首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The oxygen-binding behavior of the 24-meric hemocyanin of the scorpion Pandinus imperator and its dependence on allosteric effectors such as protons can be successfully described by the nesting model; the MWC model is not acceptable. The affinities of the four assumed conformations of the allosteric unit, the 12-meric half-molecule, are not dependent on pH whereas the three allosteric equilibrium constants decrease with decreasing proton concentration. Comparison with the oxygen-binding behavior of the 24-meric tarantula hemocyanin (Eurypelma californicum) reveals that the affinity values for the various conformations seem to be conserved for chelicerata hemocyanin.  相似文献   

2.
Hemocyanins are large respiratory proteins of arthropods and mollusks, which bind oxygen with very high cooperativity. Here, we investigated the relationship between oxygen binding and structural changes of the 24-mer tarantula hemocyanin. Oxygen binding of the hemocyanin was detected following the fluorescence intensity of the intrinsic tryptophans. Under the same conditions, structural changes were monitored by the non-covalently bound fluorescence probe Prodan (6-propionyl-2-(dimethylamino)-naphthalene), which is very sensitive to its surroundings. Upon oxygen binding of the hemocyanin a red shift of 5 nm in the emission maximum of the label was observed. A comparison of oxygen binding curves recorded with tryptophan and Prodan emission revealed that structural changes in tarantula hemocyanin lag behind oxygen binding at the beginning of oxygenation. Analyses based on the nested two-state model, which describes cooperative oxygen binding of hemocyanins, indicated that the transition monitored by Prodan emission is closely related to one of the four conformations (rR) predicted for the allosteric unit. Earlier, the allosteric unit of tarantula hemocyanin was found to be the 12-mer half-molecule. Here, fluorescence titration revealed that the number of Prodan binding sites/24-mer tarantula hemocyanin is approximately 2, matching the number of allosteric units/hemocyanin. Based on the agreement between oxygen binding curves and fluorescence titration we concluded that Prodan monitors a conformational transition of the allosteric unit.  相似文献   

3.
The respiratory protein of the tarantula Eurypelma californicum is a 4 x 6-meric hemocyanin that binds oxygen with high cooperativity. This requires the existence of different conformations which have been confirmed by small angle X-ray scattering (SAXS). Here we present reconstructed 3D-models of the oxy- and deoxy-forms of tarantula hemocyanins, as obtained by fitting small angle X-rays scattering curves on the basis of known X-ray structures and electron microscopy of related hemocyanins. For the first time, the involvement of movements at all levels of the quaternary structure was confirmed for an arthropod hemocyanin upon oxygenation. The two identical 2 x 6-meric half-molecules of the native 4 x 6-mer were shifted in the oxy-state along each other compared with the deoxy-state by about 14 A. In addition, the angle between the two 2 x 6-meric half-molecules increased by 13 degrees. Within these 2 x 6-mers the two hexamers were rotated against each other by about 26 degrees with respect to the deoxy-state. In addition, the distance between the two trimers of each hexamer increased upon oxygenation by about 2.5 A. These strongly coupled movements are based on the particular hierarchical structure of the 4 x 6-mer. It also shows a concept of allosteric interaction in hierarchically assembled proteins to guarantee the involvement of all subunits of a native oligomer to establish very high Hill coefficients.  相似文献   

4.
This review summarizes recent highlights of our joint work on the structure, evolution, and function of a family of highly complex proteins, the hemocyanins. They are blue-pigmented oxygen carriers, occurring freely dissolved in the hemolymph of many arthropods and molluscs. They are copper type-3 proteins and bind one dioxygen molecule between two copper atoms in a side-on coordination. They possess between 6 and 160 oxygen-binding sites, and some of them display the highest molecular cooperativity observed in nature. The functional properties of hemocyanins can be convincingly described by either the Monod-Wyman-Changeux (MWC) model or its hierarchical extension, the Nested MWC model; the latter takes into account the structural hierarchies in the oligomeric architecture. Recently, we applied these models to interpret the influence of allosteric effectors in detailed terms. Effectors shift the allosteric equilibria but have no influence on the oxygen affinities characterizing the various conformational states. We have shown that hemocyanins from species living at different environmental temperatures have a cooperativity optimum at the typical temperature of their natural habitat. Besides being oxygen carriers, some hemocyanins function as a phenoloxidase (tyrosinase/catecholoxidase) which, however, requires activation. Chelicerates such as spiders and scorpions lack a specific phenoloxidase, and in these animals activated hemocyanin might catalyse melanin synthesis in vivo. We propose a similar activation mechanism for arthropod hemocyanins, molluscan hemocyanins and tyrosinases: amino acid(s) that sterically block the access of phenolic compounds to the active site have to be removed. The catalysis mechanism itself can now be explained on the basis of the recently published crystal structure of a tyrosinase. In a series of recent publications, we presented the complete gene and primary structure of various hemocyanins from different molluscan classes. From these data, we deduced that the molluscan hemocyanin molecule evolved ca. 740 million years ago, prior to the separation of the extant molluscan classes. Our recent advances in the 3D cryo-electron microscopy of hemocyanins also allow considerable insight into the oligomeric architecture of these proteins of high molecular mass. In the case of molluscan hemocyanin, the structure of the wall and collar of the basic decamers is now rapidly becoming known in greater detail. In the case of arthropod hemocyanin, a 10-? structure and molecular model of the Limulus 8 × 6mer shows the amino acids at the various interfaces between the eight hexamers, and reveals histidine-rich residue clusters that might be involved in transferring the conformational signals establishing cooperative oxygen binding.  相似文献   

5.
Oxygen binding of hemocyanins results in an absorption band around 340nm and a strong quenching of the intrinsic tryptophan fluorescence. Our study analyses in detail the fluorescence quenching within two hemocyanins, a hexamer (Panulirus interruptus) and a 4 x 6-mer (Eurypelma californicum). Based on the comparison of calculated and measured transfer efficiencies we could show that: (1) For both hemocyanins FRET (fluorescence resonance energy transfer) is exclusively responsible for quenching of the tryptophan fluorescence upon oxygen binding. (2) Tryptophan quenching by FRET is independent of the oxy- or deoxy conformation of the protein. (3) The quenching takes place at the subunit level only and the oligomerization of both hemocyanins has no influence on the amount of quenching. Therefore, tryptophan fluorescence is a linear sensor for bound oxygen. It can be used as a model-free signal to investigate oxygen binding of hemocyanins at all aggregation levels. Furthermore it may provide a new way to analyse oxygen binding of phenoloxidases.  相似文献   

6.
Cooperativity depends on the existence of equilibria among functionally distinct conformational states that are affected by homo and heterotropic effectors. In order to isolate the quaternary conformations of hemocyanin from E. californicum, the 24-meric giant protein was encapsulated in wet, nanoporous silica gels, either in the absence or presence of oxygen. The deoxy- and oxy-hemocyanin gels exhibit a p50 for oxygen of 11 and 2.5 torr, respectively, values in close agreement with those for hemocyanin in solution. The observed Hill coefficients are lower than unity, indicating a conformational heterogeneity within each locked conformational state, a finding in agreement with the assumption that at least four conformational states are required to explain the oxygen binding properties of E. californicum hemocyanin in solution.  相似文献   

7.
Hemocyanin from the tarantula Eurypelma californicum is a large respiratory protein with an exceptional high cooperativity. In contrast to hemocyanins from other species, no physiological allosteric effectors other than protons have been identified so far for this 24-meric oligomer. Here we report for the first time the mediating effects of water activity on the oxygen binding properties of a hemocyanin. Oxygen binding curves were measured in presence of several concentrations of glycine and sucrose since both substances reduce water activity. A pronounced shift of the p(50) was observed in both cases but in different directions: adding sucrose shifts the p(50) towards lower values whereas presence of glycine shows the same tendency as for human hemoglobin. Furthermore, prolonged incubation in sucrose slightly distorts the oxygen binding characteristics of spider hemocyanin. Therefore, only the influence of glycine was further analysed. An analysis based on the nested MWC model indicates, that presence of glycine leads to a preferential population of the two states with lower oxygen affinity (tR and tT) compared to the high affinity states rT and rR. The results corroborate the presence of hierarchically organized interactions in this hemocyanin.  相似文献   

8.
We have examined the competitive binding of oxygen and carbon monoxide to the multisubunit hemocyanin of the tarantula Eurypelma californicum. Employment of high-precision thin-layer methods has enabled detailed characterization of the pure oxygen and pure carbon monoxide binding curves, as well as binding curves performed under mixed-gas conditions. The pure oxygen binding curve and the displacement of oxygen by carbon monoxide at full ligand saturation are highly cooperative, but in the absence of oxygen, carbon monoxide binds noncooperatively. The results were analyzed globally within the framework of a nested allosteric model [Robert, C.H., Decker, H., Richey, B., Gill, S.J., & Wyman, J. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 1891-1895] which takes into account the hierarchy of subunit structure present in the macromolecule. The use of two ligands enables one to recognize two distinct levels of allosteric interaction functioning in the protein assembly. The binding characteristics of the allosteric states demonstrated for Eurypelma follow a similar pattern as those found earlier for Homarus americanus.  相似文献   

9.
Hemoglobin from the leech Macrobdella decora belongs to the class of giant extracellular hexagonal bilayer globin structures found in annelid and vestimentiferan worms. These complexes consist of 144 heme-bearing subunits, exhibit a characteristic quaternary structure (2 x (6 x (3 x 4))), and contain tetramers as basic substructures that express cooperative oxygen binding and thus provide a structural basis for a hierarchy in allosteric interactions. A thorough analysis of the isolated tetramer indicates that it functions as a trimer of cooperatively interacting subunits and a non-cooperative monomer rather than as four interacting subunits. A thermodynamic analysis of the whole molecule favors the application of a nested Monod-Wyman-Changeux model with six cooperatively interacting 12-mer allosteric units. In contrast to the isolated tetramers, all subunits of the tetramers seem to be coupled cooperatively within the oligomerized 144-mer. Thus, besides hemocyanins and GroEL, the hexagonal bilayer hemoglobins represent another class of proteins in which the hierarchical quaternary structure provides the basis for nested interaction in their functional properties.  相似文献   

10.
Hemocyanins are dioxygen-transporting proteins freely dissolved in the hemolymph of mollusks and arthropods. Dynamic light scattering and time-resolved fluorescence measurements show that the oxygenated and apo-forms of the Rapana thomasiana hemocyanin, its structural subunits RtH1 and RtH2, and those of the functional unit RtH2e, exist in different conformations. The oxygenated respiratory proteins are less compact and more asymmetric than the respective apo-forms. Different conformational states were also observed for the R. thomasiana hemocyanin in the absence and presence of an allosteric regulator. The results are in agreement with a molecular mechanism for cooperative dioxygen binding in molluscan hemocyanins including transfer of conformational changes from one functional unit to another.  相似文献   

11.
Summary When the oxygen binding of the hemocyanin from the lobsterHomarus americanus was analysed in terms of the nested Monod-Wyman-Changeux model, it revealed that protons affect the allosteric equilibria between four conformations. Applying computer simulations we have demonstrated the specific influence of the three different allosteric equilibrium constants on the affinity and cooperativity of oxygen binding.  相似文献   

12.
Hemocyanins are multisubunit respiratory proteins found in many invertebrates. They bind oxygen highly cooperatively. However, not much is known about the structural basis of this behavior. We studied the influence of the physiological allosteric effector l-lactate on the oxygenated quaternary structure of the 2x6-meric hemocyanin from the lobster Homarus americanus employing small angle x-ray scattering (SAXS). The presence of 20 mm l-lactate resulted in different scattering curves compared with those obtained in the absence of l-lactate. The distance distribution functions p(r) indicated a more compact molecule in presence of l-lactate, which is also reflected in a reduction of the radius of gyration by about 0.2 nm (3%). Thus, we show for the first time on a structural basis that a hemocyanin in the oxy state can adopt two different conformations. This is as predicted from the analysis of oxygen binding curves according to the "nesting" model. A comparison of the distance distribution functions p(r) obtained from SAXS with those deduced from electron microscopy revealed large differences. The distance between the two hexamers as deduced from electron microscopy has to be shortened by up to 1.1 nm to agree well with the small angle x-ray curves.  相似文献   

13.
The structural properties of the hemocyanin isolated from the Mediterranean mud shrimp, Upogebia pusilla (Decapoda: Thalassinidea), were investigated. Our intent was to make use of the U. pusilla case to perform a structural comparison between crustacean and chelicerate 4x6-meric hemocyanins. The thalassinidean hemocyanin appears similar in size but different in structural organization compared to the chelicerate 4x6-mer. Ultracentrifuge analyses on the purified protein revealed a sedimentation coefficient of 39S, typical of 4x6 hemocyanins. Electron micrographs are in agreement with a model in which four 2x6-meric building blocks are arranged in a tetrahedron-like quaternary structure and not in the quasi-square-planar orientation characteristic of the chelicerate protein. Size-exclusion chromatography-fast protein chromatography analysis showed elevated instability of the protein in absence of divalent ions or at pH values higher than 8.0. This analysis also shows that the dissociation of the U. pusilla 4x6-meric hemocyanin into hexamers occurs without any intermediate 2x6-meric state, in contrast with the dissociation profile of the chelicerate protein exhibiting several dissociation intermediates. The oxygen-binding properties of U. pusilla hemocyanin were studied to disclose possible effects by the typical allosteric effectors that modulate the functional properties of crustacean hemocyanin. A marked Bohr and lactate effect, but no significant influence of urate, on the oxygen affinity of U. pusilla hemocyanin were found.  相似文献   

14.
Hemocyanins are copper-containing, respiratory proteins that occur in the hemolymph of many arthropod species. Here we report for the first time the presence of hemocyanins in the diplopod Myriapoda, demonstrating that these proteins are more widespread among the Arthropoda than previously thought. The hemocyanin of Spirostreptus sp. (Diplopoda: Spirostreptidae) is composed of two immunologically distinct subunits in the 75-kDa range that are most likely arranged in a 36-mer (6 x 6) native molecule. It has a high oxygen affinity (P(50) = 4.7 torr) but low cooperativity (h = 1.3 +/- 0.2). Spirostreptus hemocyanin is structurally similar to the single known hemocyanin from the myriapod taxon, Scutigera coleoptrata (Chilopoda), indicating a rather conservative architecture of the myriapod hemocyanins. Western blotting demonstrates shared epitopes of Spirostreptus hemocyanin with both chelicerate and crustacean hemocyanins, confirming its identity as an arthropod hemocyanin.  相似文献   

15.
Abstract Thrombin is the central protease of the coagulation cascade. Its activity is tightly regulated to ensure rapid blood clotting while preventing uncontrolled thrombosis. Thrombin interacts with multiple substrates and cofactors and is critically involved in both pro- and anticoagulant pathways of the coagulation network. Its allosteric regulation, especially by the monovalent cation Na+, has been the focus of research for more than 30 years. It is believed that thrombin can adopt an anticoagulant ('slow') conformation and, after Na+ binding, a structurally distinct procoagulant ('fast') state. In the past few years, however, the general view of allostery has evolved from one of rigid structural changes towards thermodynamic ensembles of conformational states. With this background, the view of the allosteric regulation of thrombin has also changed. The static view of the two-state model has been dismissed in favor of a more dynamic view of thrombin allostery. Herein, we review recent data that demonstrate that apo-thrombin is zymogen-like and exists as an ensemble of conformations. Furthermore, we describe how ligand binding to thrombin allosterically stabilizes conformations on the continuum from zymogen to protease.  相似文献   

16.
The molecular details of the mechanism of action of allosteric effectors on hemoglobin oxygen affinity are not clearly understood. The global allostery model proposed by Yonetani et al. suggests that the binding of allosteric effectors can take place both in the R and T states and that they influence oxygen affinity through inducing global tertiary changes in the subunits. Recently published high pressure studies yielded dissociation constants at atmospheric pressure that showed a stabilizing effect of heterotropic allosteric effectors on the dimer interface in the R state, and a more pronounced destabilizing effect in a T state model. In the present work, we report on computational modeling used to interpret the high pressure experimental data. We show structural changes in the hemoglobin interdimeric interfaces, indicative of a global tertiary structural change induced by the binding of allosteric effectors. We also show that the number of water molecules bound at the interface is significantly influenced by binding effectors in the T state in accordance with the experimental data. Our results suggest that the binding of effectors at definite sites leads to tertiary changes that propagate to the interfaces and results in overall structural re-organizations.  相似文献   

17.
B Richey  H Decker  S J Gill 《Biochemistry》1985,24(1):109-117
The binding of oxygen and carbon monoxide to hemocyanin from the mangrove crab Scylla serrata and the lobster Homarus americanus has been studied by thin-layer optical absorption and front face fluorescence techniques. Three types of experiments were performed on subunit and oligomeric preparations of each hemocyanin: oxygen binding, carbon monoxide binding, and oxygen-carbon monoxide competition studies. The results obtained from the subunit preparations of dissociated oligomers from both hemocyanins show that the binding site can be ligated by either one oxygen or one carbon monoxide. The binding results obtained with the oligomeric samples of hemocyanin from both species cannot be described by the two-state MWC model [Monod, J., Wyman, J., & Changeux, J. P. (1965) J. Mol. Biol. 12, 88-118] since the data from the three types of binding experiments cannot be fit with a single set of binding constants. The MWC model has been extended by including a third allosteric form, and an analysis based on the three-state model is able to fit the data from the three types of experiments with the same set of binding constants. The comparison of the oxygen to carbon monoxide affinity ratios (kO2/kCO) indicates that the structure around the binding site of subunits in the T form oligomer is similar to that of the free subunits. The oligomeric forms of both these hemocyanins bind carbon monoxide with a weak but definite positive cooperativity. An analysis of the affinity ratios for the T, S, and R forms suggests that the high affinity of the R form results from a specific interaction between oxygen and binding site.  相似文献   

18.
The functional properties of erythrocruorin from Octolasium complanatum (a common earthworm of Central Italy) have been characterized in great detail. Special attention has been given to the reciprocal effects of the various ligands, namely oxygen, cations and protons. The data obtained under a variety of experimental conditions bring out the dominant role played by cations in the modulation of both homotropic and heterotropic interactions. In this respect, the most interesting observation concerns the unusual interplay between protons and cations that occurs in this erythrocruorin, the first respiratory pigment in which the Bohr effect is due totally to the O2-linked binding of an allosteric effector. The oxygen binding data collected under the various experimental conditions have been analyzed in terms of a modified two-state model, which takes into account the fact that allosteric effectors may also influence the ligand binding properties of the state that they stabilize. The analysis shows that the number of interacting sites necessary for the observed co-operativity in O2 binding is much smaller than the number of heme groups carried by the whole molecule, in accordance with previous findings on hemocyanins, the other class of giant respiratory pigments. Moreover, the analysis indicates that the dimensions of these "functional constellations" are under the control of allosteric effectors.  相似文献   

19.
Homo-oligomeric protein assemblies are known to participate in dynamic association/disassociation equilibria under native conditions, thus creating an equilibrium of assembly states. Such quaternary structure equilibria may be influenced in a physiologically significant manner either by covalent modification or by the non-covalent binding of ligands. This review follows the evolution of ideas about homo-oligomeric equilibria through the 20th and into the 21st centuries and the relationship of these equilibria to allosteric regulation by the non-covalent binding of ligands. A dynamic quaternary structure equilibria is described where the dissociated state can have alternate conformations that cannot reassociate to the original multimer; the alternate conformations dictate assembly to functionally distinct alternate multimers of finite stoichiometry. The functional distinction between different assemblies provides a mechanism for allostery. The requirement for dissociation distinguishes this morpheein model of allosteric regulation from the classical MWC concerted and KNF sequential models. These models are described alongside earlier dissociating allosteric models. The identification of proteins that exist as an equilibrium of diverse native quaternary structure assemblies has the potential to define new targets for allosteric modulation with significant consequences for further understanding and/or controlling protein structure and function. Thus, a rationale for identifying proteins that may use the morpheein model of allostery is presented and a selection of proteins for which published data suggests this mechanism may be operative are listed.  相似文献   

20.
Independent evidence, derived from studies of the kinetics of receptor inactivation by sulfhydryl reagents, is presented in support of a previously postulated allosteric model of the opiate receptor, in which sodium ions act as effectors. Scatchard analysis provides evidence for cooperative binding, a characteristic of allosteric systems. Both new and old evidence is cited which is consistent with the hypothesis that agonists and antagonists bind to the same receptor sites. These sites can exist in alternative conformations that differ in their relative affinities for agonists and antagonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号