首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Highly purified mitochondrial ribosomes (mitoribosomes) have been obtained from the yeast Candida utilis. Sedimentation analysis in sucrose gradients made in 5 mM MgCl2, 1 mM Tris, pH 7.4 and 50 mM KCl clearly distinguishes mitoribosomes (72S) from cytoplasmic ribosomes (cytoribosomes) (78S). Mitoribosomes are completely dissociated into 50S and 36S subunits at 10-4 M MgCl2 whereas complete dissociation of cytoribosomes into 61S and 37S subunits occurs only at 10-6 M MgCl2 Electron microscopy of negatively stained mitoribosomes (72S peak) shows bipartite profiles, about 265 x 210 x 200 A Characteristic views are interpreted as frontal, dorsal, and lateral projections of the particles, the latter is observed in two enantiomorphic forms Mitoribosome 50S subunits display rounded profiles bearing a conspicuous knoblike projection, reminiscent of the large bacterial subunit. The 36S subunits show a variety of angular profiles. Mitoribosomal subunits are subject to artifactual dimerization at high Mg2+ concentration Under these conditions, a supplementary 80S peak arises. Electron microscopic observation of the 80S peak reveals closely paired particles of the 50S type Buoyant density determinations after glutaraldehyde fixation show a single peak at ρ = 1.48 for mitoribosomes and 1.53 for cytoribosomes In the presence of ethylenediaminetetraacetate (EDTA), two species of RNA, 21S and 16S, are obtained from mitoribosomes, while 25S and 17S RNA are obtained from cytoribosomes It is established that the small and large RNA species are derived from the 36S and 50S subunits, respectively, by extraction of the RNA from each subunit The G + C content of the RNA is lower for mitoribosomes (33%) than for cytoribosomes (50%). Incubation of C utilis mitochondria with leucine-14C results in the labeling of 72S mitoribosomes. The leucine-14C incorporation is inhibited by chloramphenicol and resistant to cycloheximide Puromycin strips the incorporated radioactivity from the 72S mitoribosomes, which is consistent with the view that leucine-14C is incorporated into nascent polypeptide chains at the level of mitoribosomes  相似文献   

2.
Complexome profiling is a novel technique which uses shotgun proteomics to establish protein migration profiles from fractionated blue native electrophoresis gels. Here we present a dataset of blue native electrophoresis migration profiles for 953 proteins by complexome profiling. By analysis of mitochondrial ribosomal complexes we demonstrate its potential to verify putative protein-protein interactions identified by affinity purification – mass spectrometry studies. Protein complexes were extracted in their native state from a HEK293 mitochondrial fraction and separated by blue native gel electrophoresis. Gel lanes were cut into gel slices of even size and analyzed by shotgun proteomics. Subsequently, the acquired protein migration profiles were analyzed for co-migration via hierarchical cluster analysis. This dataset holds great promise as a comprehensive resource for de novo identification of protein-protein interactions or to underpin and prioritize candidate protein interactions from other studies. To demonstrate the potential use of our dataset we focussed on the mitochondrial translation machinery. Our results show that mitoribosomal complexes can be analyzed by blue native gel electrophoresis, as at least four distinct complexes. Analysis of these complexes confirmed that 24 proteins that had previously been reported to co-purify with mitoribosomes indeed co-migrated with subunits of the mitochondrial ribosome. Co-migration of several proteins involved in biogenesis of inner mitochondrial membrane complexes together with mitoribosomal complexes suggested the possibility of co-translational assembly in human cells. Our data also highlighted a putative ribonucleotide complex that potentially contains MRPL10, MRPL12 and MRPL53 together with LRPPRC and SLIRP.  相似文献   

3.
Mitoribosomes consist of ribosomal RNA and protein components, coordinated assembly of which is critical for function. We used mitoribosomes from Trypanosoma brucei with reduced RNA and increased protein mass to provide insights into the biogenesis of the mitoribosomal large subunit. Structural characterization of a stable assembly intermediate revealed 22 assembly factors, some of which have orthologues/counterparts/homologues in mammalian genomes. These assembly factors form a protein network that spans a distance of 180 Å, shielding the ribosomal RNA surface. The central protuberance and L7/L12 stalk are not assembled entirely and require removal of assembly factors and remodeling of the mitoribosomal proteins to become functional. The conserved proteins GTPBP7 and mt‐EngA are bound together at the subunit interface in proximity to the peptidyl transferase center. A mitochondrial acyl‐carrier protein plays a role in docking the L1 stalk, which needs to be repositioned during maturation. Additional enzymatically deactivated factors scaffold the assembly while the exit tunnel is blocked. Together, this extensive network of accessory factors stabilizes the immature sites and connects the functionally important regions of the mitoribosomal large subunit.  相似文献   

4.
The subunit structure of erythrocruorin from the cladoceran Daphnia magna was studied. The native protein was found to have a sedimentation coefficient (S2(20), w) of 17.9 +/- 0.2 S and a molecular weight, as determined by sedimentation equilibrium, of 494 000 +/- 33 000. Iron and haem determinations gave 0.312 +/- 0.011% and 3.84 +/- 0.04%, corresponding to minimal molecular weights of 17900 +/- 600 and 16 100 +/- 200 respectively. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis gave one band with mobility corresponding to a molecular weight of 31 000 +/- 1 500. The molecular weight of the polypeptide chain determined by sedimentation equilibrium in 6 M-guanidinium chloride and 0.1 M-2-mercaptoethanol is 31 100 +/- 1300. On a molecular-weight basis, Daphnia erythrocruorin is composed of 16 identical polypeptide chains carrying two haem groups each. The native structure is stable between pH5 and 8.5. At alkaline and acidic pH, a gradual decrease in the sedimentation coefficient down to 9.8S occurs. Above pH 10 and below pH4, a slow component with S20, w between 2.7S and 4.0S is observed. The 2.7S, 4.0S and 9.8S species are identified as single-chain subunits, subunit dimers and half-molecules respectively. We propose a model for the molecule composed of 16 2.7S subunits grouped in two layers stacked in an eclipsed orientation, the eight subunits of each layer occupying the vertices of a regular eight-sided polygon. Support for this arrangement is provided from electron microscopy and from analysis of the pH-dissociation pattern.  相似文献   

5.
Nitrate reductase was purified about 3,000-fold from spinach leaves by chromatography on butyl Toyopearl 650-M, hydroxyapatite-brushite, and blue Sepharose CL-6B columns. The purified enzyme yielded a single protein band upon polyacrylamide gel electrophoresis under nondenaturing conditions. This band also gave a positive stain for reduced methylviologen-nitrate reductase activity. The specific NADH-nitrate reductase activities of the purified preparations varied from 80 to 130 units per milligram protein. Sucrose density gradient centrifugation and gel filtration experiments gave a sedimentation coefficient of 10.5 S and a Stokes radius of 6.3 nanometers, respectively. From these values, a molecular weight of 270,000 ± 40,000 was estimated for the native reductase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the denatured enzyme yielded a subunit band having a molecular weight of 114,000 together with a very faint band possessing a somewhat smaller molecular weight. It is concluded that spinach nitrate reductase is composed of two identical subunits possessing a molecular weight of 110,000 to 120,000.  相似文献   

6.
1. Tropomyosins from chicken cardiac, skeletal, and gizzard muscles were each resolved into two subunits by polyacrylamide gel electrophoresis in a system containing sodium dodecylsulfate (SDS), urea and sodium borate, and were designated C1 C2, S1 S2, and G1 G2, respectively, in descending order of mobility on electrophoresis. S1, S2, G1, and G2 were prepared as pure samples by electrophoresis. 2. The apparent molecular weights of C (C1 + C2), S1, S2, G1, and G2 were calculated to be 36,000, 36,000, 37,500, 36,000, and 40,000, respectively, based on SDS gel electrophoretic mobility according to the method of Weber and Osborn. C and S1 showed nearly the same mobility in all electrophoretic systems tried. S1 and G1, which comigrated in an SDS-sodium borate system, showed different mobilities upon addition of 5 M urea to the system. 3. Immunological evidence presented indicates that each subunit has a specific antigenic site(s) in addition to an identical one(s) in common with the others. 4. As each tropomyosin subunit formed two precipitin lines with the homologous antiserum, as many as ten kinds of subunits may exist in chicken muscles.  相似文献   

7.
Dissociated subunits of purified γ-conglycinin were isolated on a DEAE-Sephadex A-50 column. A single band was seen on two kinds of gel electrophoresis and isoleucine was shown as the only N-terminal amino acid. The isolated subunit reacted with antisera to the native γ-conglycinin. The Mr of the subunit was 51 000–51 500 estimated by urea-acetic acid and SDS-urea gel electrophoresis. A value of 50 000 was obtained by gel filtration with guanidine-hydrochloric acid on Sepharose CL-6B. The γ-conglycinin molecule was found to be made up of three subunits. This was determined by cross-linking the subunits and then submitting them to gel electrophoresis. Differences and similarities of subunit structure among γ-conglycinin, β-conglycinin and glycinin are discussed.  相似文献   

8.
The translation system of mammalian mitochondria   总被引:2,自引:0,他引:2  
Oligoribonucleotides and mRNA were used to define properties of the bovine mitoribosomal mRNA binding site. The RNA binding domain on the 28 S subunit spans approx. 80 nucleotides of the template, based on ribosome protection experiments, but the major interaction with the ribosome occurs over a 30 nucleotide stretch. The binding site for E. coli IF3 is conserved in bovine mitoribosomes, but mitochondrial factors appear essential for proper interaction of mRNA with mitoribosomes. The small subunit of bovine mitoribosomes contains a high-affinity binding site for guanyl nucleotides, further indication of specialized mechanisms for initiation complex formation and function of mammalian mitochondrial ribosomes.  相似文献   

9.
10.
Rat liver 60-S ribosomal subunits were submitted to increasing doses of radiation (253.7 nm), at 4 degrees C and 25 degrees C, as previously reported fro 40-S subunits. The existence of protein-RNA cross-linking was demonstrated by two methods. The first consisted in the separation of protein-RNA complex; the second was indirect, and took into account alteration either in the electrophoretic mobility of cross-linked proteins or the separability of 28-S RNA in a 4 M urea/3 M LiCl buffer. The peptide synthetase activity and the sedimentation characteristics of the particles irradiated at 4 degrees C were well preserved, but at 25 degrees C the large subunits were progressively inactivated and unfolded for doses higher than 2 x 10(18) quanta. The dose-dependent variations of protein cross-linkage determined by two-dimensional gel electrophoresis allowed us to distinguish those proteins which reacted at the lowest doses with a first-order reaction from those which cross-linked to RNA after a subtle modification of the subunit structure. At 25 degrees C, all proteins became low-dose reactive. The curve obtained for 28-S RNA cross-linkage was similar to that of the total protein moiety, while those obtained fro the 5-S and 5.8-S RNA (which were parallel) suggest a lower reactivity of these RNAs. As a general rule, proteins from the large subunits were more reactive to RNA than those from the small subunits. This could indicate differences in the organisation of the two subunits.  相似文献   

11.
《Phytochemistry》1987,26(4):1009-1013
A potent lymphoagglutinin which had low affinity for red cells or fetuin and another lectin which reacted strongly with red cells and fetuin but was a poor agglutinin for lymphocytes were isolated from seeds of Phaseolus acutifolius. A number of other lectin components with intermediate activity towards these cells was also isolated. All the lectins had very similar amino acid and carbohydrate composition, sedimentation patterns, partial specific volume and molecular weight values of about 116 600 and were thus smaller than the related Phaseolus vulgaris lectins (Mr = 119 000). The lectins contained four subunits with only minor size and charge differences between the lympho- and erythroagglutinating subunits and their electrophoretic mobility in SDS gel electrophoresis was anomalously high. The existence of lympho- and erythroagglutinating subunits in two members of the genus Phaseolus supports their close morphological similarity.  相似文献   

12.
The subunit structure of canavalin was studied. The native protein has a sedimentation coefficient of 6.4 S and a MW of 91 000. SDS gel electrophoresis of the fully dissociated protein gave a single band, corresponding to a polypeptide chain with a MW of 22700. A minimal MW of 20700 was estimated from the amino acid composition. On a MW basis the native molecule consists of 4 chains. Support for the tetrameric structure of canavalin is provided by the electrophoretic pattern of partially dissociated protein.  相似文献   

13.
Summary The ribosomal subunit proteins (30S and 50S) from vegetative and sporulating cells of Bacillus subtilis 168M were analyzed by two dimensional acrylamide gel electrophoresis. Twenty two proteins were identified in the 30S subunits and 28 proteins are detectable in the 50S subunits. The number of proteins and their electrophoretic mobility seem to remain unaltered during the sporulation process.The ribosomal proteins of a thermosensitive sporulation mutant (ts-4), isolated from stationary phase cultures, under permissive (for sporulation) and non-permissive conditions, did not show any qualitative difference in either of the subunits.The 21S precursor particles derived from log phase cell ribosomes show two different proteins, in addition to those present in the 30 S subunit. It is suggested that these two proteins either disappear or are modified during the maturation process.  相似文献   

14.
Protein composition of mitochondrial ribosomes of the yeast Saccharomyces cerevisiae was analysed by two-dimensional electrophoresis. The small (37S) mitoribosomal subunit contains 36 different polypeptides with molecular weights ranging from 10,000 to 60,000. The large (50S) subunit is composed of 41 proteins with molecular weights from 10,000 to 43,000. The molecular weights of mitoribosomal small and large subunits are 1.85 MDa and 2.35 MDa, respectively. Proteins represent 60-62% and 42-45% of the total mass of 37S and 50S subunits respectively. On the basis of the protein content and molecular weights of individual proteins we conclude that all mitoribosomal proteins are present in the mitoribosome in equimolar proportions.  相似文献   

15.
Poly(A)+RNA from phenol-extracted rat liver polysomes was translated in a heterologous cell-free system derived from wheat germ. The RNA stimulated the incorporation of [35S]methionine into proteins 20- to 30-fold. The labeled translation products were incubated with an antiserum against cytochrome c oxidase. After binding of the antigen x immunoglobulin complex to and elution from protein A-Sepharose and sodium dodecyl sulfate (SDS)-polyacrylamide step gel electrophoresis, autoradiography was carried out. Mainly one major protein with an apparent molecular weight of 19,500 was visualized. When the unlabeled individual cytochrome c oxidase subunits IV, V, VI, or VII, isolated from preparative SDS-polyacrylamide gels, were added to the translation mixture, it was found that only subunit IV could compete with the in vitro-synthesized protein of 19.5 kilodaltons in respect to the binding to the cytochrome c oxidase antiserum. The in vitro-synthesized product was 3,000 daltons larger than the cytochrome c oxidase subunit polypeptide IV. It is concluded that the subunit IV is synthesized as a precursor. Evidence for the precursor form was obtained from translation experiments with [35S]methionine bound to a specific initiator tRNA which led to a radioactively labeled product of identical electrophoretic mobility as the 19.5 kilodalton protein. Furthermore, two dimensional tryptic fingerprints of subunit IV and its precursor show a high degree of similarity.  相似文献   

16.
Native 40S ribosomal subunits and 18S ribosomal RNA from ovarian follicles of the silkmoth A. pernyi showed a lower sedimentation coefficient in comparison to ascites cells, in contrast to the KCl treated 40S ribosomal subunits where no difference was observed in both tissues. Moreover the silkmoth native 40S ribosomal subunits--in contrast to the KCl treated ones--could not reassociate with radioactive ascites cell 60S ribosomal subunits. These results, combined with the great similarities in the two dimensional electrophoretic patterns of 40S ribosomal proteins from silkmoth follicles and other mammalian cells lead to the possibility of the existence of a specific RNase associated with the 40S ribosomal subunit.  相似文献   

17.
Mitochondrial ribosomal RNA species from mouse L cells, rat liver, rat hepatoma, hamster BHK-21 cells and human KB cells were examined by electrophoresis on polyacrylamide-agarose gels and sedimentation in sucrose density gradients. The S(E) (electrophoretic mobility) and S values of mitochondrial rRNA of all species were highly dependent on temperature and ionic strength of the medium; the S(E) values increased and the S values decreased with an increase in temperature at a low ionic strength. At an ionic strength of 0.3 at 23-25 degrees C or an ionic strength of 0.01 at 3-4 degrees C the S and S(E) values were almost the same being about 16.2-18.0 and 12.3-13.6 for human and mouse mitochondrial rRNA. The molecular weights under these conditions were calculated to be 3.8x10(5)-4.3x10(5) and 5.9x10(5)-6.8x10(5), depending on the technique used. At 25 degrees C in buffers of low ionic strength mouse mitochondrial rRNA species had a lower electrophoretic mobility than those of human and hamster. Under these conditions the smaller mitochondrial rRNA species of hamster had a lower electrophoretic mobility than that of human but the larger component had an identical mobility. Mouse and rat mitochondrial rRNA species had identical electrophoretic mobilities. Complex differences between human and mouse mitochondrial rRNA species were observed on sedimentation in sucrose density gradients under various conditions of temperature and ionic strength. Mouse L-cell mitochondrial rRNA was eluted after cytoplasmic rRNA on a column of methylated albumin-kieselguhr.  相似文献   

18.
Phaseolin, the major seed storage protein of Phaseolus vulgaris from forty-four wild and cultivated accessions, was studied using sodium dodecyl sulphate-capillary gel electrophoresis (SDS-CGE). In total, eleven phaseolin profiles, revealing polypeptide subunit variation in the range from 45.6 kDa to 54.4 kDa, were recorded. The number of polypeptide subunits recorded in particular profiles varied from 3 to 6; in total, eight phaseolin subunits were distinguished in the examined material. Ferguson plot analysis was used to correct non-ideal behaviour of phaseolin polypeptide subunits in capillary gel electrophoresis in the presence of SDS. The obtained results are compared to electrophoretic data received by slab polyacrylamide gel electrophoresis. The SDS-CGE method appears to provide a powerful tool for disclosure of phaseolin subunit variability.  相似文献   

19.
7S nerve growth factor (7S NGF) and nerve growth factor I (NGFI) are NGF-containing protein complexes isolated from mouse submandibular glands by different protocols, and reports suggest that the molecules differ chemically. In this study, we compared the molecular properties and subunit compositions of the two proteins. Purified 7S NGF and NGFI electrophoresed to identical positions on polyacrylamide gels in nondissociating buffers, with electrophoretic mobilities indistinguishable from that of unpurified NGF in salivary gland extracts. Ultraviolet absorption curves were identical, and sedimentation coefficients were similar (7.3 +/- 0.25 S for 7S NGF; 7.2 +/- 0.2 S for NGFI) as determined by sedimentation velocity analysis. By sedimentation equilibrium analysis, molecular weights of 135 000-140 000 were obtained for both complexes at protein concentrations in the centrifuge cell greater than 85 micrograms/mL; when protein concentrations within the centrifuge cell ranged from approximately 30 to 100 micrograms/mL at equilibrium, both complexes dissociated. Molecular weight values determined by gel filtration on Bio-Gel P300 and Sephadex G200 resins were similar for both proteins, and the values determined on Sephadex agreed with those obtained by ultracentrifugation. The subunit compositions of the complexes were also similar as determined by nonequilibrium isoelectric focusing, NGFI being composed of proteins that migrated to positions identical with those of the alpha, beta, and gamma subunits of 7S NGF. Furthermore, the stoichiometry of the subunits was similar in the two complexes as determined by radioimmunoassays to each of the subunits and by densitometric analysis of electrophoretic gels. Both methods showed that the complexes contain approximately 2 mol of the alpha and gamma subunits per mole of beta-NGF.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
1. The cytochrome-alpha alpha 3-deficient mi-3 cytoplasmic mutant of Neurospora crassa synthesizes a mitochondrial translation product which crossreacts with antibodies specific to subunit 1 of cytochrome oxidase. The immunoprecipitated polypeptide migrates more slowly during gel electrophoresis than the authentic 41 000-Mr subunit 1 of the wild-type enzyme. An apparent molecular weight of about 45 000 was estimated for the mutant product. 2. Radioactive labelling experiments in vivo show that the crossreacting material found in the mutant is relatively stable and does not form complexes with other subunits of the oxidase. 3. After induction of a functional cytochrome oxidase in the mutant cells with antimycin A, the 45 000-Mr polypeptide is converted to a 41 000-Mr component, which exhibits the same electrophoretic mobility as subunit 1 of the oxidase. Pulse-chase labelling kinetics reveal a typical precursor product relationship. 4. The converted polypeptide becomes assembled with other enzyme subunits to form a protein complex which has the immunological characteristics of cytochrome oxidase. A possible physiological role of the post-translational processing of the mitochondrially synthesized component is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号