首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have shown that the room temperature photocycle of the photoactive yellow protein (PYP) from Ectothiorhodospira halophila involves at least two intermediate species: I1, which forms in <10 ns and decays with a 200-micros lifetime to I2, which itself subsequently returns to the ground state with a 140-ms time constant at pH 7 (Genick et al. 1997. Biochemistry. 36:8-14). Picosecond transient absorption spectroscopy has been used here to reveal a photophysical relaxation process (stimulated emission) and photochemical intermediates in the PYP photocycle that have not been reported previously. The first new intermediate (I0) exhibits maximum absorption at approximately 510 nm and appears in </=3 ps after 452 nm excitation (5 ps pulse width) of PYP. Kinetic analysis shows that I0 decays with a 220 +/- 20 ps lifetime, forming another intermediate (Idouble dagger0) that has a similar difference wavelength maximum, but with lower absorptivity. Idouble dagger0 decays with a 3 +/- 0.15 ns time constant to form I1. Stimulated emission from an excited electronic state of PYP is observed both within the 4-6-ps cross-correlation times used in this work, and with a 16-ps delay for all probe wavelengths throughout the 426-525-nm region studied. These transient absorption and emission data provide a more detailed understanding of the mechanistic dynamics occurring during the PYP photocycle.  相似文献   

2.
Femtosecond time-resolved absorbance measurements were used to probe the subpicosecond primary events of the photoactive yellow protein (PYP), a 14-kD soluble photoreceptor from Ectothiorhodospira halophila. Previous picosecond absorption studies from our laboratory have revealed the presence of two new early photochemical intermediates in the PYP photocycle, I(0), which appears in 相似文献   

3.
Transient absorption spectroscopy in the time range from -1 ps to 4 ns, and over the wavelength range from 420 to 550 nm, was applied to the Glu46Gln mutant of the photoactive yellow protein (PYP) from Ectothiorhodospira halophila. This has allowed us to elucidate the kinetic constants of excited state formation and decay and photochemical product formation, and the spectral characteristics of stimulated emission and the early photocycle intermediates. Both the quantum efficiency ( approximately 0.5) and the rate constants for excited state decay and the formation of the initial photochemical intermediate (I(0)) were found to be quite similar to those obtained for wild-type PYP. In contrast, the rate constants for the formation of the subsequent photocycle intermediates (I(0)(double dagger) and I(1)), as well as for I(2) and for ground state regeneration as determined in earlier studies, were found to be from 3- to 30-fold larger. The structural implications of these results are discussed.  相似文献   

4.
The purple phototrophic bacterium, Thermochromatium tepidum, contains a gene for a chimeric photoactive yellow protein/bacteriophytochrome/diguanylate cyclase (Ppd). We produced the Tc. tepidum PYP domain (Tt PYP) in Escherichia coli, and found that it has a wavelength maximum at 358 nm due to a Leu46 substitution of the color-tuning Glu46 found in the prototypic Halorhodospira halophila PYP (Hh PYP). However, the 358 nm dark-adapted state is in a pH-dependent equilibrium with a yellow species absorbing at 465 nm (pK(a) = 10.2). Following illumination at 358 nm, photocycle kinetics are characterized at pH 7.0 by a small bleach and red shift to what appears to be a long-lived cis intermediate (comparable to the I(2) intermediate in Hh PYP). The recovery to the dark-adapted state has a lifetime of approximately 4 min, which is approximately 1500 times slower than that for Hh PYP. However, when the Tt PYP is illuminated at pH values above 7.5, the light-induced difference spectrum indicates a pH-dependent equilibrium between the I(2) intermediate and a red-shifted 440 nm intermediate. This equilibrium could be responsible for the sigmoidal pH dependence of the recovery of the dark-adapted state (pK(a) = 8.8). In addition, the light-induced difference spectrum shows that, at pH values above 9.3, there is an apparent bleach near 490 nm superimposed on the 358 and 440 nm changes, which we ascribe to the equilibrium between the protonated and ionized dark-adapted forms. The L46E mutant of Tt PYP has a wavelength maximum at 446 nm, resembling wild-type Hh PYP. The kinetics of recovery of L46E following illumination with white light are slow (lifetime of 15 min at pH 7), but are comparable to those of wild-type Tt PYP. We conclude that Tt PYP is unique among the PYPs studied to date in that it has a photocycle initiated from a dark-adapted state with a protonated chromophore at physiological pH. However, it is kinetically most similar to Rhodocista centenaria PYP (Ppr) despite the very different absorption spectra due to the lack of E46.  相似文献   

5.
The photocycle of the photoactive yellow protein (PYP) from Ectothiorhodospira halophila was examined by time-resolved difference absorption spectroscopy in the wavelength range of 300-600 nm. Both time-gated spectra and single wavelength traces were measured. Global analysis of the data established that in the time domain between 5 ns and 2 s only two intermediates are involved in the room temperature photocycle of PYP, as has been proposed before (Meyer T.E., E. Yakali, M. A. Cusanovich, and G. Tollin. 1987. Biochemistry. 26:418-423; Meyer, T. E., G. Tollin, T. P. Causgrove, P. Cheng, and R. E. Blankenship. 1991. Biophys. J. 59:988-991). The first, red-shifted intermediate decays biexponentially (60% with tau = 0.25 ms and 40% with tau = 1.2 ms) to a blue-shifted intermediate. The last step of the photocycle is the biexponential (93% with tau = 0.15 s and 7% with tau = 2.0 s) recovery to the ground state of the protein. Reconstruction of the absolute spectra of these photointermediates yielded absorbance maxima of about 465 and 355 nm for the red- and blue-shifted intermediate with an epsilon max at about 50% and 40% relative to the epsilon max of the ground state. The quantitative analysis of the photocycle in PYP described here paves the way to a detailed biophysical analysis of the processes occurring in this photoreceptor molecule.  相似文献   

6.
The picosecond molecular dynamics in an artificial bacteriorhodopsin (BR) pigment containing a structurally modified all-trans retinal chromphore with a six-membered ring bridging the C11=C12-C13 positions (BR6.11) are measured by picosecond transient absorption and picosecond time-resolved fluorescence spectroscopy. Time-dependent intensity and spectral changes in absorption in the 570-650-nm region are monitored for delays as long as 5 ns after the 7-ps, 573-nm excitation of BR6.11. Two intermediates, J6.11 and K6.11/1, both with enhanced absorption to the red (> 600 nm) of the BR6.11 spectrum are observed within approximately 50 ps. The J6.11 intermediate decays with a time constant of 12 +/- 3 ps to form K6.11/1. The K6.11/1 intermediate decays with an approximately 100-ps time constant to form a third intermediate, K6.11/2, which is observed through diminished 650-nm absorption (relative to that of K6.11/1). No other transient absorption changes are found during the remainder of the initial 5-ns period of the BR6.11 photoreaction. Fluorescence in the 650-900-nm region is observed from BR6.11, K6.11/1, and K6.11/2, but no emission assignable to J6.11 is found. The BR6.11 fluroescence spectrum has a approximately 725-nm maximum which is blue-shifted by approximately 15 nm relative to that of native BR-570 and is 4.2 +/- 1.5 times larger in intensity (same sample optical density). No differences in the profile of the fluorescence spectra of BR6.11 and the intermediates K6.11/1 and K6.11/2 are observed. Following ground-state depletion of the BR6.11 population, the time-resolved fluroescence intensity monitored at 725 nm increases with two time constants, 12 +/- 3 and approximately 100 ps, both of which correlate well with changes in the picosecond transient absorption data.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The photocycle of the blue-light photoreceptor protein Photoactive Yellow Protein (PYP) was studied at reduced relative humidity (RH). Photocycle kinetics and spectra were measured in thin films of PYP in which the relative humidity was set at values between 29 and 98% RH with saturated solutions of various salts. We show that in this range, approximately 200 water molecules per PYP molecule are released from the film. As humidity decreased, photocycle transition rates changed, until at low humidity (RH < 50%) an authentic photocycle was no longer observed and the absorption spectrum of the dark, equilibrium state of PYP started to shift to 355 nm, that is, to a form resembling that of pB(dark). At moderately reduced humidity (i.e., >50% RH), an authentic photocycle is still observed, although its characteristics differ from those in solution. As humidity decreases, the rate of ground state recovery increases, while the rate of depletion of the first red-shifted intermediate pR dramatically decreases. The latter observation contrasts all so-far known modulations of the rate of the transition of the red-shifted- to the blue-shifted intermediates of PYP, which is consistently accelerated by all other modulations of the mesoscopic context of the protein. Under these same conditions, the long-lived, blue-shifted intermediate was formed not only with slower kinetics than in solution but also to a smaller extent. Global analysis of these data indicates that in this low humidity environment the photocycle can take a different route than in solution, that is, part of pG recovers directly from pR. These experiments on wild-type PYP, in combination with observations on a variant of PYP obtained by site-directed mutagenesis (the E46Q mutant protein), further document the context dependence of the photocycle transitions of PYP and are relevant for the interpretation of results obtained in both spectroscopic and diffraction studies with crystalline PYP.  相似文献   

8.
Picosecond laser spectroscopic analysis was applied to determine how many intermediates existed in the primary photochemical process of trans-bacteriorhodopsin (light-adapted bacteriorhodopsin) at room temperature (18°C) and to calculate their absorption spectra. Irradiation of bacteriorhodopsin with a laser pulse (wavelength, 532 nm; pulse width, 25 ps) yielded the K intermediate (K) which was produced through a precursor, having an absorption maximum (λmax) longer than that of K. K was stable during a picosecond time range (50–900 ps). The λmax was located at 610 nm and the extinction coefficient (?max) was 0.92-times that of bacteriorhodopsin. The same K intermediate was produced from bacteriorhodopsin even when it was excited with a high-energy pulse by which a saturation effect was induced. A transient difference spectrum measured at 150 ns after the excitation of bacteriorhodopsin was different in shape from that of the K intermediate, suggesting that an intermediate was formed by thermal decay of K. This intermediate, tentatively called the KL intermediate (KL), had a λmax at 596 nm and an ?max 0.80-times that of bacteriorhodopsin. KL decayed to the L intermediate (L) with a time constant of 2.2 μs. L has a λmax at 543 nm and an ?max 0.66-times that of bacteriorhodopsin.  相似文献   

9.
Proteins with a BLUF (sensor of blue light using flavin adenine dinucleotide) domain represent a newly recognized class of photoreceptors that is widely distributed in the genomes of photosynthetic bacteria, cyanobacteria, and Euglena. Recently, Okajima et al. [Okajima, K., Yoshihara, S., Geng, X., Katayama, M. and Ikeuchi, M. (2003) Plant Cell Physiol. 44 (Suppl), 162] purified BLUF protein Tll0078 encoded in the genome of thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 by expressing the protein in Escherichia coli. We investigated the photocycle of Tll0078 by measuring the picosecond fluorescence kinetics, transient absorption changes, and the UV-visible absorption spectra at 10 to 330 K. The absorption spectrum of the FAD moiety of Tll0078 showed a 10-nm red shift upon illumination at 278-330 K. The quantum efficiency of the formation of the red-shifted form was 29%. Illumination at 10 K, on the other hand, caused only a 5-nm red shift in about one-half of the protein population. The 5-nm-shifted form was stable at 10 K. The 5-nm red-shifted form was converted into the 10-nm red-shifted form at 50-240 K upon warming in the dark. At room temperature, the 10-nm red-shifted final product appeared within 10 ns after laser flash excitation. The lifetime of the fluorescence of FAD was found to be 120 ps at room temperature. These results reveal a fast and efficient photoconversion process from the singlet-excited state to the final product at room temperature. A photocycle of BLUF protein is proposed that includes the 5-nm red-shifted intermediate form as the precursor for the 10-nm red-shifted final product. The temperature dependence of each step of the photocycle is also discussed.  相似文献   

10.
《BBA》1985,807(2):155-167
The time-resolved fluorescence emission and excitation spectra of Chlorella vulgaris cells have been measured by single-photon timing with picosecond resolution. In a three-exponential analysis the time-resolved excitation spectra recorded at 685 and 706 nm emission wavelength with closed PS II reaction centers show large variations of the preexponential factors of the different decay components as a function of wavelength. At λem = 685 nm the major contribution to the fluorescence decay originates from two components with life-times of 2.1–2.4 and 1.2–1.3 ns. A short-lived component with life-times of 0.1–0.16 ns of relatively small amplitude is also found. When the emission is detected at 706 nm, the short-lived component with a life-time of less than 0.1 ns predominates. Time-resolved emission spectra using λexc = 630 or λexc = 652 nm show a spectral peak of the two longer-lived components at about 680–685 nm, whereas the fast component is red-shifted as compared to the others and shows a maximum at about 690 nm. The emission spectrum observed upon excitation at 696 nm with closed PS II reaction centers shows a large increase in the amplitude of the fast component with a lifetime of 80–100 ps as compared to that at 630 nm excitation. At almost open Photosystem II (PS II) reaction centers (F0), the life-time of the fast component decreased from 150–160 ps at 682 nm to less than 100 ps at 720 nm emission wavelength. We conclude that at least two pigment pools contribute to the fast component. One is attributed to PS II and the other to Photosystem I (PS I). They have life-times of approx. 180 ps and 80 ps, respectively. The 80 ps (PS I) contribution has a spectral maximum slightly below 700 nm, whereas the 180 ps (PS II) spectrum peaks at 680–685 nm. The spectra of the middle decay component τm and its sensitivity to inhibitors of PS II suggest that this component is not preferentially related to LHC II but arises mainly from Chl a pigments probably associated with a second type of PS II centers. The amplitudes of the fast (180 ps, PS II) component and the long-lived decay show an opposite dependence on the state of the PS II centers and confirm our earlier conclusion that the contribution of PS II to the fast component probably disappears at the Fmax state (Haehnel W., Holzwarth, A.R. and Wendler, J. (1983) Photochem. Photobiol. 34, 435–443). Our data are discussed in terms of α,β-heterogeneity in PS II centers.  相似文献   

11.
Early Picosecond Events in the Photocycle of Bacteriorhodopsin   总被引:1,自引:3,他引:1       下载免费PDF全文
The primary processes of the photochemical cycle of light-adapted bacteriorhodopsin (BR) were studied by various experimental techniques with a time resolution of 5 × 10-13 s. The following results were obtained. (a) After optical excitation the first excited singlet state S1 of bacteriorhodopsin is observed via its fluorescence and absorption properties. The population of the excited singlet state decays with a lifetime τ1 of ~0.7 ps (430 ± 50 fs) (52). (b) With the same time constant the first ground-state intermediate J builds up. Its absorption spectrum is red-shifted relative to the spectrum of BR by ~30 nm. (c) The second photoproduct K, which appears with a time constant of τ2 = 5 ps shows a red-shift of 20 nm, relative to the peak of BR. Its absorption remains constant for the observation time of 300 ps. (d) Upon suspending bacteriorhodopsin in D2O and deuterating the retinal Schiff base at its nitrogen (lysine 216), the same photoproducts J and K are observed. The relaxation time constants τ1 and τ2 remain unchanged upon deuteration within the experimental accuracy of 20%.  相似文献   

12.
Photoactive yellow protein (PYP) is a bacterial photoreceptor containing a 4-hydroxycinnamyl chromophore. Photoexcitation of PYP triggers a photocycle that involves at least two intermediate states: an early red-shifted PYP(L) intermediate and a long-lived blue-shifted PYP(M) intermediate. In this study, we have explored the active site structures of these intermediates by resonance Raman spectroscopy. Quantum chemical calculations based on a density functional theory are also performed to simulate the observed spectra. The obtained structure of the chromophore in PYP(L) has cis configuration and no hydrogen bond at the carbonyl oxygen. In PYP(M), the cis chromophore is protonated at the phenolic oxygen and forms the hydrogen bond at the carbonyl group. These results allow us to propose structural changes of the chromophore during the photocycle of PYP. The chromophore photoisomerizes from trans to cis configuration by flipping the carbonyl group to form PYP(L) with minimal perturbation of the tightly packed protein interior. Subsequent conversion to PYP(M) involves protonation on the phenolic oxygen, followed by rotation of the chromophore as a whole. This large motion of the chromophore is potentially correlated with the succeeding global conformational changes in the protein, which ultimately leads to transduction of a biological signal.  相似文献   

13.
The absorption spectrum of the photoactive yellow protein from Rhodobacter sphaeroides (R-PYP) shows two maxima, absorbing at 360 nm (R-PYP(360)) and 446 nm (R-PYP(446)), respectively. Both forms are photoactive and part of a temperature- and pH-dependent equilibrium (Haker, A., Hendriks, J., Gensch, T., Hellingwerf, K. J., and Crielaard, W. (2000) FEBS Lett. 486, 52-56). At 20 degrees C, for PYP characteristic, the 446-nm absorbance band displays a photocycle, in which the depletion of the 446-nm ground state absorption occurs in at least three phases, with time constants of <30 ns, 0.5 micros, and 17 micros. Intermediates with both blue- and red-shifted absorption maxima are transiently formed, before a blue-shifted intermediate (pB(360), lambda(max) = 360 nm) is established. The photocycle is completed with a monophasic recovery of the ground state with a time constant of 2.5 ms. At 7 degrees C these photocycle transitions are slowed down 2- to 3-fold. Upon excitation of R-PYP(360) with a UV-flash (330 +/- 50 nm) a species with a difference absorption maximum at approximately 435 nm is observed that returns to R-PYP(360) on a minute time scale. Recovery can be accelerated by a blue light flash (450 nm). R-PYP(360) and R-PYP(446) differ in their overall protein conformation, as well as in the isomerization and protonation state of the chromophore, as determined with the fluorescent polarity probe Nile Red and Fourier Transform Infrared spectroscopy, respectively.  相似文献   

14.
Photoactive yellow protein (PYP) is a blue light sensor present in the purple photosynthetic bacterium Ectothiorhodospira halophila, which undergoes a cyclic series of absorbance changes upon illumination at its lambda(max) of 446 nm. The anionic p-hydroxycinnamoyl chromophore of PYP is covalently bound as a thiol ester to Cys69, buried in a hydrophobic pocket, and hydrogen-bonded via its phenolate oxygen to Glu46 and Tyr42. The chromophore becomes protonated in the photobleached state (I(2)) after it undergoes trans-cis isomerization, which results in breaking of the H-bond between Glu46 and the chromophore and partial exposure of the phenolic ring to the solvent. In previous mutagenesis studies of a Glu46Gln mutant, we have shown that a key factor in controlling the color and photocycle kinetics of PYP is this H-bonding system. To further investigate this, we have now characterized Glu46Asp and Glu46Ala mutants. The ground-state absorption spectrum of the Glu46Asp mutant shows a pH-dependent equilibrium (pK = 8.6) between two species: a protonated (acidic) form (lambda(max) = 345 nm), and a slightly blue-shifted deprotonated (basic) form (lambda(max) = 444 nm). Both of these species are photoactive. A similar transition was also observed for the Glu46Ala mutant (pK = 7.9), resulting in two photoactive red-shifted forms: a basic species (lambda(max) = 465 nm) and a protonated species (lambda(max) = 365 nm). We attribute these spectral transitions to protonation/deprotonation of the phenolate oxygen of the chromophore. This is demonstrated by FT Raman spectra. Dark recovery kinetics (return to the unphotolyzed state) were found to vary appreciably between these various photoactive species. These spectral and kinetic properties indicate that the hydrogen bond between Glu46 and the chromophore hydroxyl group is a dominant factor in controlling the pK values of the chromophore and the glutamate carboxyl.  相似文献   

15.
Imamoto Y  Harigai M  Kataoka M 《FEBS letters》2004,577(1-2):75-80
Equilibrium between the photoproducts of photoactive yellow protein (PYP), present in a millisecond time scale, was studied. The near-UV intermediate of PYP (PYPM) was red-shifted by alkalization due to the deprotonation of the chromophore (pKa=10.2). In addition, a small amount of red-shifted intermediate coexisted with PYPM. Its spectral shape in the visible region agreed with that of PYPL, the precursor of PYPM. The fraction of PYPL-like product was maximal at pH 10. It decays with a rate constant identical to that of PYPM. These results indicate that PYPL-like product is in pH-dependent equilibrium with PYPM and deprotonated PYPM.  相似文献   

16.
The photocycle of the photoactive yellow protein (PYP) isolated from Ectothiorhodospira halophila was analyzed by flash photolysis with absorption detection at low excitation photon densities and by temperature-dependent laser-induced optoacoustic spectroscopy (LIOAS). The quantum yield for the bleaching recovery of PYP, assumed to be identical to that for the phototransformation of PYP (pG), to the red-shifted intermediate, pR, was phi R = 0.35 +/- 0.05, much lower than the value of 0.64 reported in the literature. With this value and the LIOAS data, an energy content for pR of 120 kJ/mol was obtained, approximately 50% lower than for excited pG. Concomitant with the photochemical process, a volume contraction of 14 ml/photoconverted mol was observed, comparable with the contraction (11 ml/mol) determined for the bacteriorhodopsin monomer. The contraction in both cases is interpreted to arise from a protein reorganization around a phototransformed chromophore with a dipole moment different from that of the initial state. The deviations from linearity of the LIOAS data at photon densities > 0.3 photons per molecule are explained by absorption by pG and pR during the laser pulse duration (i.e., a four-level system, pG, pR, and their respective excited states). The data can be fitted either by a simple saturation process or by a photochromic equilibrium between pG and pR, similar to that established between the parent chromoprotein and the first intermediate(s) in other biological photoreceptors. This nonlinearity has important consequences for the interpretation of the data obtained from in vitro studies with powerful lasers.  相似文献   

17.
Energy equilibration in the photosystem I core antenna from the cyanobacterium Synechocystis sp. PCC 6803 was studied using femtosecond transient absorption spectroscopy at 298 K. The photosystem I core particles were excited at 660, 693, and 710 nm with 150 fs spectrally narrow laser pulses (fwhm = 5 nm). Global analysis revealed three kinetic processes in the core antenna with lifetimes of 250-500 fs, 1.5-2.5 ps, and 20-30 ps. The first two components represent strongly excitation wavelength-dependent energy equilibration processes while the 20-30 ps phase reflects the trapping of energy by the reaction center. Excitation into the blue and red edge of the absorption band induces downhill and uphill energy flows, respectively, between different chlorophyll a spectral forms of the core. Excitation at 660 nm induces a 500 fs downhill equilibration process within the bulk of antenna while the selective excitation of long-wavelength-absorbing chlorophylls at 710 nm results in a 380 fs uphill energy transfer to the chlorophylls absorbing around 695-700 nm, presumably reaction center pigments. The 1.5-2.5 ps phases of downhill and uphill energy transfer are largely equivalent but opposite in direction, indicating energy equilibration between bulk antenna chlorophylls at 685 nm and spectral forms absorbing below 700 nm. Transient absorption spectra with excitation at 693 nm exhibit spectral evolution within approximately 2 ps of uphill energy transfer to major spectral forms at 680 nm and downhill energy transfer to red pigments at 705 nm. The 20-30 ps trapping component and P(700) photooxidation spectra derived from data on the 100 ps scale are largely excitation wavelength independent. An additional decay component of red pigments at 710 nm can be induced either by selective excitation of red pigments or by decreasing the temperature to 264 K. This component may represent one of the phases of energy transfer from inhomogeneously broadened red pigments to P(700). The data are discussed based on the available structural model of the photosystem I reaction center and its core antenna.  相似文献   

18.
The transient absorption anisotropy spectrum of bacteriochlorophyll a (BChl a) in pyridine was measured in the wavelength interval 550-850 nm, 1 ps after optical excitation with a 792-nm femtosecond light pulse. In the wavelength region of Q(y) absorption and stimulated emission (775-825 nm), the anisotropy was found to be close to the theoretically expected value (0.4) for a two-level system. In the wavelength region 650-750 nm, where the transient absorption signal is dominated by excited state absorption, the anisotropy is reduced to approximately 0.18. Anisotropy kinetics were measured at several wavelengths and found to be constant within the time window 0-5 ps, showing that no internal dynamics of the BChl a molecule change the anisotropy on the time scale of tens of picoseconds.  相似文献   

19.
We report a comparative study of the isomerization reaction in native and denatured photoactive yellow protein (PYP) and in various chromophore analogues in their trans deprotonated form. The excited-state relaxation dynamics was followed by subpicosecond transient absorption and gain spectroscopy. The free p-hydroxycinnamate (pCA(2-)) and its amide analogue (pCM(-)) are found to display a quite different transient spectroscopy from that of PYP. The excited-state deactivation leads to the formation of the ground-state cis isomer without any detectable intermediate with a mechanism comparable to trans-stilbene photoisomerization. On the contrary, the early stage of the excited-state deactivation of the free thiophenyl-p-hydroxycinnamate (pCT(-)) and of the denatured PYP is similar to that of the native protein. It involves the formation of an intermediate absorbing in the spectral region located between the bleaching and gain bands in less than 2 ps. However, in these two cases, the formation of the cis isomer has not been proved yet. This difference with pCA(-) and pCM(-) might result from the fact that, in the thioester substituted chromophore, simultaneous population of two quasi-degenerate excited states occurs upon excitation. This comparative study highlights the determining role of the chromophore structure and of its intrinsic properties in the primary molecular events in native PYP.  相似文献   

20.
Picosecond laser photolysis of rhodopsin in 15% polyacrylamide gel was performed for estimating absolute absorption spectra of the primary intermediates of cattle rhodopsin (bathorhodopsin and photorhodopsin). Using a rhodopsin digitonin extract embedded in 15% polyacrylamide gel, a precise percentage of bleaching of rhodopsin after excitation of a picosecond laser pulse was measured. Using this value, the absolute absorption spectrum of bathorhodopsin was calculated from the spectral change before and 1 ns after the picosecond laser excitation (corresponding to the difference spectrum between rhodopsin and bathorhodopsin). The absorption spectrum of bathorhodopsin thus obtained displayed a lambda max at 535 nm, which was shorter than that at low temperature (543 nm) and a half band-width broader than that measured at low temperature. The oscillator strength of bathorhodopsin at room temperature was smaller than that at low temperature. The absolute absorption spectrum of photorhodopsin was also estimated from the difference spectrum measured at 15 ps after the excitation of rhodopsin (Shichida, Y., S. Matuoka, and T. Yoshizawa. 1984. Photobiochem. Photobiophys. 7:221-228), assuming a sequential conversion of photorhodopsin to bathorhodopsin. Its lambda max was located at approximately 570 nm, and the oscillator strength was smaller than those of rhodopsin and bathorhodopsin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号