protein content in the outer membrane decreased.According to the pattern of major outer membrane proteins in the various strains and the respective LPS structures, protein-LPS interactions are discussed as important requirements for outer membrane assembly and stability.Abbreviations LPS lipopolysaccharide - SDS sodium dodecyl-sulfate Dedicated to Dr. Otto Lüderitz on the occasion of his 60th birthday  相似文献   

13.
Lipopolysaccharide (LPS)-defective mutants of Pseudomonas solanacearum were used to test the hypothesis that differences in LPS structure are associated with the ability or inability of different strains to induce a hypersensitive response (HR) in tobacco. To obtain these mutants, LPS-specific bacteriophage of P. solanacearum were isolated and used to select phage-resistant mutants of the virulent, non-HR-inducing strain K60. The LPS of 24 of these mutants was purified and compared with that of K60 and its HR-inducing variant, B1. Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, LPS from K60 and other smooth strains separated into many evenly spaced bands that migrated slowly, whereas LPS from B1 and most phage-resistant strains separated into one to three bands that migrated rapidly. Carbohydrate analysis showed that the LPS of the phage-resistant strains lacked O-antigen sugars (rhamnose, xylose, and N-acetylglucosamine) and could be grouped into (i) those that had all core sugars (rhamnose, glucose, heptose, and 2-keto-3-deoxyoctonate), (ii) those that had no core rhamnose, and (iii) those that lacked all core sugars except for 2-keto-3-deoxyoctonate. The LPS composition of 10 of the rough, phage-resistant mutants was similar to that of the HR-inducing strain, B1, yet none of them induced the HR. Only 2 of 13 mutant strains tested caused wilting of tobacco, and these had rough LPS but produced large amounts of extracellular polysaccharide, unlike most LPS-defective mutants. The evidence did not support the hypothesis that the initial interaction between rough LPS and tobacco cell walls is the determining factor in HR initiation.  相似文献   

14.
The role of the outer membrane and lipopolysaccharide (LPS) in the interaction between the small cationic antimicrobial peptide magainin 2 and the Gram-negative cell envelope was studied by FT-IR spectroscopy. Magainin 2 alters the thermotropic properties of the outer membrane-peptidoglycan complexes from wild-type Salmonella typhimurium and a series of LPS mutants which display differential susceptibility to the bactericidal activity of cationic antibiotics. These results are correlated with the LPS phosphorylation pattern and charge (characterized by high-resolution 31P NMR) and outer membrane lipid composition, and are compared to the bactericidal susceptibility. LPS mutants show a progressive loss of resistance to killing by magainin 2 as the length of the LPS polysaccharide moiety decreases. Disordering of the outer membrane lipid fatty acyl chains by magainin 2, however, depends primarily upon the magnitude of LPS charge rather than the length of the LPS polysaccharide, contradicting the proposal by Weiss et al. [Weiss, J., Beckerdite-Quagiata, S., & Elsbach, P. (1980) J. Clin. Invest. 65, 619-628] that the sugar side chain of LPS shields the negative charges of the outer membrane surface. While disruption of outer membrane structure most likely is not the primary factor leading to cell death, the susceptibility of Gram-negative cells to magainin 2 is associated with factors that facilitate the transport of the peptide across the outer membrane, such as the magnitude and location of LPS charge, the concentration of LPS in the outer membrane, outer membrane molecular architecture, and the presence or absence of the O-antigen side chain.  相似文献   

15.
Lipopolysaccharide (LPS) is a major component of Gram-negative bacterial outer membranes. It is a tripartite molecule consisting of lipid A, which is embedded in the outer membrane, a core oligosaccharide and repeating O-antigen units that extend outward from the surface of the cell1, 2. LPS is an immunodominant molecule that is important for the virulence and pathogenesis of many bacterial species, including Pseudomonas aeruginosa, Salmonella species, and Escherichia coli3-5, and differences in LPS O-antigen composition form the basis for serotyping of strains. LPS is involved in attachment to host cells at the initiation of infection and provides protection from complement-mediated killing; strains that lack LPS can be attenuated for virulence6-8. For these reasons, it is important to visualize LPS, particularly from clinical isolates. Visualizing LPS banding patterns and recognition by specific antibodies can be useful tools to identify strain lineages and to characterize various mutants. In this report, we describe a hot aqueous-phenol method for the isolation and purification of LPS from Gram-negative bacterial cells. This protocol allows for the extraction of LPS away from nucleic acids and proteins that can interfere with visualization of LPS that occurs with shorter, less intensive extraction methods9. LPS prepared this way can be separated by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) and directly stained using carbohydrate/glycoprotein stains or standard silver staining methods. Many anti-sera to LPS contain antibodies that cross-react with outer membrane proteins or other antigenic targets that can hinder reactivity observed following Western immunoblot of SDS-PAGE-separated crude cell lysates. Protease treatment of crude cell lysates alone is not always an effective way of removing this background using this or other visualization methods. Further, extensive protease treatment in an attempt to remove this background can lead to poor quality LPS that is not well resolved by any of the aforementioned methods. For these reasons, we believe that the following protocol, adapted from Westpahl and Jann10, is ideal for LPS extraction.  相似文献   

16.
Growth of the hopanoid-producing bacterium Zymomonas mobilis was inhibited at low concentrations of the cationic detergent octadecyltrimethylammoniumchloride (OTAC). A relationship between sensitivity of Zymomonas mobilis to OTAC, presence of hopanoids and ethanol tolerance was postulated. Mutants resistant to OTAC were isolated from strains ZM1 and ZM4. They did not present any alteration of the hopanoid content and their squalene cyclases showed the same sensitity to OTAC as the parent enzymes. Resistance to OTAC paralleled pleiotropic effects including, enhanced accessibility of the membrane-bound alkaline phosphatase, important release of proteins from cells by Tris/HCl treatment, increased resistance to antibiotics and increased sensitivity to ethanol. In addition, OTACR mutants were also characterized by the synthesis or the overproduction of an outer membrane protein (F53) not detected on 2D-PAGE maps of parent strains and by a normal heat shock response. The role of hopanoids, heat shock proteins, protein F53 and membrane organization in ethanol tolerance is discussed.Abbreviations OTAC octadecyltrimethylammoniumchloride - SLS sodium lauryl sarcosinate  相似文献   

17.
Twenty-five Haemophilus parainfluenzae strains were characterized for lipopolysaccharide (LPS) profiles, outer membrane protein profiles, serum sensitivity, plasmid profiles and DNA homology. Seventeen strains produced low-Mr LPS that did not contain O-sidechains, while the remaining eight strains contained ladder-like LPS suggestive of O-repeated units. This is the first time in the genus Haemophilus that LPS with O-repeated groups has been described. The strains producing the different types of LPS could not be distinguished from each other in outer membrane protein profiles or the other characteristics examined.  相似文献   

18.
The involvement of lipopolysaccharide and outer membrane proteins in the binding ofEscherichia coli to cellulose was investigated. Cellulose binding was assayed in defined strains with or without O-antigenic polysaccharide and in mutants with defects in lipopolysaccharide core synthesis. Binding was also tested in strains lacking major outer membrane proteins. Optimal cellulose binding was exhibited by rough strains and was reduced to various extents in the presence of different O-antigens. Core defects also reduced but did not abolish binding to cellulose. Reduced binding was also found in mutants lacking OmpC protein, but OmpC/OmpA double mutants orompB mutants lacking OmpC and OmpF were not affected. Mutants with reduced cellulose binding were also isolated directly through selection of nonbinding populations after chromatography on cellulose columns. Each of the independent isolates derived fromE. coli K12 with reduced cellulose binding had multiple mutations, with additional phenotypic changes such as phage resistance, increased sensitivity to bile salts, or altered patterns of outer membrane proteins. These results suggest that no single receptor that could be altered by mutation was responsible for the binding ofE. coli to cellulose. Rather, the nonspecific binding of cellulose was more likely to be due to interaction with, or the combined activity of, several integral outer membrane components that could be masked by O-antigen.  相似文献   

19.
Ralstonia solanacearum K60 was mutagenized with the transposon Tn5, and two mutants, M2 and M88, were isolated. Both mutants were selected based on their increased sensitivity to thionins, and they had the Tn5 insertion in the same gene, 34 bp apart. Sequence analysis of the interrupted gene showed clear homology with the rfaF gene from Escherichia coli and Salmonella typhimurium (66% similarity), which encodes a heptosyltransferase involved in the synthesis of the lipopolysaccharide (LPS) core. Mutants M2 and M88 had an altered LPS electrophoretic pattern, consistent with synthesis of incomplete LPS cores. For these reasons, the R. solanacearum gene was designated rfaF. The mutants were also sensitive to purified lipid transfer proteins (LTPs) and to an LTP-enriched, cell wall extract from tobacco leaves. Mutants M2 and M88 died rapidly in planta and failed to produce necrosis when infiltrated in tobacco leaves or to cause wilting when injected in tobacco stems. Complemented strains M2* and M88* were respectively obtained from mutants M2 and M88 by transformation with a DNA fragment harboring gene rfaF. They had a different degree of wild-type reconstituted phenotype. Both strains retained the rough phenotype of the mutants, and their LPS electrophoretic patterns were intermediate between those of the wild type and those of the mutants.  相似文献   

20.
Kim CH 《Molecules and cells》2003,15(2):226-232
Invasion of host cells is essential for the pathogenicity of Salmonella. The author's group has recently reported the cloning of the rfaE gene of Salmonella typhimurium, previously implicated in biosynthesis of the lipopolysaccharide (LPS)-inner core [Jin et al. (2001); Kim (2002)]. The product of the rfaE gene is involved in ADP-L-glycero-D-manno-heptose biosynthesis. rfaE mutants synthesize heptose-deficient LPS (Re-LPS) consisting only of lipid A and 3-deoxy-D-manno-octulosonic acid (KDO). Mutants that make incomplete LPS are rough mutants and "deep-rough" mutants affected in the heptose region of the inner core have reduced growth rate and increased sensitivity to high temperature. Complementation of S. typhimurium rfaE mutant strain SL1102 (rfaE543) with rfaE demonstrated conclusively that this gene restored the smooth phenotype, and the LPS produced by the complemented strain was indistinguishable from that of wild type smooth strains. In vitro infection experiments showed that complementation with rfaE permitted invasion of human Chang epithelial cells, larynx epidermal carcinoma HEp-2 cells and intestinal epithelial Henle-407 cells. These data imply that the structure of the LPS that is synthesized is critical for Salmonella invasiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号