首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ferret tracheal segments were infected with human influenza virus A/Taiwan/86 (H1N1) in vitro. After 4 days, the smooth muscle contractile responses to acetylcholine and to substance P were measured. The response to substance P was markedly accentuated, with a threefold increase in force of contraction at a substance P concentration of 10(-5) M, the highest concentration tested. In contrast, the response to acetylcholine was not affected by viral infection. Histological examination of tissues revealed extensive epithelial desquamation. Activity of enkephalinase (neutral metallo-endopeptidase, EC.3.4.24.11), an enzyme that degrades substance P, was decreased by 50% in infected tissues. Inhibiting enkephalinase activity by pretreating with thiorphan (10(-5) M) increased the response to substance P to the same final level in both infected and control tissues. Inhibiting other substance P-degrading enzymes including kininase II (angiotensin-converting enzyme), serine proteases, and aminopeptidases did not affect the response to substance P. Inhibiting cyclooxygenase and lipoxygenase activity using indomethacin and BW 755c did not affect hyperresponsiveness to substance P. Pretreating tissues with antagonists of alpha-adrenoceptors, beta-adrenoceptors, and H1 histamine receptors (phentolamine 10(-5) M, propranolol 5 X 10(-6) M, and pyrilamine 10(-5) M, respectively) had no effect on substance P-induced contraction. These results demonstrate that infection of ferret airway tissues with influenza virus increases the contractile response of airway smooth muscle to substance P. This effect is caused by decreased enkephalinase activity in infected tissues.  相似文献   

2.
We examined the effects of viral respiratory infection by Sendai virus on airway responsiveness to tachykinins in guinea pigs. We measured the change in total pulmonary resistance induced by substance P or capsaicin in the presence or absence of the neutral endopeptidase inhibitor, phosphoramidon, in infected and in noninfected animals. In the absence of phosphoramidon, the bronchoconstrictor responses to substance P and to capsaicin were greater in infected than in noninfected animals. Phosphoramidon did not further potentiate the responses to substance P and to capsaicin in the infected animals, whereas it did so in noninfected animals. Studies performed in vitro showed that nonadrenergic noncholinergic bronchial smooth muscle responses to electrical field stimulation were also increased in tissues from infected animals and that phosphoramidon increased the response of tissues from noninfected animals greatly but increased the responses of tissues from infected animals only slightly. Responses to acetylcholine were unaffected by viral infection. Neutral endopeptidase activity was decreased by 40% in the tracheal epithelial layer of the infected animals. We suggest that respiratory infection by Sendai virus causes enhanced airway responsiveness to tachykinins by decreasing neutral endopeptidase-like activity in the airway epithelium.  相似文献   

3.
This study was designed to evaluate the role of neutral endopeptidase (NEP) in modulating the airway smooth muscle contraction induced by endothelin-1 in isolated segments of guinea-pig trachea. Endothelin-1 (10(-9)-10(-6) M) produced a concentration-dependent contraction that reached a maximum by 30 min. The NEP inhibitor leucine-thiorphan (10(-5) M) significantly increased the contractile response to endothelin-1. The addition of leucine-thiorphan to tracheal segments precontracted by 10(-9) and 10(-8) M endothelin-1 increased isometric tension by 181 +/- 65% (mean +/- 1 S.E.M.; P less than 0.05) and by 138 +/- 49% (P less than 0.05), respectively. In contrast, the kininase II inhibitor captopril and the peptidase inhibitors leupeptin and bestatin had no effect. Preincubation of endothelin-1 with 1 microgram recombinant human NEP decreased the contractile activity of endothelin-1 by 72 +/- 9%, whereas no effect was observed using heat-inactivated NEP. We conclude that NEP modulates endothelin-induced contraction of airway smooth muscle in the guinea-pig trachea.  相似文献   

4.
Removal of epithelium from mammalian tracheae has been shown to enhance responsiveness to a variety of contractile and relaxant agents. One of the most dramatic shifts reported has been for guinea pig tracheal tissue denuded of epithelium and treated with substance P. We investigated whether this shift in responsiveness was because of 1) removal of an epithelium-associated enzyme, neutral endopeptidase, which degrades substance P and 2) loss of an epithelium-derived noncyclooxygenase relaxant factor. Using a muscle bath preparation we performed concentration-response curves with substance P and acetylcholine on indomethacin-treated tissues with and without intact epithelium and with and without pretreatment with the neutral endopeptidase inhibitor, phosphoramidon. Epithelium removal potentiated the mean agonist concentration calculated to causes 30% of the maximal contractile response by 148-fold for substance P and by 7-fold for acetylcholine. Phosphoramidon potentiated the contractile response to substance P, but not to acetylcholine, by both the epithelium-intact and denuded tissues (P less than 0.05). However, the degree of enhancement by phosphoramidon was much greater in the intact tissues. With phosphoramidon treatment, therefore, the difference in responsiveness to substance P between the intact and denuded tissues was reduced from 148-fold to 18-fold. This effect of phosphoramidon suggests that the hyperresponsiveness to substance P of epithelium-denuded airway tissue is largely because of removal of neutral endopeptidase. Because all tissues were treated with indomethacin, the leftward shifts in substance P and in acetylcholine responsiveness induced by epithelium removal further suggest that an epithelium-derived noncyclooxygenase factor other than neutral endopeptidase also modulates the contractile response to substance P and to acetylcholine.  相似文献   

5.
The aims of this work were (1) to determine the dose-response relationship between ex vivo exposure to oxidizing pollutants such as nitrogen dioxide (NO2), the aldehyde acrolein, and ozone (O3), and the reactivity to agonists in isolated human bronchial smooth muscle; and (2) to investigate the alterations in the cellular mechanisms of human airway smooth muscle contraction induced by such exposures. Experiments were performed in isolated human bronchi obtained at thoracotomy. Isometric contraction in response to a variety of agonists was compared between pollutant-exposed preparations and paired controls. Short exposures to NO2, acrolein, or O3 altered the subsequent airway smooth muscle responsiveness in a dose-dependent manner. The cellular mechanisms producing the airway hyperresponsiveness observed in vitro are shared by the three pollutants and include alterations in airway smooth muscle excitation-contraction coupling as well as indirect effects on neutral endopeptidase activity.Abbreviations ACh acetylcholine - CCRC cumulative concentration-response curve - KH Krebs-Henseleit solution - NEP neutral endopeptidase - NKA neurokinin A - SP substance P  相似文献   

6.
We investigated the effects of ozone exposure (3.0 ppm, 2 h) on airway neutral endopeptidase (NEP) activity and bronchial reactivity to substance P in guinea pigs. Reactivity after ozone or air exposure was determined by measuring specific airway resistance in intact unanesthetized spontaneously breathing animals in response to increasing doses of intravenous substance P boluses. The effective dose of substance P (in micrograms) that produced a doubling of baseline specific airway resistance (ED200SP) was determined by interpolation of cumulative substance P dose-response curves. NEP activity was measured in tracheal homogenates made from each animal of other groups exposed to either ozone or room air. By reverse-phase high-pressure liquid chromatography, this activity was characterized by the phosphoramidon-inhibitable cleavage of alanine-p-nitroaniline from succinyl-(Ala)3-p-nitroaniline in the presence of 100 microM amastatin. Mean values of the changes in log ED200SP were 0.27 +/- 0.07 (SE) for the ozone-exposed group and 0.08 +/- 0.04 for the air-exposed group. We found that phosphoramidon significantly increased substance P reactivity in the air-exposed animals (P less than 0.01), but it had no effect in the ozone-exposed group. This finding was associated with a significant reduction in tracheal homogenate NEP activity of ozone-exposed animals compared with controls: mean values were 18.1 +/- 1.9 nmol.min-1.mg protein-1 for the ozone-exposed group and 25.1 +/- 2.4 nmol.min-1.mg protein-1 for air-exposed animals (P less than 0.05). Inhalation of an aerosolized NEP preparation, partially purified from guinea pig kidney, reversed the substance P hyperreactivity produced by ozone exposure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We investigated whether the airway constrictive response to stimulation of bronchopulmonary C-fiber afferents is altered during the maturation process. Isometric tension was measured in airway rings isolated from three tracheobronchial locations (intrathoracic trachea and main and hilar bronchi) and compared in mature [M, 407 +/- 10 (SE) g body wt, n = 36] and immature (IM, 161 +/- 5 g body wt, n = 35) guinea pigs. Our results showed no difference in the ACh (10(-5) M)- or KCl (40 mM)-induced contraction between M and IM groups, regardless of the airway location. In sharp contrast, the concentration-response curves of 10(-8)-10(-6) M capsaicin were distinctly lower in IM hilar bronchi; for example, response to the same concentration of capsaicin (10(-6) M) was 89.2 +/- 15.3% of the response to 10(-5) M ACh in IM and 284.7 +/- 43.2% in M animals. Similar, but smaller, differences in the bronchoconstrictive response to capsaicin between IM and M groups were also observed in the trachea and main bronchus. Electrical field stimulation induced airway constriction in all three locations in M and IM groups. However, after administration of 10(-6) M atropine and 10(-6) M propranolol, electrical field stimulation-induced contraction was significantly smaller in the hilar bronchus of IM than M animals, and this difference was not prevented by pretreatment with 5 x 10(-5) M indomethacin. Although radioimmunoassay showed no difference in the tissue content of substance P between M and IM airways, the constrictive responses to exogenous substance P and neurokinin A were markedly greater in M airways at all three locations. In conclusion, the constriction of isolated airways evoked by C-fiber stimulation was significantly weaker in the IM guinea pigs, probably because of a less potent effect of tachykinins on the airway smooth muscle.  相似文献   

8.
We have investigated the effect of elastase and alkaline protease from Pseudomonas aeruginosa on airway secretion into the trachea of anesthetized cats and from human bronchial mucosa in vitro. Secretory macromolecules were radiolabeled biosynthetically with two precursors in the cat, [3H]glucose and [35S]sulfate, and with [35S]-sulfate only in human tissue. Both enzymes (2.6 x 10(-9) to 1.3 x 10(-6)M elastase and 8 x 10(-9) to 2.4 x 10(-6)M alkaline protease) released radiolabeled macromolecules in a concentration-dependent manner from the two preparations. Purified elastase, 1.3 x 10(-6)M, released radiolabeled macromolecules (delta 3H = +397 +/- 72%, delta 35S 225 +/- 40% over control, P less than 0.001) and periodic acid-Schiff- (PAS) reactive glycoconjugates (delta PAS = +4.1 +/- 0.96 micrograms/min or +102 +/- 20%; P less than 0.01) from cat trachea, as did alkaline protease, 2.4 x 10(-6)M (delta 3H = +356 +/- 57%, delta 35S = +176 +/- 25%, delta PAS = +7.5 +/- 1.3 micrograms/min or 194 +/- 36%, P less than 0.001). Increases in 3H exceeded those of 35S, suggesting surface epithelium as the main source of secretion. Inhibition of enzyme activity abolished secretory effects. Both enzymes also stimulated secretion from human bronchus (e.g., with elastase, 1.3 x 10(-6)M: delta 35S = +331 +/- 67%, delta PAS = +4.3 +/- 0.92 micrograms/min or +131 +/- 24%, P less than 0.001; with alkaline protease, 2.4 x 10(-6)M: delta 35S = +220 +/- 67%, delta PAS = +12.7 +/- 3.2 micrograms/min or +575 +/- 245%, P less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
We studied the effect of vasoactive intestinal peptide (VIP) on ciliary activity in rabbit cultured tracheal epithelium by a photoelectric method in vitro. Administration of VIP (10(-7) M) elicited an increase in ciliary beat frequency (CBF) from the baseline values of 970 +/- 52 to 1139 +/- 75 beats/min (mean +/- S.E., P less than 0.01). This ciliostimulatory effect was dose-dependent, with the maximal increase and EC50 value being 17.4 +/- 1.0% (P less than 0.05) and 6.10(-11) M, respectively. The VIP-induced increase in CBF was abolished by pretreatment of cells with [4-Cl-D-Phe6, Leu17]-VIP, a VIP receptor antagonist. The neutral endopeptidase inhibitor phosphoramidon (10(-5) M) potentiated the effect of VIP, so that the CBF dose-response curve for VIP was shifted to lower concentrations by 0.5 log U. The administration of VIP increased cyclic AMP levels in epithelial cells, an effect that was also potentiated by phosphoramidon. These results suggest that VIP may interact with its specific receptors and stimulate airway ciliary activity probably through the activation of adenylate cyclase, and that neutral endopeptidase may play a role in modulating this effect of VIP.  相似文献   

10.
We investigated the effect of octreotide (OCT), a stable somatostatin analog, (OCT) on changes in short-circuit current (Isc) induced by vasoactive intestinal peptide (VIP), aminophylline, serotonin (5-HT) and substance P. OCT significantly decreased basal Isc at a concentration of 10(-9) M; the maximum decrease in Isc was observed at 10(-6) M. OCT (10(-7) M) significantly inhibited the intestinal secretory response to all the secretagogues studied. The maximum Isc response was reduced when tissues were stimulated with VIP (184.9 +/- 18.0 vs. 119.7 +/- 14.1, P less than 0.05), 5-HT (135.1 +/- 14.4 vs. 79.5 +/- 13.4, P less than 0.05) and substance P (156.0 +/- 19.2 vs. 30.7 +/- 5.4, P less than 0.01). In the case of aminophylline, the concentration-response curve was shifted to the right but the maximum response was not reduced. Because VIP and aminophylline increase cAMP while 5-HT and substance P stimulate intestinal secretion principally by a calcium linked mechanism, we conclude that OCT inhibits Isc in rat colon by more than one mechanism.  相似文献   

11.
Mast cell chymase. A potent secretagogue for airway gland serous cells   总被引:6,自引:0,他引:6  
Submucosal glands are the major sources of airway secretions in most mammals. Mast cells are abundant in the environment of airway submucosal glands and are rich sources of secreted proteases. To investigate the hypothesis that mast cell proteases stimulate airway gland secretion, we studied the ability of the two major mast cell granule proteases, chymase and tryptase, to cause secretion of 35S-labeled macromolecules from a line of cultured bovine airway gland serous cells. Mast cell chymase and tryptase were purified from dog mastocytoma cells. Chymase markedly stimulated serous cell secretion in a concentration-dependent fashion with a threshold of 10(-10) M, whereas tryptase had no effect. The response to 10(-8) M chymase (1530 +/- 80% over base line) was approximately 10-fold higher than that evoked by other agonists such as histamine and isoproterenol. The predominant 35S-labeled macromolecule released by chymase was chondroitin sulfate proteoglycan, the glycoconjugate present in serous cell secretory granules. The response to chymase was non-cytotoxic and was blocked by active site inhibitors of chymase (soybean trypsin inhibitor and chymostatin) and by inhibitors of cellular energy metabolism (azide,2,4-dinitrophenol, dicumarol). Supernatant obtained by degranulation of mastocytoma cells caused a secretory response of comparable magnitude to that caused by chymase. These findings demonstrate that chymase, but not tryptase, is a potent secretagogue for airway gland serous cells, and they suggest a possible role for chymase-containing mast cells in the pathogenesis of airway hypersecretion.  相似文献   

12.
Membrane vesicles, showing a 21 +/- 2-fold enrichment in the activity of 5'-nucleotidase and a 11 +/- 4-fold enrichment in the activity of angiotensin-converting enzyme relative to homogenate, were prepared from the myenteric plexus-containing longitudinal muscle layer of guinea pig ileum. Incubation of the vesicles with substance P and neurokinin A led to degradation of the peptides, and metabolites were isolated by reverse-phase HPLC and identified by amino acid composition. Cleavages of substance P between Glu6-Phe7, Phe7-Phe8, and Gly9-Leu10 and of neurokinin A between Gly8-Leu9 were observed and could be inhibited in a dose-dependent manner by phosphoramidon, an inhibitor of neutral endopeptidase 24.11. Formation of these metabolites was not completely inhibited by this agent, indicating that a phosphoramidon-insensitive form of endopeptidase 24.11 was present in the gut. Substance P was resistant to degradation by aminopeptidases, but neurokinin A was a substrate for bestatin-sensitive aminopeptidase(s), so that the neurokinin A (3-10) fragment represented the predominant metabolite in the chromatograms. The rate of formation of all the metabolites was not inhibited by enalapril and not enhanced by an increased Cl- concentration, indicating that angiotensin-converting enzyme was unimportant in the degradation process. Degradation of neurokinin A by the vesicles (Km 30 microM; Vmax 7.2 +/- 0.8 nmol min-1 mg of protein-1) was more rapid than degradation of substance P (Km 25 microM; Vmax 4.4 +/- 0.4 nmol min-1 mg of protein-1).  相似文献   

13.
N-formyl-methionyl-leucyl-phenylalanine (FMLP), a synthetic analogue of bacterial chemotactic peptide, may play a role in airway hyperresponsiveness, and is cleaved by neutral endopeptidase-24.11 (enkephalinase). To determine the effect of FMLP on parasympathetic contraction of airway smooth muscle and its modulation by endogenous enkephalinase, we studied isolated rabbit tracheal ring segments under isometric conditions in vitro. FMLP did not cause muscle contraction, but it potentiated the contractile response to electrical field stimulation (EFS) in a dose-dependent fashion, with the maximal increase from the baseline response being 59.8 +/- 6.2% (mean +/- S.E.M., P less than 0.001), an effect that was abolished by t-Boc-Phe-Leu-Phe-Leu-Phe, partially inhibited by pyrilamine, but not by phentolamine or [D-Pro2,D-Trp7,9]substance P. In contrast, the contractile response to administered acetylcholine was not affected by FMLP. Pretreatment of tissues with thiorphan, an enkephalinase inhibitor, further potentiated the effect of FMLP on the EFS-induced contraction. These results suggest that FMLP facilitates cholinergic neurotransmission in rabbit airway smooth muscle probably by increasing acetylcholine release, and that this effect may be modulated by enkephalinase in the airway.  相似文献   

14.
15.
《Life sciences》1993,53(5):PL75-PL80
The effect of the neutral endopeptidase inhibitor, phosphoramidon, on the bronchoconstriction induced by aerosolized bombesin in the guinea pig was investigated. Administered by aerosol for 1 min, bombesin (0.01 or 0.1 mg/ml) induced a dose-dependent increase in pulmonary inflation pressure. Pretreatment of the guinea-pigs with phosphoramidon (0.1 mM), administered by aerosol for 15 min, 15 min prior to challenge, markedly potentiated the increase in pulmonary inflation pressure induced by bombesin (0.01 mg/ml) and substance P (0.1 mg/ml). This result suggests a local hydrolysis of bombesin by airway neutral endopeptidase reducing the activity of this peptide on smooth muscle.  相似文献   

16.
The effect of antigen challenge on the airway responses to substance P and on the epithelial neutral endopeptidase (NEP) activity was investigated in aerosol sensitized guinea-pigs. In vivo, bronchial responses to aerosolized substance P were similar to the responses observed in antigen-challenged guinea-pigs and in the control groups. In contrast, when the guinea-pigs were pretreated with the NEP inhibitor, phosphoramidon, a significant increase in the airway responses to substance P was observed after antigen challenge in vivo. However, in vitro, the contractile responses of the tracheal smooth muscle to substance P were similar between groups of guinea-pigs, in respect to the presence or absence of the epithelium and/or phosphoramidon. Histological studies showed an accumulation of eosinophils in the tracheal submucosa after antigen challenge and intact epithelial cells. These results show that in vivo bronchial hyperresponsiveness to substance P after antigen challenge in the guinea-pig is not associated with increased responses of the smooth muscle to exogenous SP in vitro. In addition, the results with phosphoramidon suggest that loss of NEP activity cannot account for the in vivo bronchial hyperresponsiveness to substance P presently observed.  相似文献   

17.
To elucidate how substance P (SP) produces submucosal gland secretion, we examined the effects of SP on the glandular contractile response and 3H-labeled glycoconjugate release in isolated submucosal glands from feline tracheae. SP (10(-12) to 10(-4) M) produced dose-dependent increases in the contractile response, and the maximal tension induced by SP was approximately 70% of the response to methacholine. SP-induced contraction is blocked completely by atropine and augmented by neostigmine. Pretreatment with hemicholinium 3, an acetylcholine synthesis inhibitor, inhibited the contractile response to SP. Pretreatment with tetrodotoxin did not inhibit the contractile response to SP. Capsaicin induced tension of a magnitude similar to that of SP. SP (10(-7) M) produced a significant increase (74% above control) in radiolabeled glycoconjugate release from isolated glands, whereas SP had no significant effects on glycoconjugate release from tracheal explants, probably because of epithelial suppression. Atropine abolished SP-evoked glycoconjugate release in isolated glands. Our findings indicate that 1) SP induces glandular contraction, which is related to the squeezing of mucus in the ducts and secretory tubules, 2) SP stimulates radiolabeled glycoconjugate release in isolated submucosal gland, probably involving mucus synthesis and/or cellular secretion, and 3) these two actions are mediated by a peripheral cholinergic mechanism.  相似文献   

18.
The tachykinins substance P (SP) and neurokinin A (NKA) have been shown to induce airway smooth muscle contraction in mature animals, and the enzyme neutral endopeptidase (NEP) modulates this effect. We evaluated maturation of SP- and NKA-induced tracheal smooth muscle contraction and modulation of their effects by NEP in anesthetized, paralyzed, and artificially ventilated piglets less than 4 days, 2-3 wk, and 10 wk of age. Tracheal smooth muscle tension was measured in vivo from an open tracheal segment by use of a force transducer. Intravenous SP caused a dose-dependent increase in tracheal tension in all three age groups; however, the response in less than 4-day-old piglets was significantly weaker than in 2- to 3- and 10-wk-old piglets. NKA caused a dose-dependent increase in tracheal tension only in 2- to 3- and 10-wk-old piglets. The response of tracheal tension to NKA was weaker than the response to SP in all age groups. Atropine (2 mg/kg) significantly diminished the responses of tracheal tension to SP and NKA, indicating a cholinergic contribution to these responses at all ages. Intravenous thiorphan, a known NEP inhibitor, potentiated the effects of SP only in 2- to 3- and 10-wk-old piglets and did not affect the response of tracheal tension to NKA at any age. Biochemical analyses demonstrated a significant increase in tracheal NEP activity in comparably aged piglets over the first 10 wk of life.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
We investigated the effects of ozone exposure (3.0 ppm, 2 h) on the responsiveness of guinea pig airway muscle in vitro from animals developing bronchial hyperreactivity. Muscarinic reactivity in vivo was determined by measuring specific airway resistance (sRaw) in response to increasing concentrations of aerosolized acetylcholine (ACh) administered before and 30 min after exposure. Immediately after reactivity testing, multiple tracheal rings from ozone- and air-exposed animals were prepared and the contractile responses to increasing concentrations of substance P, ACh, or KCl were assessed in the presence of 10 microM indomethacin with or without 1 microM phosphoramidon, an inhibitor of neutral endopeptidase. Isometric force generation in vitro was measured on stimulation by cumulative concentrations of the agonists, and force generation (in g/cm2) was calculated after determination of muscle cross-sectional area. The smooth muscle of mucosa-intact airways from guinea pigs with ozone-induced bronchial hyper-reactivity proved to be hyperresponsive in vitro to substance P and ACh but not to KCl. Pretreatment with phosphoramidon abolished the increase in substance P responsiveness but had no effect on muscarinic hyperresponsiveness after ozone exposure. Furthermore, substance P responsiveness was not augmented in ozone-exposed airways in which the mucosa had been removed before testing in vitro. Likewise, muscarinic hyperresponsiveness was not present in ozone-exposed airways without mucosa. Our data indicate that airway smooth muscle responsiveness is increased in guinea pigs with ozone-induced bronchial hyperreactivity and suggest that this hyperresponsiveness may be linked to non-cyclooxygenase mucosa-derived factors.  相似文献   

20.
To determine the role of endogenous neutral endopeptidase (NEP) (also called enkephalinase, EC 3.4.24.11) in regulating neurotensin-induced airway contraction, we used phosphoramidon, a specific NEP inhibitor, in the guinea pig. In studies in vitro, neurotensin and the COOH-terminal fragment neurotensin-(8-13) contracted strips of bronchial smooth muscle in a concentration-dependent fashion (P less than 0.001). In contrast, the NH2-terminal fragment neurotensin-(1-11) and the COOH-terminal fragment neurotensin-(12-13), the main fragments of neurotensin hydrolysis by NEP, had no effect. Phosphoramidon (10(-5) M) did not change resting tension but shifted the concentration-response curves to neurotensin to lower concentrations (P less than 0.001), whereas inhibitors of kininase II, aminopeptidases, serine proteases, and carboxypeptidase N were without effect. Removing the epithelium increased the contractile response to neurotensin (P less than 0.001), and phosphoramidon further increased the response to neurotensin in these tissues (P less than 0.001). Similar results were obtained in studies in vivo using aerosolized neurotensin and phosphoramidon. These results suggest that endogenous NEP in the airways modulates the effects of neurotensin on airway smooth muscle contraction by inactivating the peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号