首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 748 毫秒
1.
Toc159, a protein located in the outer envelope membrane and the cytosol, is an important component of the receptor complex for nuclear-encoded chloroplast proteins. We investigated the molecular mechanism of protein import into chloroplasts by atToc159 using the ppi2 mutant, which has a T-DNA insertion at atToc159, shows an albino phenotype, and does not survive beyond the seedling stage due to a defect in protein import into chloroplasts. First we established that transiently expressing atToc159 in protoplasts obtained from the white leaf tissues of ppi2 plants complements the protein import defect into chloroplasts. Using this transient expression approach and a series of deletion mutants, we demonstrated that the C-terminal membrane-anchored (M) domain is targeted to the chloroplast envelope membrane in ppi2 protoplasts, and is sufficient to complement the defect in protein import. The middle GTPase (G) domain plays an additional critical role in protein import: the atToc159[S/N] and atToc159[D/L] mutants, which have a mutation at the first and second GTP-binding motifs, respectively, do not support protein import into chloroplasts. Leaf cells of transgenic plants expressing the M domain in a ppi2 background contained nearly fully developed chloroplasts with respect to size and density of thylakoid membranes, and displayed about half as much chlorophyll as wild-type cells. In transgenic plants, the isolated M domain localized to the envelope membrane of chloroplasts but not the cytosol. Based on these results, we propose that the M domain is the minimal structure required to support protein import into chloroplasts, while the G domain plays a regulatory role.  相似文献   

2.
3.
The NADPH-dependent protochlorophyllide (Pchlide) oxidoreductase (POR) is a photoenzyme that requires light for its catalytic activity and uses Pchlide itself as a photoreceptor. In Arabidopsis there are three PORs denoted PORA, PORB and PORC. The PORA and PORB genes are strongly expressed early in seedling development. In contrast to PORB the import of PORA into plastids of cotyledons is substrate-dependent and organ-specific. These differences in the import reactions between PORA and PORB most likely are due to different import mechanisms that are responsible for the uptake of these proteins. The two major core constituents of the translocon of the outer plastid envelope, Toc159 and Toc34, have been implicated in the binding and recognition of precursors of nuclear-encoded plastid proteins. Their involvement in conferring substrate dependency and organ specificity of PORA import was analyzed in intact Arabidopsis seedlings of wild type and the three mutants ppi3, ppi1 and ppi2 that are deficient in atToc34, atToc33, a closely related isoform of atToc34, and atToc159. Whereas none of these three Toc constituents is required for maintaining the organ specificity and substrate dependency of PORA import, atToc33 is indispensable for the import of PORB in cotyledons and true leaves suggesting that in these parts of the plant translocation of PORA and PORB occurs via two distinct import pathways. The analysis of PORA and PORB import into plastids of intact seedlings revealed an unexpected multiplicity of import routes that differed by their substrate, cell, tissue and organ specificities. This versatility of pathways for protein targeting to plastids suggests that in intact seedlings not only the constituents of the core complex of import channels but also other factors are involved in mediating the import of nuclear-encoded plastid proteins.  相似文献   

4.
NADPH:protochlorophyllide oxidoreductase (POR) A is a key enzyme of chlorophyll biosynthesis in angiosperms. It is nucleus-encoded, synthesized as a larger precursor in the cytosol and imported into the plastids in a substrate-dependent manner. Plastid envelope membrane proteins, called protochlorophyllide-dependent translocon proteins, Ptcs, have been identified that interact with pPORA during import. Among them are a 16-kDa ortholog of the previously characterized outer envelope protein Oep16 (named Ptc16) and a 33-kDa protein (Ptc33) related to the GTP-binding proteins Toc33 and Toc34 of Arabidopsis. In the present work, we studied the interactions and roles of Ptc16 and Ptc33 during pPORA import. Radiolabeled Ptc16/Oep16 was synthesized from a corresponding cDNA and imported into isolated Arabidopsis plastids. Crosslinking experiments revealed that import of 35S-Oep16/Ptc16 is stimulated by GTP. 35S-Oep16/Ptc16 forms larger complexes with Toc33 but not Toc34. Plastids of the ppi1 mutant of Arabidopsis lacking Toc33, were unable to import pPORA in darkness but imported the small subunit precursor of ribulose-1,5-bisphosphate carboxylase/oxygenase (pSSU), precursor ferredoxin (pFd) as well as pPORB which is a close relative of pPORA. In white light, partial suppressions of pSSU, pFd and pPORB import were observed. Our results unveil a hitherto unrecognized role of Toc33 in pPORA import and suggest photooxidative membrane damage, induced by excess Pchlide accumulating in ppi1 chloroplasts because of the lack of pPORA import, to be the cause of the general drop of protein import.  相似文献   

5.
Yu TS  Li H 《Plant physiology》2001,127(1):90-96
Protein import into chloroplasts is mediated by a protein import apparatus located in the chloroplast envelope. Previous results indicate that there may be multiple import complexes in Arabidopsis. To gain further insight into the nature of this multiplicity, we analyzed the Arabidopsis ppi1 and ppi2 mutants, which are null mutants of the atToc33 and atToc159 translocon proteins, respectively. In the ppi2 mutant, in contrast to the extremely defective plastids in mesophyll cells, chloroplasts in guard cells still contained starch granules and thylakoid membranes. The morphology of root plastids in both mutants was similar to that in wild type. After prolonged light treatments, root plastids of both mutants and the wild type differentiated into chloroplasts. Enzymatic assays indicated that the activity of a plastid enzyme was reduced only in leaves but not in roots. These results indicated that both the ppi1 and ppi2 mutants had functional root and guard cell plastids. Therefore, we propose that import complexes are cell type specific rather than substrate or plastid specific.  相似文献   

6.
Chen K  Chen X  Schnell DJ 《Plant physiology》2000,122(3):813-822
Two integral outer envelope GTPases, Toc34 and Toc86, are proposed to regulate the recognition and translocation of nuclear-encoded preproteins during the early stages of protein import into chloroplasts. Defining the precise roles of Toc86 and Toc34 has been complicated by the inability to distinguish their GTPase activities. Furthermore, the assignment of Toc86 function is rendered equivocal by recent reports suggesting that the standard protocol for the isolation of chloroplasts results in significant proteolysis of Toc86 (B. Bolter, T. May, J. Soll [1998] FEBS Lett 441: 59-62; G. Schatz [1998] Nature 395: 439-440). We demonstrate that Toc86 corresponds to a native protein of 159 kD in pea (Pisum sativum), designated Toc159. We take advantage of the proteolytic sensitivity of Toc159 to selectively remove its 100-kD cytoplasmic GTPase domain and thereby distinguish its activities from other import components. Proteolysis eliminates detectable binding of preproteins at the chloroplast surface, which is consistent with the proposed role of Toc159 as a receptor component. Remarkably, preprotein translocation across the outer membrane can occur in the absence of the Toc159 cytoplasmic domain, suggesting that binding can be bypassed. Translocation remains sensitive to GTP analogs in the absence of the Toc159 GTP-binding domain, providing evidence that Toc34 plays a key role in the regulation of translocation by GTP.  相似文献   

7.
8.
The multimeric translocon at the outer envelope membrane of chloroplasts (Toc) initiates the recognition and import of nuclear-encoded preproteins into chloroplasts. Two Toc GTPases, Toc159 and Toc33/34, mediate preprotein recognition and regulate preprotein translocation. Although these two proteins account for the requirement of GTP hydrolysis for import, the functional significance of GTP binding and hydrolysis by either GTPase has not been defined. A recent study indicates that Toc159 is equally distributed between a soluble cytoplasmic form and a membrane-inserted form, raising the possibility that it might cycle between the cytoplasm and chloroplast as a soluble preprotein receptor. In the present study, we examined the mechanism of targeting and insertion of the Arabidopsis thaliana orthologue of Toc159, atToc159, to chloroplasts. Targeting of atToc159 to the outer envelope membrane is strictly dependent only on guanine nucleotides. Although GTP is not required for initial binding, the productive insertion and assembly of atToc159 into the Toc complex requires its intrinsic GTPase activity. Targeting is mediated by direct binding between the GTPase domain of atToc159 and the homologous GTPase domain of atToc33, the Arabidopsis Toc33/34 orthologue. Our findings demonstrate a role for the coordinate action of the Toc GTPases in assembly of the functional Toc complex at the chloroplast outer envelope membrane.  相似文献   

9.
The translocon at the outer envelope membrane of chloroplasts (Toc) mediates the recognition and initial import into the organelle of thousands of nucleus-encoded proteins. These proteins are translated in the cytosol as precursor proteins with cleavable amino-terminal targeting sequences called transit peptides. The majority of the known Toc components that mediate chloroplast protein import were originally identified in pea, and more recently have been studied most extensively in Arabidopsis. With the completion of the tomato genome sequencing project, it is now possible to identify putative homologues of the chloroplast import components in tomato. In the work reported here, the Toc GTPase cDNAs from tomato were identified, cloned and analyzed. The analysis revealed that there are four Toc159 homologues (slToc159-1, -2, -3 and -4) and two Toc34 homologues (slToc34-1 and -2) in tomato, and it was shown that tomato Toc159 and Toc34 homologues share high sequence similarity with the comparable import apparatus components from Arabidopsis and pea. Thus, tomato is a valid model for further study of this system. The expression level of Toc complex components was also investigated in different tissues during tomato development. The two tomato Toc34 homologues are expressed at higher levels in non-photosynthetic tissues, whereas, the expression of two tomato Toc159 homologues, slToc159-1 and slToc159-4, were higher in photosynthetic tissues, and the expression patterns of slToc159-2 was not significantly different in photosynthetic and non-photosynthetic tissues, and slToc159-3 expression was limited to a few select tissues.  相似文献   

10.
T ranslocon at the o uter envelope membrane of c hloroplasts, 34  kDa (Toc34) is a GTP-binding component of the protein import apparatus within the outer envelope membrane of plastids. The Arabidopsis genome encodes two homologues of Toc34, designated atToc33 and atToc34. In this report, we describe the identification and characterization of two atToc34 knockout mutants, plastid protein import 3-1 ( ppi3-1 ) and ppi3-2 . Aerial tissues of the ppi3 mutants appeared similar to the wild type throughout development, and contained structurally normal chloroplasts that were able to efficiently import the Rubisco small subunit precursor (prSS) in vitro . The absence of an obvious ppi3 phenotype in green tissues presumably reflects the ability of atToc33 to substitute for atToc34 in the mutant, and the relatively high level of expression of the atTOC33 gene in these tissues. In the roots, where atTOC33 is expressed at a much lower level, significant growth defects were observed in both mutants: ppi3 roots were approximately 20–30% shorter than wild-type roots. Attempts to identify a double homozygote lacking atToc34 and atToc33 (by crossing the ppi3 mutants with ppi1 , an atToc33 knockout mutant) were unsuccessful, indicating that the function provided by atToc33/atToc34 is essential during early development. Plants that were homozygous for ppi1 and heterozygous for ppi3 displayed a chlorotic phenotype much more severe than that of the ppi1 single mutant. Furthermore, the siliques of these plants contained approximately 25% aborted seeds, indicating that the double homozygous mutation is embryo lethal. The data demonstrate that atToc33/atToc34 performs a central and essential role during plastid protein import, and indicate that the atToc34 isoform is relatively more important for plastid biogenesis in roots.  相似文献   

11.
12.
The preprotein translocon at the outer envelope membrane of chloroplasts (Toc) mediates the recognition and import of nuclear-encoded preproteins into chloroplasts. Two receptor components, Toc159 and Toc34, and the channel Toc75 form the Toc complex. In this study, we have analyzed the molecular architecture and organization of the Toc complex by blue native PAGE (BN-PAGE), which is a high-resolution method for separating membrane protein complexes under non-denaturing conditions. Pea chloroplasts isolated in the presence of a protease inhibitor cocktail were directly solubilized in detergent solution and analyzed by BN-PAGE and size exclusion chromatography. Subsequent immunoblot analyses indicated that the complex composed of Toc75, Toc159 and Toc34 has a molecular mass of 800-1,000 kDa. Limited proteolysis revealed a core of the Toc complex, which was resistant to proteases and detergent treatments. The stoichiometry of the three Toc proteins was calculated as approximately 1 : 3 : 3 between Toc159 : Toc75 : Toc34. We have also analyzed the Toc complex of etioplasts and root plastids. These plastids were found to have essentially the same sized Toc complex as that of the chloroplast.  相似文献   

13.
Arabidopsis Toc33 (atToc33) is a GTPase and a member of the Toc (translocon at the outer-envelope membrane of chloroplasts) complex that associates with precursor proteins during protein import into chloroplasts. By inference from the crystal structure of psToc34, a homologue in pea, the arginine at residue 130 (Arg(130)) has been implicated in the formation of the atToc33 dimer and in intermolecular GTPase activation within the dimer. Here we report the crystal structure at 3.2-A resolution of an atToc33 mutant, atToc33(R130A), in which Arg(130) was mutated to alanine. Both in solution and in crystals, atToc33(R130A) was present in its monomeric form. In contrast, both wild-type atToc33 and another pea Toc GTPase homologue, pea Toc159 (psToc159), were able to form dimers in solution. Dimeric atToc33 and psToc159 had significantly higher GTPase activity than monomeric atToc33, psToc159, and atToc33(R130A). Molecular modeling using the structures of psToc34 and atToc33(R130A) suggests that, in an architectural dimer of atToc33, Arg(130) from one monomer interacts with the beta-phosphate of GDP and several other amino acids of the other monomer. These results indicate that Arg(130) is critical for dimer formation, which is itself important for GTPase activity. Activation of GTPase activity by dimer formation is likely to be a critical regulatory step in protein import into chloroplasts.  相似文献   

14.
The translocons at the outer envelope membrane of chloroplasts (TOCs) initiate the import of thousands of nucleus-encoded proteins into the organelle. The identification of structurally and functionally distinct TOC complexes has led to the hypothesis that the translocons constitute different import pathways that are required to coordinate the import of sets of proteins whose expression varies in response to organelle biogenesis and physiological adaptation. To test this hypothesis, we examined the molecular basis for distinct TOC pathways by analyzing the functional diversification among the Toc159 family of TOC receptors. We demonstrate that the N-terminal A-domains of the Toc159 receptors regulate their selectivity for preprotein binding. Furthermore, the in vivo function of the two major Toc159 family members (atToc159 and atToc132) can be largely switched by swapping their A-domains in transgenic Arabidopsis thaliana. On the basis of these results, we propose that the A-domains of the Toc159 receptors are major determinants of distinct pathways for protein import into chloroplasts.  相似文献   

15.
The atToc33 protein is one of several pre‐protein import receptors in the outer envelope of Arabidopsis chloroplasts. It is a GTPase with motifs characteristic of such proteins, and its loss in the plastid protein import 1 (ppi1) mutant interferes with the import of photosynthesis‐related pre‐proteins, causing a chlorotic phenotype in mutant plants. To assess the significance of GTPase cycling by atToc33, we generated several atToc33 point mutants with predicted effects on GTP binding (K49R, S50N and S50N/S51N), GTP hydrolysis (G45R, G45V, Q68A and N101A), both binding and hydrolysis (G45R/K49N/S50R), and dimerization or the functional interaction between dimeric partners (R125A, R130A and R130K). First, a selection of these mutants was assessed in vitro, or in yeast, to confirm that the mutations have the desired effects: in relation to nucleotide binding and dimerization, the mutants behaved as expected. Then, activities of selected mutants were tested in vivo, by assessing for complementation of ppi1 in transgenic plants. Remarkably, all tested mutants mediated high levels of complementation: complemented plants were similar to the wild type in growth rate, chlorophyll accumulation, photosynthetic performance, and chloroplast ultrastructure. Protein import into mutant chloroplasts was also complemented to >50% of the wild‐type level. Overall, the data indicate that neither nucleotide binding nor dimerization at atToc33 is essential for chloroplast import (in plants that continue to express the other TOC receptors in native form), although both processes do increase import efficiency. Absence of atToc33 GTPase activity might somehow be compensated for by that of the Toc159 receptors. However, overexpression of atToc33 (or its close relative, atToc34) in Toc159‐deficient plants did not mediate complementation, indicating that the receptors do not share functional redundancy in the conventional sense.  相似文献   

16.
Preproteins are believed to be imported into chloroplasts through membrane contact sites where the translocon complexes of the outer (TOC) and inner (TIC) envelope membranes are assembled together. However, a single TOC–TIC supercomplex containing preproteins undergoing active import has not yet been directly observed. We optimized the blue native polyacrylamide gel electrophoresis (PAGE) (BN‐PAGE) system to detect and resolve megadalton (MD)‐sized complexes. Using this optimized system, the outer‐membrane channel Toc75 from pea chloroplasts was found in at least two complexes: the 880‐kD TOC complex and a previously undetected 1‐MD complex. Two‐dimensional BN‐PAGE immunoblots further showed that Toc75, Toc159, Toc34, Tic20, Tic56 and Tic110 were all located in the 880‐kD to 1.3‐MD region. During active preprotein import, preproteins were transported mostly through the 1‐MD complex and a smaller amount of preproteins was also detected in a complex of 1.25 MD. Antibody‐shift assays showed that the 1‐MD complex is a TOC–TIC supercomplex containing at least Toc75, Toc159, Toc34 and Tic110. Results from crosslinking and import with Arabidopsis chloroplasts suggest that the 1.25‐MD complex is also a supercomplex. Our data provide direct evidence supporting that chloroplast preproteins are imported through TOC–TIC supercomplexes, and also provide the first size estimation of these supercomplexes. Furthermore, unlike in mitochondria where translocon supercomplexes are only transiently assembled during preprotein import, in chloroplasts at least some of the supercomplexes are preassembled stable structures.  相似文献   

17.
The members of the Toc159 family of GTPases act as the primary receptors for the import of nucleus-encoded preproteins into plastids. Toc159, the most abundant member of this family in chloroplasts, is required for chloroplast biogenesis (Bauer, J., K. Chen, A. Hiltbunner, E. Wehrli, M. Eugster, D. Schnell, and F. Kessler. 2000. Nature. 403:203-207) and has been shown to covalently cross-link to bound preproteins at the chloroplast surface (Ma, Y., A. Kouranov, S. LaSala, and D.J. Schnell. 1996. J. Cell Biol. 134:1-13; Perry, S.E., and K. Keegstra. 1994. Plant Cell. 6:93-105). These reports led to the hypothesis that Toc159 functions as a selective import receptor for preproteins that are required for chloroplast development. In this report, we provide evidence that Toc159 is required for the import of several highly expressed photosynthetic preproteins in vivo. Furthermore, we demonstrate that the cytoplasmic and recombinant forms of soluble Toc159 bind directly and selectively to the transit peptides of these representative photosynthetic preproteins, but not representative constitutively expressed plastid preproteins. These data support the function of Toc159 as a selective import receptor for the targeting of a set of preproteins required for chloroplast biogenesis.  相似文献   

18.
A large number of plastid proteins encoded by the nuclear genome are posttranslationally imported into plastids by at least two distinct mechanisms: the Toc159-dependent and Toc132/Toc120-dependent pathways. Light-induced photosynthetic proteins are imported through the Toc159-dependent pathway, whereas constitutive housekeeping plastid proteins are imported into plastids through the Toc132/Toc120 pathway. However, it remains unknown which features of the plastid protein transit peptide (TP) determine the import pathway. We have discovered sequence elements of the Rubisco small subunit TP (RbcS-tp) that play a role in determining import through the Toc159-dependent pathway in vivo. We generated multiple hybrid mutants using the RbcS-tp and the E1α-subunit of pyruvate dehydrogenase TP (E1α-tp) as representative peptides mediating import through the Toc159-dependent and Toc159-independent pathways, respectively. Import experiments using these hybrid mutants in wild-type and ppi2 mutant protoplasts revealed that multiple sequence motifs in the RbcS-tp independently contribute to Toc159-dependent protein import into chloroplasts. One of these motifs is the group of serine residues located in the N-terminal 12-amino acid segment and the other is the C-terminal T5 region of the RbcS-tp ranging from amino acid positions 41 to 49. Based on these findings, we propose that multiple sequence elements in the RbcS-tp contribute independently to Toc159-dependent import of proteins into chloroplasts.The plastid is a crucial organelle in plant cells. It plays a role in critical cellular processes such as photosynthesis, ATP generation, amino acid metabolism, and synthesis of fatty acids and lipid components. Accordingly, a large number of proteins are required for all these activities in plastids. Some of these proteins are encoded by the chloroplast genetic system and are translated in the plastids. However, most plastid proteins (over 90%) are encoded by the nuclear genome and are imported into plastids from the cytosol posttranslationally (Kessler and Schnell, 2006; Jarvis, 2008).Most plastid interior proteins that undergo posttranslational import from the cytosol contain a cleavable N-terminal targeting signal, a transit peptide (TP), of 50 to 70 amino acid residues (Jarvis, 2008; Lee et al., 2008). However, recently, some plastid interior proteins have been identified that do not have the N-terminal canonical TP (Miras et al., 2002, 2007; Nada and Soll, 2004). The long TP consists of multiple domains or motifs that encode information for preprotein import into plastids (von Heijne et al., 1989; Pilon et al., 1995; Rensink et al., 2000; Lee et al., 2006, 2008). The preproteins transit through the cytosol as unfolded protein. During passage through the cytosol, they may form a complex with heat shock proteins, such as Hsp70 and Hsp90, and guidance factors such as 14-3-3 (May and Soll, 2000; Qbadou et al., 2006). However, 14-3-3 may not be essential for the targeting of these proteins to chloroplasts (Lee et al., 2002, 2006; Nakrieko et al., 2004). To cross the two envelope membranes, the TP interacts with components of the Toc and Tic complexes located at the outer and inner envelopes of chloroplasts, respectively (Jarvis, 2008). These include members of the Toc159 family, Toc33/Toc34, Toc75, and Tic20. At the late stage or after translocation, the TP is recognized and cleaved off by stromal processing peptidases (Richter and Lamppa, 1999; Chen and Li, 2007).Despite extensive study of the TPs, it is not fully understood how the information encoded in these peptides is decoded by the plastid protein import machinery. TPs display some degree of similarity in their amino acid composition, including a higher content of Ala, Gly, and the hydroxylated amino acids Ser and Thr, and a lack of acidic amino acids (von Heijne et al., 1989; Bruce, 2001; Zhang and Glaser, 2002). However, it is clear that the entire family of TPs, termed the transit peptidome, cannot be represented by a single consensus sequence. Growing evidence has pointed to a functional classification of TPs. The first indication is that the transit peptidome may be classified into two groups: Toc159-dependent and Toc159-independent TPs (Ivanova et al., 2004; Kubis et al., 2004; Smith et al., 2004). The TPs that confer Toc159 dependence in protein import are typically used by light-induced photosynthetic proteins, whereas Toc159-independent TPs are used by nonphotosynthetic and housekeeping proteins (Kessler and Schnell, 2006). This was clearly demonstrated in the ppi2 mutant that has a T-DNA insertion in atTOC159 (Smith et al., 2004). In accord with this observation, the expression of atTOC159 is high in young and photosynthetic tissues whereas atTOC132 and atTOC120 are expressed uniformly in all plant tissues at low levels (Kubis et al., 2004). In addition, in nonphotosynthetic tissues, such as roots, the mRNA level of atTOC132 or atTOC120 is much higher than that of atTOC159. These results are consistent with the hypothesis that TPs may contain sequence motifs that determine the targeting pathway. However, the sequence information that confers Toc159 dependence or Toc132/120 dependence on these proteins during protein import remains unknown. In addition, Lee et al. (2008) recently demonstrated that the transit peptidome may be divided into several groups based on critical sequence motifs present in the TP. However, the role of the sequence motifs embedded in the TPs is not entirely clear yet with respect to translocation through the envelope membranes and also to the molecular machinery that recognizes these sequence motifs. Furthermore, the sequence information that confers Toc159 dependence or Toc132/120 dependence in protein import on these proteins remains unknown.The Rubisco small subunit (RbcS) and E1α TPs (RbcS-tp and E1α-tp) confer Toc159 dependence and Toc159 independence in protein import into chloroplasts, respectively (Smith et al., 2004). In this study, using these two TPs, we have determined the RbcS-tp sequence motifs that confer Toc159 dependence. Here, we have demonstrated that Toc159-dependent protein import is mediated independently by multiple sequence motifs: one of them is the group of Ser residues located in the N-terminal 12-amino acid segment and the other is in the C-terminal region ranging from amino acid positions 41 to 49.  相似文献   

19.
Tu SL  Chen LJ  Smith MD  Su YS  Schnell DJ  Li HM 《The Plant cell》2004,16(8):2078-2088
Most chloroplast outer-membrane proteins are synthesized at their mature size without cleavable targeting signals. Their insertion into the outer membrane is insensitive to thermolysin pretreatment of chloroplasts and does not require ATP. It has therefore been assumed that insertion of outer-membrane proteins proceeds through a different pathway from import into the interior of chloroplasts, which requires a thermolysin-sensitive translocon complex and ATP. Here, we show that a model outer-membrane protein, OEP14, competed with the import of a chloroplast interior protein, indicating that the two import pathways partially overlapped. Cross-linking studies showed that, during insertion, OEP14 was associated with Toc75, a thermolysin-resistant component of the outer-membrane protein-conducting channel that mediates the import of interior-targeted precursor proteins. Whereas almost no OEP14 inserted into protein-free liposomes, OEP14 inserted into proteoliposomes containing reconstituted Toc75 with a high efficiency. Taken together, our data indicate that Toc75 mediates OEP14 insertion, and therefore plays a dual role in the targeting of proteins to the outer envelope membrane and interior of chloroplasts.  相似文献   

20.
Toc34 is a member of the outer membrane translocon complex that mediates the initial stage of protein import into chloroplasts. Toc34, like most outer membrane proteins, is synthesized in the cytosol at its mature size without a cleavable transit peptide. The majority of outer membrane proteins do not require thermolysin-sensitive components on the chloroplastic surface or ATP for their insertion into the outer membrane. However, different results have been obtained concerning the factors required for Toc34 insertion into the outer membrane. Using an Arabidopsis homologue of pea Toc34, atToc34, we show that the insertion of atToc34 was greatly reduced by thermolysin pretreatment of chloroplasts as assayed either by protease digestion or by alkaline extraction. The insertion was also dependent on the presence of ATP or GTP. A mutant of atToc34 with the GTP-binding domain deleted still required ATP for optimal insertion, indicating that ATP was used by other protein components in the import system. The ATP-supported insertion was observed even in thermolysin-pretreated chloroplasts, suggesting that the protein component responsible for ATP-stimulated insertion is a different protein from the thermolysin-sensitive component that assists atToc34 insertion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号