共查询到20条相似文献,搜索用时 9 毫秒
1.
In order to investigate the specificity of noradrenergic effects on Na+, K+-ATPase, we infused noradrenergic agonists into the cerebral ventricles of rats, with or without depletion of forebrain norepinephrine. Infusion of norepinephrine, isoproterenol, or phenylephrine increased ouabain binding in intact rats, whereas clonidine infusion decreased binding. Depletion of forebrain norepinephrine by destruction of the dorsal noradrenergic bundle reduced ouabain binding. Norepinephrine infusion reversed the effect of dorsal bundle lesion; isoproterenol and phenylephrine increased ouabain binding in lesioned rats, but did not restore the effect of the lesions. Clonidine had no effect in lesioned rats. Effects on Na+, K+-ATPase activity were similar, but smaller. These results suggest that stimulation of both alpha 1- and beta-noradrenergic receptors may be necessary for optimal Na+, K+-ATPase, and that clonidine reduces Na+, K+-ATPase indirectly through decreased norepinephrine release. 相似文献
2.
Abstract: Rat brain microsomes were preincubated with S -adenosylmethionine (SAM), MgCl2 , and CaCl2 , then re-isolated, and the activity of Na+ ,K+ -ATPase determined. SAM inhibited the Na+ ,K+ -ATPase activity compared with microsomes subjected to similar treatment in the absence of SAM. A biphasic inhibitory effect was observed with a 50% decrease at a SAM concentration range of 0.4 μ M -3.2 μ M and a 70% reduction at a concentration range above 100 μ M . Inclusion of either S- adenosylhomocysteine or 3-deazaadenosine in the preincubations prevented the SAM inhibition of Na+ ,K+ -ATPase activity. The inhibition by SAM appeared to be Mg2+ - or Ca2+ -dependent. 相似文献
3.
Alain Gerbi Marcel Debray Jean-Michel Maixent† Claude Chanez Jean-Marie Bourre 《Journal of neurochemistry》1993,60(1):246-252
Abstract: The Na+ sensitivity of whole brain membrane Na+ ,K+ -ATPase isoenzymes was studied using the differential inhibitory effect of ouabain (α1, low affinity for ouabain; α2, high affinity; and α3, very high affinity). At 100 m M Na+ , we found that the proportion of isoforms with low, high, and very high ouabain affinity was 21, 38, and 41%, respectively. Using two ouabain concentrations (10−5 and 10−7 M ), we were able to discriminate Na+ sensitivity of Na+ , K+ -ATPase isoenzymes using nonlinear regression. The ouabain low-affinity isoform, α1, exhibited high Na+ sensitivity [ K a of 3.88 ± 0.25 m M Na+ and a Hill coefficient ( n ) of 1.98 ± 0.13]; the ouabain high-affinity isoform, α2, had two Na+ sensitivities, a high ( K a of 4.98 ± 0.2 m M Na+ and n of 1.34 ± 0.10) and a low ( K a of 28 ± 0.5 m M Na+ and an n of 1.92 ± 0.18) Na+ sensitivity activated above a thresh old (22 ± 0.3 m M Na+ ); and the ouabain very-high-affinity isoform, α3, was resolved by two processes and appears to have two Na+ sensitivities (apparent K a values of 3.5 and 20 m M Na+ ). We show that Na+ dependence in the absence of ouabain is the result of at least of five Na+ reactivities. This molecular functional characteristic of isoenzymes in membranes could explain the diversity of physiological roles attributed to isoenzymes. 相似文献
4.
Epileptic foci are associated with locally reduced taurine (2-aminoethanesulfonic acid) concentration and Na+, K+-ATPase (EC 3.6.1.3) specific activity. Topically applied and intraperitoneally administered taurine can prevent the development and/or spread of foci in many animal models. Taurine has been implicated as a possible cytosolic modulator of monovalent ion distribution, cytosolic “free” calcium activity, and neuronal excitability. Taurine may act in part by modulating Na+, K+-ATPase activity of neuronal and glial cells. We characterized the requirements for in vitro modulation of Na+, K+-ATPase by taurine. Normal whole brain homogenate Na+, K+-ATPase activity is 5.1 ± 0.4 (4) μmol Pi± h?1± mg?1 Lowry protein. Partial purification of the plasma membrane fraction to remove cytosolic proteins and extrinsic proteins and to uncouple cholinergic receptors yields a membrane-bound Na+, K+-ATPase activity of 204.6 ± 5.8 (4) mol Pi± h?1± mg?1 Lowry protein. Taurine activates the Na+, K+-ATPase at all levels of purification. The concentration dependence of activation follows normal saturation kinetics (K1/2= 39 mM taurine, activation maximum =+87%). The activation exhibits chemical specificity among the taurine analogues and metabolites: taurine = isethionic acid > hypotaurine > no activation =β-alanine = methionine = choline = leucine. Taurine can act as an endogenous activator/modulator of Na+, K+-ATPase. Its action is mediated by a membrane-bound protein. 相似文献
5.
Marina Mata Virginia Hieber Michael Beaty Michael Clevenger David J. Fink 《Journal of neurochemistry》1992,59(2):622-626
To investigate the functional role of the different Na+, K(+)-ATPase alpha (catalytic) subunit isoforms in neuronal cells, we used quantitative in situ hybridization with riboprobes specific for alpha 1, alpha 2, and alpha 3 isoforms to measure the level of alpha isoform-specific expression in the neuroendocrine cells of the supraoptic (SON) and paraventricular (PVN) nuclei of rat hypothalamus. A prolonged increase in electrical activity of these cells, achieved by 5 days of salt treatment, increased the amount of alpha 1 isoform mRNA in the SON and PVN by 50%. Levels of alpha 1 mRNA in other brain regions and levels of alpha 2 and alpha 3 mRNAs were not affected by salt treatment. We conclude that the alpha 1 isoform Na+, K(+)-ATPase may be specifically adapted to pump out Na+, which enters the cells through voltage-gated channels during neuronal depolarization. 相似文献
6.
Ouabain Binding, ATP Hydrolysis, and Na+ ,K+ -Pump Activity During Chemical Modification of Brain and Muscle Na+ ,K+ -ATPase 总被引:1,自引:0,他引:1
J. Teisinger H. Zemková P. Svoboda E. Amler F. Vyskoil 《Journal of neurochemistry》1992,58(3):1066-1072
The effects of 16 group-specific, amino acid-modifying agents were tested on ouabain binding, catalytical activity of membrane-bound (rat brain microsomal), sodium dodecyl sulfate-treated Na+,K(+)-ATPase, and Na+,K(+)-pump activity in intact muscle cells. With few exceptions, the potency of various tryptophan, tyrosine, histidine, amino, and carboxy group-oriented drugs to suppress ouabain binding and Na+,K(+)-ATPase activity correlated with inhibition of the Na+,K(+)-pump electrogenic effect. ATP hydrolysis was more sensitive to inhibition elicited by chemical modification than ouabain binding (membrane-bound or isolated enzyme) and than Na+,K(+)-pump activity. The efficiency of various drugs belonging to the same "specificity" group differed markedly. Tyrosine-oriented tetranitromethane was the only reagent that interfered directly with the cardiac receptor binding site as its inhibition of ouabain binding was completely protected by ouabagenin preincubation. The inhibition elicited by all other reagents was not, or only partially, protected by ouabagenin. It is surprising that agents like diethyl pyrocarbonate (histidine groups) or butanedione (arginine groups), whose action should be oriented to amino acids not involved in the putative ouabain binding site (represented by the -Glu-Tyr-Thr-Trp-Leu-Glu- sequence), are equally effective as agents acting on amino acids present directly in the ouabain binding site. These results support the proposal of long-distance regulation of Na+,K(+)-ATPase active sites. 相似文献
7.
D. Guillaume†‡ T. Grisar†‡ A. V. Delgado-Escueta‡§ J. Laschet M. Bureau-Heeren‡ 《Journal of neurochemistry》1990,54(1):130-134
Analysis of purified Na+,K+-ATPase from cat and human cortex by sodium dodecyl sulfate-polyacrylamide gel electrophoresis reveals two large catalytic subunits called alpha (-) (lower molecular weight) and alpha (+) (higher molecular weight). Differences in K+ dephosphorylation of these two molecular forms have been investigated by measuring the phosphorylation level of each protein after their separation on sodium dodecyl sulfate gels. In the presence of Na+, Mg2+, and ATP, both subunits are phosphorylated. Increasing concentrations (from 0 to 3 mM) of K+ induce progressive dephosphorylation of both alpha-subunits, although the phosphoprotein content of alpha (-) is decreased significantly less than that of alpha (+). Ka values of alpha (-) for K+ are 40% and 50% greater in cat and human cortex, respectively, than values of alpha (+). alpha (-) and alpha (+) are thought to be localized in specific cell types of the brain: alpha (-) is the exclusive form of nonneuronal cells (astrocytes), whereas alpha (+) is the only form of axolemma. Our results support the hypothesis that glial and neuronal Na+,K+-ATPases are different molecular entities differing at least by their K+ sensitivity. Results are discussed in relation to the role of glial cells in the regulation of extracellular K+ in brain. 相似文献
8.
The effect of alloxan diabetes on the activities of Na+,K+-ATPase and Mg2+-ATPase was studied in three regions of rat brain at various time intervals after the onset of diabetes. It was observed that Na+,K+-ATPase activity increased at early time intervals after diabetes, followed by a recovery to near control levels in all three regions of the brain. There was an overall increase in Mg2+-ATPase activity in all the regions. A reversal of the effect was observed with insulin administration to the diabetic rats. 相似文献
9.
The Na+,K(+)-ATPase alpha 3 isoform has recently been demonstrated immunochemically in human brain. Conclusive biochemical evidence, however, is still lacking. In this study, a unique 50-kDa polypeptide, which is known to be specific to the rat alpha 3 isoform, has been found in human brainstem Na+,K(+)-ATPase following formic acid treatment of the purified alpha isoform proteins. Human alpha 3 Na+,K(+)-ATPase is also highly sensitive to ouabain inhibition, with a 50% ouabain inhibition value of 1.0 x 10(-7) M. These results provide clear and direct evidence for the existence of the alpha 3 isoform in human brain. 相似文献
10.
Rie Hosoi Toshio Matsuda Shoichi Asano Hiroaki Nakamura Hitoshi Hashimoto Kazuhiro Takuma Akemichi Baba 《Journal of neurochemistry》1997,69(5):2189-2196
Abstract: There are two α-subunit isoforms (α1 and α2) and two β-subunit isoforms (β1 and β2) of Na+ ,K+ -ATPase in astrocytes, but the functional heterodimer composition is not known. Ouabain (0.5–1.0 m M ) increased the levels of α1 and β1 mRNAs, whereas it decreased those of α2 and β2 mRNAs in cultured rat astrocytes. The increases in α1 and β1 mRNAs were observed at 6–48 h after addition of the inhibitor. Immunochemical analyses showed that ouabain increased α1 and β1, but not α2 and β2, proteins, and that the isoforms in control and ouabain-treated cultures were of glial origin. Low extracellular K+ and monensin (20 µ M ) mimicked the effect of ouabain on α1 mRNA. The ouabain-induced increase in α1 mRNA was blocked by the protein synthesis inhibitor cycloheximide (10 µ M ), the intracellular Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane- N,N,N',N' -tetraacetic acid tetraacetoxymethyl ester (30 µ M ), and the calcineurin inhibitor FK506 (1 n M ). These findings indicate that chronic inhibition of Na+ ,K+ -ATPase up-regulates the α1 and β1, but not α2 and β2, isoforms in astrocytes, suggesting a functional coupling of α1β1 complex. They also suggest that intracellular Na+ , Ca2+ , and calcineurin may be involved in ouabain-induced up-regulation of the enzyme in astrocytes. 相似文献
11.
Abstract: We have previously purified and characterized a nervous system-specific glycoprotein antigen from adult Drosophila heads, designated Nervana [nerve antigen (NRV)] and identified two separate genes coding for three different proteins. All three proteins share homology with the β subunits of Na+ ,K+ -ATPase from various other species. In this study we have isolated a new Drosophila Na+ ,K+ -ATPase α subunit cDNA clone (PSα; GenBank accession no. AF044974) and demonstrate expression of functional Na+ ,K+ -ATPase activity when PSα mRNA is coinjected into Xenopus oocytes along with any of the three different Nrv mRNAs. Western blotting, RNase protection assays, and immunocytochemical staining of adult fly sections indicate that NRV2 is expressed primarily in the nervous system. Staining is most intense in the brain and thoracic ganglia and is most likely associated with neuronal elements. NRV1 is more broadly expressed in muscle and excretory tissue and also shows diffuse distribution in the nervous system. Similar to other species, Drosophila expresses multiple isoforms of Na+ ,K+ -ATPase subunits in a tissue- and cell type-specific pattern. It will now be possible to use the advantages of Drosophila molecular and classical genetics to investigate the phenotypic consequences of altering Na+ ,K+ -ATPase expression in various cell and tissue types. 相似文献
12.
Joao B. T. Rocha Herman Wolosker †Diogo O. Souza Leopoldo de Meis 《Journal of neurochemistry》1996,66(2):772-778
Abstract: Rat brain microsomes accumulate Ca2+ at the expense of ATP hydrolysis. The rate of transport is not modulated by the monovalent cations K+, Na+, or Li+. Both the Ca2+ uptake and the Ca2+-dependent ATPase activity of microsomes are inhibited by the sulfated polysaccharides heparin, fucosylated chondroitin sulfate, and dextran sulfate. Half-maximal inhibition is observed with sulfated polysaccharide concentrations ranging from 0.5 to 8.0 µg/ml. The inhibition is antagonized by KCl and NaCl but not by LiCl. As a result, Ca2+ transport by the native vesicles, which in the absence of polysaccharides is not modulated by monovalent cations, becomes highly sensitive to these ions. Trifluoperazine has a dual effect on the Ca2+ pump of brain microsomes. At low concentrations (20–80 µM) it stimulates the rate of Ca2+ influx, and at concentrations >100 µM it inhibits both the Ca2+ uptake and the ATPase activity. The activation observed at low trifluoperazine concentrations is specific for the brain Ca2+-ATPase; for the Ca2+-ATPases found in blood platelets and in the sarcoplasmic reticulum of skeletal muscle, trifluoperazine causes only a concentration-dependent inhibition of Ca2+ uptake. Passive Ca2+ efflux from brain microsomes preloaded with Ca2+ is increased by trifluoperazine (50–150 µM), and this effect is potentiated by heparin (10 µg/ml), even in the presence of KCl. It is proposed that the Ca2+-ATPase isoform from brain microsomes is modulated differently by polysaccharides and trifluoperazine when compared with skeletal muscle and platelet isoforms. 相似文献
13.
Changes in the activity of Na+,K+-ATPase and in the water, Na+, and K+ levels in the parietal cortex, hippocampus, and thalamus were investigated in rats 1, 3, 6, and 24 h following systemic kainic acid injection. An increase in Na+,K+-ATPase activity was observed in all three regions 3 h after the treatment, with a subsequent decrease in enzyme activity. The elevation in Na+,K+-ATPase activity was accompanied by an increase in the Na+ content and a decrease in the K+ content. These changes are presumed to occur because of repeated discharges and excessive prolonged depolarization in response to kainic acid. The decreases in Na+,K+-ATPase activity 6 and 24 h following kainic acid treatment coincide with neuropathological damage and edema formation, mainly in the hippocampus and thalamus. 相似文献
14.
Abstract: To examine the role of nerve-specific (Na+ , K+ )-ATPase in chronic changes in noradrenergic activity, we examined the effects of noradrenergic denervation and hyperinnervation on p -nitrophenylphosphatase activity and on total and nerve-specific ouabain binding. High-affinity and erythrosin B-sensitive binding were compared as measurements of nerve-specific binding. Hyperinnervation and denervation was produced in cerebellum and cerebral cortex, respectively, by 6-hydroxydopamine lesions of the dorsal noradrenergic bundle. Hyperinnervation increased, and denervation decreased, enzyme activity, high-affinity ouabain inhibition, and erythrosin B-sensitive ouabain binding. As (Nat+ , K+ )-ATPase has a major role in the regulation of neural excitability and energy metabolism, and the ouabain binding site has been shown to have endogenous ligands, these changes in (Na+ , K+ )-ATPase may be important in the long-term regulation of neuron function by norepinephrine. 相似文献
15.
The effects of nerve growth factor (NGF) on induction of Na+,K+-ATPase were examined in a rat pheochromocytoma cell line, PC12h. Na+,K+-ATPase activity in a crude particulate fraction from the cells increased from 0.37 +/- 0.02 (n = 19) to 0.55 +/- 0.02 (n = 20) (means +/- SEM, mumol Pi/min/mg of protein) when cultured with NGF for 5-11 days. The increase caused by NGF was prevented by addition of specific anti-NGF antibodies. Epidermal growth factor and insulin had only a small effect on induction of Na+,K+-ATPase. A concentration of basic fibroblast growth factor three times higher than that of NGF showed a similar potency to NGF. The molecular form of the enzyme was judged as only the alpha form in both the untreated and the NGF-treated cells by a simple pattern of low-affinity interaction with cardiotonic steroids: inhibition of enzyme activity by strophanthidin (Ki approximately 1 mM) and inhibition of Rb+ uptake by ouabain (Ki approximately 100 microM). As a consequence, during differentiation of PC12h cells to neuron-like cells, NGF increases the alpha form of Na+,K+-ATPase, but does not induce the alpha(+) form of the enzyme, which has a high sensitivity for cardiotonic steroid and is a characteristic form in neurons. 相似文献
16.
The aim of the present experiments was to study the effects of the neurotransmitters acetylcholine, noradrenaline, 5-hydroxytryptamine, and dopamine on the Na+,K+-ATPase of rat brain synaptosomal fractions. It is shown that dopamine at low concentrations specifically inhibits the Na+,K+-ATPase of synaptic membranes from the brain regions rich in dopaminergic endings, but has no effect on the synaptosomal Na+,K+-ATPase from the other parts of brain. Acetylcholine and noradrenaline have similar specific effects on Na+,K+-ATPase from cholinergic and adrenergic synaptosomes. The Na+,K+-ATPase of synaptic membranes from the different brain regions, characterised by different distributions of cholinergic, adrenergic, and 5-hydroxytryptaminergic endings, show different reactions with neurotransmitters. These data indicate a functional significance of the effects of the neurotransmitters on the synaptosomal Na+,K+-ATPase. 相似文献
17.
Thomas Andersen Schmidt Jim Stenfatt Larsen Keld Kjeldsen 《Journal of neurochemistry》1992,59(6):2094-2104
Na+,K(+)-ATPase concentration in rat cerebral cortex was studied by vanadate-facilitated [3H]ouabain binding to intact samples and by K(+)-dependent 3-O-methylfluorescein phosphatase activity determinations in crude homogenates. Methodological errors of both methods were evaluated. [3H]Ouabain binding to cerebral cortex obtained from 12-week-old rats measured incubating samples in buffer containing [3H]ouabain, and ouabain at a final concentration of 1 x 10(-6) mol/L gave a value of 11,351 +/- 177 (n = 5) pmol/g wet weight (mean +/- SEM) without any significant variation between the lobes. Evaluation of affinity for ouabain was in agreement with a heterogeneous population of [3H]ouabain binding sites. K(+)-dependent 3-O-methylfluorescein phosphatase activity in crude cerebral homogenates of age-matched rats was 7.24 +/- 0.14 (n = 5) mumol/min/g wet weight, corresponding to a Na+,K(+)-ATPase concentration of 12,209 +/- 236 pmol/g wet weight. It was concluded that the present methods were suitable for quantitative studies of cerebral cortex Na+,K(+)-ATPase. The concentration of rat cerebral cortex Na+,K(+)-ATPase showed approximately 10-fold increase within the first 4 weeks of life to reach a plateau of approximately 11,000-12,000 pmol/g wet weight, indicating a larger synthesis of Na+,K+ pumps than tissue mass in rat cerebral cortex during the first 4 weeks of development. K+ depletion induced by K(+)-deficient fodder for 2 weeks resulted in a slight tendency toward a reduction in K+ content (6%, p > 0.5) and Na+,K(+)-ATPase concentration (3%, p > 0.4) in cerebral cortex, whereas soleus muscle K+ content and Na+,K(+)-ATPase concentration were decreased by 30 (p < 0.02) and 32% (p < 0.001), respectively. Hence, during K+ depletion, cerebral cortex can maintain almost normal K+ homeostasis, whereas K+ as well as Na+,K+ pumps are lost from skeletal muscles. 相似文献
18.
Paul M. Rowe William T. Link Charlene P. Osborn Harold Gainer R. Wayne Albers 《Journal of neurochemistry》1991,57(3):1088-1090
The distributions of alpha-subunit isoforms of the Na+,K(+)-ATPase in rat pituitary were determined by immunoblotting and immunohistochemistry. Immunoreactivity for all three forms is present in the neural lobe, whereas the anterior lobe contains only alpha 1 and alpha 2. Most areas of the intermediate lobe exhibit faint immunoreactivity for only alpha 1, but thin strands of cells which stain strongly for all three isoforms are also present in this lobe. The previously reported ouabain inhibitable Na+,K(+)-ATPase activity in the neural lobe is consistent with the presence of both alpha 2 and alpha 3 subunits. 相似文献
19.
Active uptake of a labelled nonmetabolizable amino acid, alpha-aminoisobutyric acid (AIB), into isolated superior cervical sympathetic ganglia (SCG) excised from adult rats was considerably stimulated by the addition of either norepinephrine (NE, 50 microM) or 3,4-dihydroxyphenylethylamine (dopamine, DA, 100 microM) to the medium during aerobic incubation for 2 h at 37 degrees C. The NE-induced increase in AIB uptake was significantly antagonized by the addition of an alpha 1-adrenoceptor antagonist (prazosin, 10 microM) in SCG axotomized 1 week prior to the examination, in which most of the ganglionic neurons had degenerated and reactive proliferation of the satellite glial components was in progress. The addition of neither acetylcholine (ACh, 1 mM) plus eserine (0.1 mM) nor cyclic nucleotides (1 mM) changed the AIB uptake by the SCG. In the axotomized SCG, the NE-evoked increase in AIB uptake was much more pronounced than that of intact or denervated SCG. A kinetic study of the active AIB uptake in the SCG showed that NE produced a decrease of the Km value and an increase in the Vmax, especially in the axotomized SCG. Ganglionic Na+, K+-ATPase activity was greatly stimulated in the presence of NE, but not by ACh. These results strongly suggest that the NE-induced enhancement of active AIB uptake in the isolated SCG is occurring in glial cells rather than in neuronal cells, with a possible alteration of membrane properties for amino acid uptake and with an apparent regulation by the stimulated transport enzyme Na+, K+-ATPase. 相似文献
20.
Na+-dependent uptake of dicarboxylic amino acids in membrane saccules, due to exchange diffusion and independent of ion gradients, was highly sensitive to inhibition by K+. The IC50 was 1-2 mM under a variety of conditions (i.e., whole tissue or synaptic membranes, frozen/thawed or fresh, D-[3H]aspartate (10-1000 nM) or L-[3H]glutamate (100 nM), phosphate or Tris buffer, NaCl or Na acetate, presence or absence of Ca2+ and Mg2+). The degree of inhibition by K+ was also not affected on removal of ion gradients by ionophores, or by extensive washing with H2O and reloading of membrane saccules with glutamate and incubation medium in the presence or absence of K+ (3 mM, i.e., IC70). Rb+, NH4+, and, to a lesser degree Cs+, but not Li+, could substitute for K+. [K+] showed a competitive relationship to [Na+]2. Incubation with K+ before or after uptake suggested that the ion acts in part by allowing net efflux, thus reducing the internal pool of amino acid against which D-[3H]aspartate exchanges, and in part by inhibiting the interaction of Na+ and D-[3H]aspartate with the transporter. The current model of the Na+-dependent high-affinity acidic amino acid transport carrier allows the observations to be explained and reconciled with previous seemingly conflicting reports on stimulation of acidic amino acid uptake by low concentrations of K+. The findings correct the interpretation of recent reports on a K+-induced inhibition of Na+-dependent "binding" of glutamate and aspartate, and partly elucidate the mechanism of action. 相似文献