首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Maize mitochondrial (mt) tRNA genes were localized on the mt master circles of two fertile lines (WF9-N and B37-N) and of one cytoplasmic male sterile line (B37-cmsT) of maize. The three genomes contain 16 tRNA genes with 14 different anticodons which correspond to 13 amino acids. Out of these 16 tRNA genes, 6 show a high degree of homology with the corresponding chloroplast (cp) tRNA genes and were shown to originate from cp DNA insertions and to be expressed in the mitochondria. The organization of the mt tRNA genes in both fertile lines is similar. The same genes are found, in the same environment, as judged from the restriction maps, in fertile and male sterile lines that have the same nuclear background, but the relative organization of the mt tRNA genes on the master circle is completely different.  相似文献   

2.
During the biosynthesis of anthocyanins in Petunia hybrida, the 3-hydroxyl group is glucosylated. Their supposed biosynthetic precursors, the dihydroflavonols, are glucosylated at the 7 or 4 positions. The question arose of whether these glucosides or the aglucones act as a substrate in anthocyanin synthesis. Using isolated flower buds of white flowering mutants that were blocked in an earlier step of biosynthesis, it was found that anthocyanin-3-glucosides and dihydroquercetin-7-glucoside were synthesized if dihydroquercetin, dihydroquercetin-7-glucoside, or dihydroquercetin-4-glucoside were used as precursors in these experiments. Intracellular dihydroquercetin-glucosides were not used as a substrate for anthocyanin synthesis. The results are explained by deglucosylation of dihydroquercetin-glucosides during uptake by isolated flower limbs. Dihydroquercetin-7-glucoside, formed intracellularly, is not available as a precursor for anthocyanins. We conclude that the aglucone form of dihydroquercetin acts as a substrate in anthocyanin biosynthesis.Abbreviations dHO dihydroquercetin - dHQ-7=g dihydroquercetin-7-glucoside - dHQ-4-g dihydroquercetin-4-glucoside  相似文献   

3.
In flower buds of the white flowering mutant W19 of Petunia hybrida four biologically active dihydroflavonol intermediates-dihydroquercetin-7-glucoside, dihydroquercetin-4-glucoside, dihydroquercetin, and dihydrokaempferol-7-glucoside-are accumulated. When dihydroquercetin was supplied to in vitro cultured corollas of the white flowering mutant W18, a mixture of cyanidin and delphinidin glycosides was produced, cyanidin-3-glucoside being the major pigment. The quantity of dihydroquercetin accumulated in W19 is very small, but this compound appears to be a more direct precursor of anthocyanins than the glucosides of dihydrokaempferol and dihydroquercetin. The conditions for pigment synthesis in W18 were optimalized. The quantitative uptake of dihydroquercetin was also studied. It was demonstrated that ca. 1/3 of the quantity present in the culture solution entered the corolla. From the absorbed dihydroquercetin only 14% was converted into anthocyanins. Complementation experiments to determine the biosynthetic sequence of the anthocyanin genes An1, An2, and An3 indicated that the genes An1 and An2 are indistinguishable by this technique.Abbreviation DHQ (+) dihydroquercetin  相似文献   

4.
5.
Summary Flowering time, plant height and flower size in Petunia hybrida Hort. (multiflora type) have been genetically analysed by means of a 5 × 5 diallel cross. The results indicated that: (1) the three characters are controlled by additive-dominance polygenic systems. The contribution of the additive gene actions to the genetic variance of flowering time was relatively higher than that of dominance. The reverse situation was found for plant height and flower size. (2) Dominance is ambi-directional for the three characters. Ratios of average dominance were in the range of partial for flowering-time, complete for plant height and overdominance for flower size. (3) Number of genes (or gene groups) controlling the characters are about 3, 3 and 5 for flowering time, plant height and flower size: respectively, (4) Heritability estimates are 0.84, 0.88 and 0.89 in the broad-sense and 0.40, 0.49 and 0.37 in the narrow-sense, for flowering time, plant height and flower size; respectively. (5) Heterosis as percent increase of the mean F1-hybrid above the higher parent, or decrease below the lower parent, was observed for flowering time (+ 9.7% to +13.3%), for plant height (–13.6% to –20.3%) and for flower size (+2.5% to +16.0%).  相似文献   

6.
The line W138 of Petunia hybrida has variegated flowers because it is homozygous for the mutable an1-W138 allele. Excision of the element, causing instability, depends on the presence of the activatorAct1. The previously characterised non-autonomous element dTph1 excises from the dfrC gene in response to Act1. This implies that both non-autonomous elements belong to the same transposable element family. In a range of distantly related cultivars we could detect a single functional Act1 element. Linkage analysis for 11 of these lines showed that Act1 was located on chromosome I in all cases, indicating that the element might be fixed in the genome. A group of cultivars that did not exhibit Act1 activity could be traced back to a recent common origin (Rose of Heaven). Cultivars within this group presumably harbour the same inactivated Act1 element. Among the lines tested were 7 lines representing the two species (P. axillaris and P. integrifolia) from which P. hybrida originated. None of these exhibited Act1 activity. We assume that Act1 is present in an inactive state in these lines and that it was activated upon interspecific crossing. In general, lines representing the two parental species and P. hybrida cultivars contain between 5 and 25 dTph1 elements. The lines R27 and W138, however, contain significantly more dTph1 elements (> 50) than all other lines.  相似文献   

7.
M. Herrero  H. G. Dickinson 《Planta》1980,148(2):138-145
The structural events accompanying the maturation of the pistil of Petunia hybrida have been studied in detail, together with the changes in the protein spectrum of the transmitting tissue that occur over this period. These events have been considered in terms of the acquisition of the self-incompatibility response, which occurs while the pistil is enclosed in the bud. Apart from several minor differences, the young pistils differ only from the mature in that their transmitting tissue cells fail to respond to pollination by undergoing characteristic ultrastructural changes. Data from electrofocusing indicates that several proteins, mobilised in the mature transmitting tissue some three hours after pollination, are absent from bud pistils. It is proposed that the pollination-stimulated release of certain polypeptides, believed to be involved in the self-incompatibility response, does not take place in young pistils. These observations are considered with reference to currently-accepted models of the operation of the self-incompatibility mechanism in Petunia.  相似文献   

8.
In this paper we describe the organization and expression of the genes encoding the flavonoid-biosynthetic enzyme dihydroflavonol-4-reductase (DFR) in Petunia hybrida. A nearly full-size DFR cDNA clone (1.5kb), isolated from a corolla-specific cDNA library was compared at the nucleotide level with the pallida gene from Antirrhinum majus and at the amino acid level with enzymes encoded by the pallida gene and the A1 gene from Zea mays.The P. hybrida and A. majus DFR genes transcribed in flowers contain 5 introns, at identical positions; the three introns of the A1 gene from Z. mays coincide with first three introns of the other two species. P. hybrida line V30 harbours three DFR genes (A, B, C) which were mapped by RFLP analysis on three different chromosomes (IV, II and VI respectively).Steady-state levels of DFR mRNA in the line V30 follow the same pattern during development as chalcone synthase (CHS) and chalcone flavanone isomerase (CHI) mRNA. Six mutants that accumulate dihydroflavonols in mature flowers were subjected to Northern blot analysis for the presence of DFR mRNA. Five of these mutants lack detectable levels of DFR mRNA. Four of these five also show drastically reduced levels of activity for the enzyme UDPG: flavonoid-3-O-glucosyltransferase (UFGT), which carries out the next step in flavonoid biosynthesis; these mutants might be considered as containing lesions in regulatory genes, controlling the expression of the structural genes in this part of the flavonoid biosynthetic pathway. Only the an6 mutant shows no detectable DFR mRNA but a wild-type level for UFGT activity. Since both an6 and DFR-A are located on chromosome IV and DFR-A is transcribed in floral tissues, it is postulated that the An6 locus contains the DFR structural gene. The an9 mutant shows a wild-type level of DFR mRNA and a wild-type UFGT activity.  相似文献   

9.
Summary Quantitative variation in seven morphological characteristics (leaf length and width, leaf length/ width ratio, flower, petal and stomata length, and number of chloroplasts in guard cells) were studied in Petunia hybrida plants regenerated from anther tissue culture and belonging to four different classes of ploidy (2n, 2n–3n, 3n–2n, 4n–8n). Results showed that leaf size is not a good characteristic for discriminating between plants of different ploidy — flower and stomata characteristics being more adequate for this purpose. After applying stepwise discriminant analysis the association chloroplast number — leaf length/width ratio — petal length was verified to be more appropriate for the discrimination of ploidy classes.  相似文献   

10.
Isolation and incubation conditions were established for Petunia hybrida chloroplasts capable of performing in vitro protein and RNA synthesis. Under these conditions, chloroplasts from leaves as well as from the non-photoautotrophic mutant green cell culture AK-2401 are able to incorporate labeled amino acids into polypeptides. Intact chloroplasts can use light as an energy source; photosynthetically-inactive chloroplasts require the addition for ATP for this protein synthesis. Sodium dodecylsulphate polyacrylamide slab gel electrophoresis shows that in isolated leaf chloroplasts at least twenty-five radioactive polypeptide species are synthesized. The three major products synthesized have molecular weights of 52,000, 32,000 and 17,000. Coomassie brilliant-bluestained polypeptide patterns from plastids isolated from the mutant green cell culture AK-2401 differ considerably from those obtained from leaf chloroplasts. The pattern of radioactive polypeptides synthesized in these isolated cell culture plastids also shows differences. These results indicate that the difference in developmental stage observed between plastids from the cell culture AK-2401 and leaves is reflected in an altered expression of the chloroplast DNA.Abbreviations CAP D-threo-chloramphenicol - 2,4-D 2,4-dichlorophenoxyacetic acid - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - RuBPCase ribulose-1,5-bisphosphate carboxylase - SDS sodium dodecylsulphate  相似文献   

11.
The observation that both compatible and incompatible pollen tubes grow at identical speeds on the stigma in many plants with gametophytically controlled self-incompatibility (SI) systems has, in Petunia, been extended to cover all other facets of pollen behaviour on this tissue. On entry into the stylar transmitting tissue both types of tubes accelerate, but the compatible achieve a higher terminal velocity than do the incompatible, which eventually slow and stop. Grafting experiments show that the top 1 mm of the stylar tissue can play an important rôle in determining the future development of the pollen tube. Following mixed pollinations, proportionally too many compatible pollen tubes reach the ovary than would be expected from the results of pure compatible and incompatible pollinations indicating that incompatible pollen in some way helps prime the style for growth of compatible pollen tubes. This data is considered in terms of recent structural studies of these tissues, and related to the pollination conditions pertaining to Petunia populations in the field.Abbreviation SI self-incompatibility  相似文献   

12.
Petunia hybrida mutants, homozygous recessive for one of the genes An1, An2, An6, or An9 do not show anthocyanin synthesis in in vitro complementation experiments per se (see also Kho et al. 1977). Extracts of flowers of these mutants all provoke anthocyanin synthesis in isolated petals of an an3an3 mutant. Mutants homozygous recessive for one of the genes An1, An2, An6, or An9 and homozygous recessive for F1 accumulate dihydroflavonols in comparable amounts. The synthesis of dihydromyricetin is blocked in an1an1 mutants, which indicates a regulating effect of the gene An1 on the gene Hfl. Similar mutants, but dominant for F1, accumulate flavonols (kaempferol and quercetin) instead of dihydroflavonols. Myricetin is accumulated in minor amounts and not at all in an1an1 mutant. Furthermore, the synthesis of this flavonol is not controlled by the gene F1. The synthesis of cyanidin (derivatives) is greatly reduced when flavonols are synthesized (F1 dominant). In mutants dominant for Ht1 and Hf1 and thus able to synthesize cyanidin (derivatives) and delphinidin (derivatives), predominantly delphinidin (derivatives) are synthesized. The results indicate that kaempferol (derivatives), quercetin (derivatives), and delphinidin (derivatives) are the main endproducts of flavonoid biosynthesis in Petunia hybrida.  相似文献   

13.
Chalcone synthase (CHS) genes in Petunia hybrida comprise a multigene family containing at least 7 complete members in the strain Violet 30 (V30). Based on a high sequence homology in both coding and non-coding sequence, a number of CHS genes can be placed into two subfamilies. By restriction fragment length polymorphism (RFLP) analysis it was shown that both chromosomes II and V carry one of these subfamilies, in addition to the other CHS genes identified so far. Members of a subfamily were found to be closely linked genetically. Analysis of the Petunia species that contributed to the hybrid nature of P. hybrida (P. axillaris, P. parodii, P. inflata and P. violacea) shows that none of the CHS gene clusters is specific for either one of the parents and therefore did not arise as a consequence of the hybridization. The number of CHS genes within a subfamily varies considerably among these Petunia species. From this we infer that the CHS subfamilies arose from very recent gene duplications.  相似文献   

14.
Chalcone synthase (CHS) genes in Petunia hybrida comprise a multigene family containing at least 7 complete members in the strain Violet 30 (V30). Based on a high sequence homology in both coding and non-coding sequence, a number of CHS genes can be placed into two subfamilies. By restriction fragment length polymorphism (RFLP) analysis it was shown that both chromosomes II and V carry one of these subfamilies, in addition to the other CHS genes identified so far. Members of a subfamily were found to be closely linked genetically. Analysis of the Petunia species that contributed to the hybrid nature of P. hybrida (P. axillaris, P. parodii, P. inflata and P. violacea) shows that none of the CHS gene clusters is specific for either one of the parents and therefore did not arise as a consequence of the hybridization. The number of CHS genes within a subfamily varies considerably among these Petunia species. From this we infer that the CHS subfamilies arose from very recent gene duplications.  相似文献   

15.
G. Forkmann  B. Kuhn 《Planta》1979,144(2):189-192
The gene Po in pollen of Petunia hybrida Vilm. controls a discrete step in flavonoid biosynthesis. In recessive genotypes, naringenin-chalcone (4, 2,4,6-tetrahydroxychalcone) is accumulated, whereas, under the influence of the wild-type allele flavonols and anthocyanins are formed. Enzymic investigations on anthers of four genetically defined lines with different pollen colouration revealed a clear correlation between accumulation of naringenin-chalcone and deficiency of chalcone isomerase (EC 5.5.1.6). The results allow the conclusion that chalcone is the first product of the flavanone synthase reaction in anthers of Petunia hybrida and that chalcone isomerase is essential for the formation of flavonols and anthocyanins. These results were similar to those previously obtained with Callistephus chinensis (L.) Nees.Abbreviations EGME ethylen glycol monomethyl ether - MeOH methanol - CI chalcone isomerase - HOAc acetic acid - TLC thinlayer chromatography  相似文献   

16.
The white flowering mutant W48 of Petunia hybrida is dominant for the hydroxylation gene Hf1 and homozygous recessive for the hydroxylation gene Ht1 and the anthocyanin gene An1. Flower buds of this mutant accumulate dihydrokaempferol-glucosides. Thus the effect of Hf1 being dominant is not the hydroxylation of the C15 skeleton, as is the case in mutants that are able to synthesize anthocyanins. This can be explained either by a feed-back inhibition of the hydroxylation by small amounts of dihydromyricetin (glucosides), or by a controlling effect of the gene An1 on the expression of Hf1. However, the white flowering mutant W58, which is homozygous recessive for the gene An6 and dominant for Hf1, accumulates dihydromyricetin (glucosides). This excludes a possible feed-back inhibition by dihydromyricetin and we conclude that An1 controls the expression of Hf1. Feeding of radioactive malonic acid to isolated flower limbs of mutants able to synthesize anthocyanins, leads to the incorporation of radioactivity into dihydrokaempferol (glucosides) and dihydroquercetin (glucosides). These results show that glucosylation of dihydroflavonols is a normal event in anthocyanin biosynthesis and is not induced by an inhibition of anthocyanin synthesis.  相似文献   

17.
Summary Different wild-type isolates of Dictyostelium discoideum exhibit extensive polymorphism in the length of restriction fragments carrying tRNA genes. These size differences were used to study the organisation of two tRNA gene families which encode a tRNAVal(GUU) and a tRNAVal(GUA) gene. The method used involved a combination of classitics. The tRNA genes were mapped to specific linkage groups (chromosomes) by correlating the presence of polymorphic DNA bands that hybridized with the tRNA gene probes with the presence of genetic markers for those linkage groups. These analyses established that both of the tRNA gene families are dispersed among sites on several of the chromosomes. Information of nine tRNAVal(GUU) genes from the wild-type isolate NC4 was obtained: three map to linkage group I (C, E, F,), two map to linkage group II (D, I), one maps to linkage group IV (G), one, which corresponds to the cloned gene, maps to either linkage group III or VI (B), and two map to one of linkage groups III, VI or VIII (A, H). Six tRNAVal(GUA) genes from the NC4 isolate were mapped; one to linkage group I (D), two to linkage group III, VI or VII (B, C) and three to linkage group VII or III (A, E, F).  相似文献   

18.
Summary A naturally occurring, 100% PSC Petunia X hybrida Hort. plant was found which had normal stylar function, but lacked S allele activity in the pollen. Preliminary characterization showed the phenotype to be identical to that of a pollen part mutant as described by Lewis (1949). Linkage test results, using a plant with the pollen-inactivation PSC factor as male parent, agreed with earlier observations that crossing over between S and the factor was rare. However, when the plant bearing the factor was used as female, apparent recombinants were recovered, although they were all of one class. Unequal gamete competition based on inter-line incongruity could explain the failure to recover recombinants from the male parent.Scientific Journal Series Paper No. 14, 487 of the Minnesota Agricultural Experiment Station  相似文献   

19.
The effect of hydroxylation genes on the hydroxylation of intermediates of flavonoid biosynthesis in Petunia hybrida is reported. In mutants homozygous recessive, for the gene An9, dihydroflavonols accumulate. The number of hydroxyl groups in the B-ring is determined by the hydroxylation genes Htl and Hfl. A similar effect of Htl and (probably) Hfl occurs in flavanone-accumulating mutants, homozygous recessive for the gene An3. Mutants dominant for Hfl probably accumulate a 5,7,3,4,5-pentahydroxyflavanone. The mutant W43, homozygous recessive for the gene An5, is blocked in an early flavonoid biosynthesis step. It accumulates p-coumaric acid together with caffeic acid. The hydroxylation genes Htl and Hfl, however, are also homozygous recessive, which indicates that the hydroxylation of p-coumaric acid to caffeic acid or derivatives of these compounds is not controlled by Htl. The accumulation of caffeic acid was observed in all mutants investigated so far, regardless of which hydroxylation genes were dominant or recessive. We conclude that hydroxylations involved in anthocyanin biosynthesis occur at the C15 level.Deceased  相似文献   

20.
We report isolation and N-terminal amino acid sequencing of three style glycoproteins, which segregate with three S (self-incompatibility) alleles of Petunia hybrida. The S-glycoproteins were expressed mainly in the upper part of the pistil and showed an increasing concentration during flower development. The glycoproteins were purified by a combination of ConA-Sepharose and cation exchange fast protein liquid chromatography. The amount of S-glycoproteins recovered from style extracts varied from 0.5 to 1.6 g per style, which was 40–60% of the amount recovered by a simplified analytical method. N-terminal amino acid sequences of S1-, S2- and S3-glycoprotein showed homology within the fifteen amino terminal residues. These amino acid sequences were compared with the previously published sequences of S-glycoproteins from Nicotiana alata and Lycopersicon peruvianum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号