首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The superorder Elopomorpha, a grouping which includes all teleost fishes that possess a specialized leptocephalous larva [true eels (Anguilliformes), gulpers and bobtail snipe eels (Saccopharyngiformes), bonefishes, spiny eels, and halosaurs (Albuliformes, including Notacanthiformes), ladyfishes and tarpons (Elopiformes, including Megalopiformes)] comprises >800 species for which phylogenetic relationships are poorly understood. In the present study, we analyzed mitochondrial DNA sequences in segments of the 12S and 16S rRNA genes in 33 elopomorph taxa encompassing all of the previously proposed orders, and 9 of the 15 currently recognized families of the Anguilliformes, as well as outgroup representatives from the superorders Osteoglossomorpha (nine species) and Clupeomorpha (three species), to develop phylogenetic hypotheses based on distance and parsimony methods. Both methods failed to support the monophyly of the Elopomorpha, casting doubt on the validity of the leptocephalus as an elopomorph synapomorphy. The orders Elopiformes, Albuliformes, and Anguilliformes, however, were resolved as monophyletic assemblages. Parsimony analysis supported the separation of the Anguilliformes into two groups (primitive and advanced) based on the presence of divided versus fused frontal bones. In addition, the molecular data indicated a close affinity of the anguilliform Thalassenchelys coheni (incertae sedis), known only from the leptocephalus, with the family Serrivomeridae. The implications of these data as regards the evolution of the elopomorph assemblage are discussed.  相似文献   

2.
Phylogenetic relationships within the diverse beetle superfamily Cucujoidea are poorly known. The Cerylonid Series (C.S.) is the largest of all proposed superfamilial cucujoid groups, comprising eight families and representing most of the known cucujoid species diversity. The monophyly of the C.S., however, has never been formally tested and the higher-level relationships among and within the constituent families remain equivocal. Here we present a phylogenetic study based on 18S and 28S rDNA for 16 outgroup taxa and 61 C.S. ingroup taxa, representing seven of the eight C.S. families and 20 of 39 subfamilies. We test the monophyly of the C.S., investigate the relationships among the C.S. families, and test the monophyly of the constituent families and subfamilies. Phylogenetic reconstruction of the combined data was achieved via standard static alignment parsimony analyses, Direct Optimization using parsimony, and partitioned Bayesian analysis. All three analyses support the paraphyly of Cucujoidea with respect to Tenebrionoidea and confirm the monophyly of the C.S. The C.S. families Bothrideridae, Cerylonidae, Discolomatidae, Coccinellidae and Corylophidae are supported as monophyletic in all analyses. Only the Bayesian analysis recovers a monophyletic Latridiidae. Endomychidae is recovered as polyphyletic in all analyses. Of the 14 subfamilies with multiple terminals in this study, 11 were supported as monophyletic. The corylophid subfamily Corylophinae and the coccinellid subfamilies Chilocorinae and Scymninae are recovered as paraphyletic. A sister grouping of Anamorphinae+Corylophidae is supported in all analyses. Other taxonomic implications are discussed in light of our results.  相似文献   

3.
The monophyly of Sabellidae, the phylogenetic relationships of its lineages, and the composition of Sabellida have been debated for many decades. Most studies on sabellid phylogeny have focused on morphological features but little DNA work has been published to date. We performed analyses using maximum‐parsimony methods that included 36 sabellids and members of previously related taxa. We integrated morphological and DNA sequence data to resolve relationships at different hierarchical levels (135 morphological features, fragments of the nuclear ribosomal RNA genes 18S and 28S, and the mitochondrial gene 16S). The results indicate the monophyly of Sabellida, including Sabellidae and Serpulidae. Monophyly of Fabriciinae and Serpulidae is assessed and the two groups are recovered as sister taxa, but with weak support. There is no significant support for the monophyly of Sabellinae. Relationships between members of the Sabellidae are still partially unresolved due to incongruence between partitions and low support for most clades. The evolution and transformation of certain characters within Sabellidae is explored.
© The Willi Hennig Society 2010.  相似文献   

4.
Annelids and arthropods have long been considered each other's closest relatives, as evidenced by similarities in their segmented body plans. An alternative view, more recently advocated by investigators who have examined partial 18S ribosomal RNA data, proposes that annelids, molluscs, and certain other minor phyla with trochophore larva stages share a more recent common ancestor with one another than any do with arthropods. The two hypotheses are mutually exclusive in explaining spiralian relationships. Cladistic analysis of morphological data does not reveal phylogentic relationships among major spiralian taxa but does suggest monophyly for both the annelids and molluscs. Distance and maximum-likelihood analyses of 18S rRNA gene sequences from major spiralian taxa suggest a sister relationship between annelids and molluscs and provide a clear resolution within the major groups of the spiralians. The parsimonious tree based on molecular data, however, indicates a sister relationship of the Annelida and Bivalvia, and an earlier divergence of the Gastropoda than the Annelida–Bivalvia clade. To test further hypotheses on the phylogenetic relationships among annelids, molluscs, and arthropods, and the ingroup relationships within the major spiralian taxa, we combine the molecular and morphological data sets and subject the combined data matrix to parsimony analysis. The resulting tree suggests that the molluscs and annelids form a monophyletic lineage and unites the molluscan taxa to a monophyletic group. Therefore, the result supports the Eutrochozoa hypothesis and the monophyly of molluscs, and indicates early acquisition of segmented body plans in arthropods. Received: 25 September 1995 / Accepted: 15 March 1996  相似文献   

5.
基于78种直翅目昆虫的18S rRNA基因全序列构建了直翅目各主要类群间的系统发育关系。本研究的结果支持直翅目的单系性,但不支持蝗亚目和螽亚目各自的单系性;直翅目下除蜢总科和蝗总科外各总科的划分多数与Otte系统相一致;蜢总科的单系性得不到支持;蝗总科的剑角蝗科、斑腿蝗科、斑翅蝗科、网翅蝗科和槌角蝗科5科均不是单系群,各物种间的遗传距离差异不大,应合并为一科,即蝗科;本研究支持将Otte系统中蚱总科和螽蟖总科下各亚科级阶元提升为科级阶元;18S rRNA基因全序列可以作为划分科级阶元的工具,当位于同一分支上互成姐妹群的类群间的遗传距离超过1%时,这几个类群属于不同的科;但由于其在进化上的保守性,18S rRNA基因只能用于纲目等高级阶元间关系的研究,而由其获得的总科以下阶元间的关系并不可靠。  相似文献   

6.
The monophyly of Elopomorpha (eels and their relatives) has long been one of the most problematic issues in systematic ichthyology. Since established the Elopomorpha based on the existence of the leaf-like larval form, termed a leptocephalus, no one has corroborated their monophyly using character matrices derived from both morphological and molecular data during the last 30 years. We investigated their monophyly and interrelationships at the ordinal level using complete mitochondrial genomic (mitogenomic) data from 33 purposefully chosen species (data for nine species being newly determined during the study) that fully represent the major teleostean and elopomorph lineages. Partitioned Bayesian analyses were conducted with the two data sets that comprised concatenated nucleotide sequences from 12 protein-coding genes (with and without third codon positions), 22 transfer RNA genes, and two ribosomal RNA genes. The resultant trees were well resolved and largely congruent, with most internal branches being supported by high statistical values. Mitogenomic data strongly supported the monophyly of Elopomorpha, indicating the validity of the leptocephalus as an elopomorph synapomorphy. The order Elopiformes occupied the most basal position in the elopomorph phylogeny, with the Albuliformes and a clade comprising the Anguilliformes and the Saccopharyngiformes forming a sister group. The most parsimonious reconstruction of the three previously recognized, distinct larval types of elopomorphs onto the molecular phylogeny revealed that one of the types (fork-tailed type) had originated as the common ancestor of the Elopomorpha, the other two (filament-tailed and round-tailed types) having diversified separately in two more derived major clades.  相似文献   

7.
The taxonomy of clupeiforms has been extensively studied, yet phylogenetic relationships among component taxa remain controversial or unresolved. Here we test current and new hypotheses of relationships among clupeiforms using mitochondrial rRNA genes (12S and 16S) and nuclear RAG1 and RAG2 sequences (total of 4749bp) for 37 clupeiform taxa representing all five extant families and all subfamilies of Clupeiformes, except Pristigasterinae, plus seven outgroups. Our results, based on maximum parsimony, maximum likelihood, and Bayesian analyses of these data, show that some traditional hypotheses are supported. These include the monophyly of the families Engraulidae, consisting of two monophyletic subfamilies, Engraulinae (Engraulis and Anchoa) and Coilinae (Coilia and Setipinna), and Pristigasteridae (here represented only by Ilisha and Pellona). The basal position of Denticeps among clupeiforms is consistent with the molecular data when base compositional biases are accounted for. However, the monophyly of Clupeidae was not supported. Some clupeids were more closely related to taxa assigned to Pristigasteridae and Chirocentridae (Chirocentrus). These results suggest that a major revision in the classification of clupeiform fishes may be necessary, but should await a more complete taxonomic sampling and additional data.  相似文献   

8.
We performed a comparative study of partial rDNA sequences from a variety of Coleoptera taxa to construct an annotated alignment based on secondary structure information, which in turn, provides improved rRNA structure models useful for phylogenetic reconstruction. Subsequent phylogenetic analysis was performed to test monophyly and interfamilial relationships of the megadiverse plant feeding beetle group known as ‘Phytophaga’ (Curculionoidea and Chrysomeloidea), as well as to discover their closest relatives among the Cucujiformia. Parsimony and Bayesian analyses were performed based on the structural alignment of segments of 18S rRNA (variable regions V4‐V5, V7‐V9) and 28S rRNA (expansion segment D2). A total of 104 terminal taxa of Coleoptera were included: 96 species of Cucujiformia beetles, representing the families and most ‘subfamilies’ of weevils and chrysomeloids (Phytophaga), as well as several families of Cleroidea, Tenebrionoidea and Cucujoidea, and eight outgroups from three other polyphagan series: Scarabaeiformia, Elateriformia and Bostrichiformia. The results from the different methods of analysis agree — recovering the monophyly of the ‘Phytophaga’, including Curculionoidea and Chrysomeloidea as sister groups. The curculionoid and chrysomeloid phylogeny recovered from the aligned 18S and 28S rDNA segments, which is independent of morphological data, is in agreement with recent hypotheses or concepts based on morphological evidence, particularly with respect to familial relationships. Our results provide clues about the evolutionary origin of the phytophagan beetles within the megaclade Cucujiformia, suggesting that the sister group of ‘Curculionoidea + Chrysomeloidea’ is a clade of the ‘Cucujoidea’, represented in this study by species in Boganiidae, Erotylidae, Nitidulidae, Cucujidae and Silvanidae. The Coccinellidae and Endomychidae are not grouped with the latter, and the remaining terminal taxa are nested in Tenebrionoidea and Cleroidea. We propose that the combination of structurally aligned ribosomal RNA gene regions 18S (V4‐V5, V7‐V9) and 28S (D2) are useful in testing monophyly and resolving relationships among beetle superfamilies and families.  相似文献   

9.
Mitochondrial and nuclear DNA sequence data for 105 acanthomorph taxa are analyzed to address questions of scorpaeniform monophyly and relationships. The combination of 3425 aligned base pairs from the mitochondrial small subunit rDNA (12S), large subunit rDNA (16S), and tRNA-Val and the nuclear large subunit rDNA (28S), histone H3, and TMO-4c4 loci are analyzed. Representatives of all scorpaeniform suborders and 32 of 36 scorpaeniform families are included with most suborders represented by multiple species. In addition to 69 scorpaeniform taxa, 36 outgroup taxa, including representatives of most families previously conjectured to be related to the Scorpaeniformes, are analyzed due to serious concerns of scorpaeniform monophyly. The traditionally recognized scorpaeniform fishes are recovered as polyphyletic. The 13 representatives of the Atheriniformes, Blennioidei, Gasterosteoidei, Grammatidae, Notothenioidei, Percidae, Trichodontidae, and Zoarcoidei included in the analysis are all nested within the least inclusive clade that includes all traditionally recognized scorpaeniforms. The scorpaenoid lineage is widely polyphyletic, and its intrarelationships differed significantly from previous hypotheses. The cottoid lineage is paraphyletic with only the presence of the Trichodontidae, as the sister-taxon of the Cottoidei, disrupting the traditional subordinal hypothesis of relationships.  相似文献   

10.
The genus Jesogammarus contains 16 species in two subgenera, Jesogammarus and Annanogammarus. To examine relationships among species in the genus, a molecular phylogenetic study including eight species of the former subgenus and four of the latter was conducted using partial DNA sequences of the mitochondrial COI and 12S rRNA genes. MP, NJ, and ML trees based on the combined COI and 12S data indicated monophyly of the subgenus Annanogammarus, though the monophyly of Jesogammarus was left unresolved. Consistent with few morphological differences, Jesogammarus (A.) naritai and J. (A.) suwaensis showed low genetic differentiation and did not show reciprocal monophyly, which suggests a close affinity of these taxa.  相似文献   

11.
Abstract. We sequenced the 18S rRNA gene from 11 nematomorph species from 9 genera and derived hypotheses concerning the sister group of Nematomorpha and relationships within this taxon. The molecular and morphological data are consistent with the monophyly of Nematomorpha, a sister-group relationship between Nematomorpha and Nematoda, and a sister-group relationship between the marine genus Nectonema and all of the freshwater taxa, Gordiida. Hypotheses of relationships within Gordiida support the traditional taxa Gordiidae, Chordodidae, and Chordodinae but reject Parachordodinae and Spinochordodidae. The molecular results differ from those of previous morphological studies by suggesting a reduction of the two tail lobes at the posterior end of males in Chordodinae, monophyly of the genus Paragordionus , and paraphyly of the genus Chordodes .  相似文献   

12.
The phylogenetic relationships of the family Congiopodidae are inferred based on morphological characters. The monophyly of this family is supported by 13 unambiguous apomorphic characters, including four autapomorphies among the superfamily Scorpaenoidea. The Congiopodidae shares 26 apomorphic characters with other scorpaenoid taxa, and these characters are considered to also support the monophyly of the family. Upon completion of the phylogenetic analysis using the characters in 39 transformation series, it was assumed that the family is unambiguously supported by five characters (and also by three and one characters when ACCTRAN and DELTRAN are used, respectively) and is branched into two major clades, including Congiopodus and Alertichthys plus Zanclorhynchus, respectively. Based on the phylogenetic relationships, a new classification, recognizing two subfamilies (Congiopodinae and Zanclorhynchinae) in the family Congiopodidae, is proposed. The genus Perryena, that was recently inferred being closely related to the Tetrarogidae (although many authors included it in the Congiopodidae), is provisionally placed into the Congiopodidae as incertae sedis.  相似文献   

13.
14.
Suiformes (Artiodactyla) traditionally includes three families: Suidae, Tayassuidae, and Hippopotamidae but the monophyly of this suborder has recently been questioned from molecular data. A maximum parsimony analysis of molecular, morphological, and combined data was performed on the same set of taxa including representatives of the three Artiodactyla suborders (Suiformes, Ruminantia, and Tylopoda) and Perissodactyla as outgroup. Mitochondrial (cytochromeband 12S rRNA) sequence comparisons support the monophyly of Suina (Suidae and Tayassuidae) and Ancodonta (Hippopotamidae) but not the monophyly of Suiformes. Inversely, our preliminary morphological analysis supports the monophyly of Suiformes whereas relationships among the three families are not resolved. The combined data set does not resolve the relationships between Suina, Ancodonta, and Ruminantia. These results are discussed in relation to morphological characters and paleontological data. Some improvements are suggested to clarify the morphological definition of Suiformes and relationships among them.  相似文献   

15.
16.
The phylogenetic status of arthropods, as inferred from 18S rRNA sequences   总被引:16,自引:4,他引:12  
Partial 18S rRNA sequences of five chelicerate arthropods plus a crustacean, myriapod, insect, chordate, echinoderm, annelid, and platyhelminth were compared. The sequence data were used to infer phylogeny by using a maximum-parsimony method, an evolutionary-distance method, and the evolutionary-parsimony method. The phylogenetic inferences generated by maximum-parsimony and distance methods support both monophyly of the Arthropoda and monophyly of the Chelicerata within the Arthropoda. These results are congruent with phylogenies based on rigorous cladistic analyses of morphological characters. Results support the inclusion of the Arthropoda within a spiralian or protostome coelomate clade that is the sister group of a deuterostome clade, refuting the hypothesis that the arthropods represent the "primitive" sister group of a protostome coelomate clade. Bootstrap analyses and consideration of all trees within 1% of the length of the most parsimonious tree suggest that relationships between the nonchelicerate arthropods and relationships within the chelicerate clade cannot be reliably inferred with the partial 18S rRNA sequence data. With the evolutionary-parsimony method, support for monophyly of the Arthropoda is found in the majority of the combinations analyzed if the coelomates are used as "outgroups." Monophyly of the Chelicerata is supported in most combinations assessed. Our analyses also indicate that the evolutionary-parsimony method, like distance and parsimony, may be biased by taxa with long branches. We suggest that a previous study's inference of the Arthropoda as paraphyletic may be the result of (a) having two few arthropod taxa available for analysis and (b) including long-branched taxa.   相似文献   

17.
Multiple genes and the monophyly of Ischnocera (Insecta: Phthiraptera).   总被引:2,自引:0,他引:2  
Whereas most traditional classifications identify Ischnocera as a major suborder of lice in the order Phthiraptera, a recent molecular study based on one gene did not recover monophyly of Ischnocera. In this study we test the monophyly of Ischnocera using sequences of portions of three different genes: two nuclear (EF1 alpha and 18S) and one mitochondrial (COI). Analysis of EF1 alpha and COI sequences did not recover monophyly of Ischnocera, but these genes provided little support for ischnoceran paraphyly because homoplasy is high among the divergent taxa included in this study. Analysis of 18S sequences recovered ischnoceran monophyly with strong support. Sequences from these three gene regions showed significant conflict with the partition homogeneity test, but this heterogeneity probably arises from the dramatic differences in substitution rates. In support of this conclusion, Kishino-Hasegawa tests of the EF1 alpha and COI genes did not reject several trees containing ischnoceran monophyly. Combined analysis of all three gene regions supported monophyly of Ischnocera, although not as strongly as analysis of 18S by itself. In sum, although rapidly evolving genes can retain some phylogenetic signal for deep phylogenetic relationships, strong support for such relationships is likely to come from more slowly evolving genes.  相似文献   

18.
Large subunit ribosomal DNA (LSU rDNA) sequence data from 120 taxa and cytochrome oxidase subunit 1(COI) sequence data from 27 taxa are analyzed separately and together to estimate the internal phylogeny of the class Demospongiae and to evaluate how consistent these data are with pre-existing hypotheses of relationship concerning order-level monophyly and relationships. The monophyly of Porifera is only slightly inconsistent with LSU data, which do not support the monophyly of the class Demospongiae regardless of the inclusion or exclusion of Homoscleromopha (this result is likely due to the placement of a single hexactinellid taxon within the Demospongiae), however, no LSU support is found for the monophyly of Silicea (Demospongiae+Hexactinellida) unless homoscleromorphs are excluded. Neither the subclasses Ceractinomorpha and Tetractinomorpha, nor the orders Halichondrida, Hadromerida, and Haplosclerida are supported as monophyletic under any data partition. The haplosclerid suborders Haplosclerina and Petrosina are supported as monophyletic to the exclusion of the suborder Spongillina, and the orders Dictyoceratida, Verongida, Poecilosclerida, Astrophorida, Spirophorida, Homosclerophorida, and Agelasida are largely reconstructed as monophyletic, with the exception of few anomalously placed taxa. Few inter-order relationships are strongly supported by any data partition, but there is moderate support for a verongid+chondrosid clade and a tetractinellid+halichondrid clade. Furthermore, LSU data strongly support the existence of two novel clades that do not correspond to the existing classification and that show no morphological uniformity. Finally, every data partition supports the monophyly of a clade that includes the order Agelasida, some members of the genus Axinella, and two taxa tentatively identified as belonging to the orders Hadromerida and Halichondrida.  相似文献   

19.
Planorbid gastropods are the most diverse group of limnic pulmonates, with both discoidal and highspired taxa. Phylogenetic relationships among these genera are confused and controversial. In particular, the monophyly of the limpet‐like taxa (traditionally Ancylidae) is disputed. Even recent molecular studies have concluded that substantially more work is necessary to solve the remaining issues concerning intergeneric phylogenetic relationships and higher taxa systematics. Planorbid snails are of great significance for humans as several members of this group are intermediate hosts of blood flukes (schistosomes) causing a chronic disease, schistosomiasis. We used the two independent molecular markers COI and 18S (concatenated dataset of 2837 nucleotide bp) to infer phylogenetic relationships of 26 genera (27 species) of Planorboidea, represented mostly by type species from mainly topotypical populations. With the majority of the taxa discussed not having been studied previously, this study attempted to test several hypotheses on planorbid phylogenetic relationships using Bayesian inference techniques. The monophyly of Planorboidea (= ‘Ancyloplanorbidae’) is strongly suggested on the basis of our extensive molecular analysis. Besides a distinct Burnupia clade, two major clades were recovered that correspond to family level taxa (traditional Bulinidae and Planorbidae). Considerable rearrangements of suprageneric taxa are evident from the phylogeny inferred. Therefore, the only clades recognized by current classifications and supported by our analysis are Planorbini and Segmentinini. The present study found that Ancylidae as traditionally understood, i.e. covering most freshwater limpet gastropods, is paraphyletic, as the genera of Burnupia and Protancylus have been shown to lie phylogenetically outside the Ancylini. Chromosome numbers and levels of polyploidy are discussed in the light of the new phylogeny. An earlier theory of shell shape evolution, i.e. that of patelliform taxa being most advanced, was not supported by this study; a limpet‐shaped taxon is most basal within Planorboidea. Although many taxa still remain to be studied, our results will hopefully contribute towards a better understanding of this very important group of freshwater organisms. Some taxonomic implications are discussed.  相似文献   

20.
Proseriate flatworms are common members of the interstitial benthic fauna worldwide, predominantly occupying marine environments. As minute animals, having relatively few characters useful for cladistic analysis, they have been difficult to present in a phylogenetic framework using morphology alone. Here we present a new morphological matrix consisting of 16 putatively homologous characters and two molecular data sets to investigate further this major group of free-living members of the Platyhelminthes. Complete 18S rDNA (representing 277 parsimony-informative characters) from 17 ingroup taxa and partial 28S rDNA spanning variable expansion regions D1 to D3 and D1 to D6 (representing 219 and 361 parsimony-informative characters, respectively) from 27 and 14 ingroup taxa, respectively, were determined and aligned as complementary data sets. Morphological and molecular data sets were analyzed separately and together to determine underlying phylogenetic patterns and to resolve conflict between published scenarios based on morphology alone. The monophyly of the Proseriata cannot be confirmed categorically with any of these data sets. However, the constituent taxa are confirmed as basal members of the Neoophora, and a sister group relationship with Tricladida is rejected. Similarly, the monophyly of one of the two subtaxa of the Proseriata, the Lithophora, could not be confirmed with molecules. Concerning intragroup relationships, we could reject one of the two phylogenetic trees formerly proposed, as well as the clade Otoplanidae + Coelogynoporidae. However, a clade Otoplanidae + Archimonocelididae + Monocelididae (to which the Monotoplanidae belong) was supported, and the position of the genus Calviria shifted from the Archimonocelididae to the Coelogynoporidae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号