首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K W Gee  H I Yamamura 《Life sciences》1982,30(26):2245-2252
The novel pyrazoloquinoline, CGS, 9896, was a potent inhibitor of specific [3H]-flunitrazepam binding in several brain regions with subnanomolar KI values. The inhibition of [3H] propyl beta-carboline-3-carboxylate ([3H]-PCC-) binding by CGS 9896 was enhanced by gamma-aminobutyric acid (GABA) but not by chloride ion. GABA enhancement of CGS 9896 inhibition of [3H]-PCC binding predicts this compound has benzodiazepine (BZD) agonist-type activity. Behavioral studies support this prediction. CGS 9896 was found to protect mice against bicuculline and metrazol induced seizure at doses that did not induce ataxia or sedation. CGS 9896 may represent a class of compounds with potential therapeutic value. The high affinity of this non-BZD compound suggests that CGS 9896 may also be of value as a high affinity ligand for the continued study of BZD receptors.  相似文献   

2.
Human neuroblastoma SH-SY5Y cells exhibited a heterogeneous population of mu and delta types of opioid binding sites. These specific binding sites displayed the characteristic saturability, stereospecificity and reversibility, expected of a receptor. Scatchard analysis of [3H]-D-Ala2-D-Leu5-enkephalin (DADLE) in the presence of 10(-5) M D-Pro4-morphiceptin (to block the mu receptors) and the competitive displacement by various highly selective ligands yielded the binding parameters of delta sites which closely resemble those of the delta receptors in brain and mouse neuroblastoma clones. Similarly, the high affinity binding of [3H]-dihydromorphine, together with the higher potency of morphine analogues to displace [3H]-naloxone binding established the presence of mu sites. Guanine nucleotides and NaCl significantly inhibited the association and increased the dissociation of [3H]-DADLE binding. The observed heterogeneity of opioid receptors in cultured SH-SY5Y cells would serve as an excellent model for the biochemical and pharmacological characterization of brain opiate receptors.  相似文献   

3.
The novel pyrazoloquinoline, CGS, 9896, was a potent inhibitor of specific [3H]-flunitrazepam binding in several brain regions with subnanomolar KI values. The inhibition of [3H] propyl beta-carboline-3-carboxylate ([3H]-PCC) binding by CGS 9896 was enhanced by gamma-aminobutyric acid (GABA) but not by chloride ion. GABA enhancement of CGS 9896 inhibition of [3H]-PCC binding predicts this compound has benzodiazepine (BZD) agonist-type activity. Behavioral studies support this prediction. CGS 9896 was found to protect mice against bicuculline and metrazol induced seizures at doses that did not induce ataxia or sedation. CGS 9896 may represent a class of compounds with potential therapeutic value. The high affinity of this non-BZD compound suggests that CGS 9896 may also be of value as a high affinity ligand for the continued study of BZD receptors.  相似文献   

4.
The interaction of [3H]flunitrazepam and its modulation by various drugs was studied in intact primary cultured spinal cord neurons. In the intact cells, the [3H]-flunitrazepam binding was rapid and saturable. The benzodiazepine binding sites exhibited high affinity and saturability, with an apparent KD of 6.1 +/- 1.6 nM and Bmax of 822 +/- 194 fmol/mg protein. The association and dissociation of [3H]flunitrazepam binding exhibited monoexponential kinetics. Specifically bound [3H]flunitrazepam was displaced in a concentration-dependent manner by benzodiazepines like flunitrazepam, clonazepam, diazepam, Ro 15-1788, and beta-carbolines like methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3'-carboxylate. Specific [3H]flunitrazepam binding to intact cells was enhanced in a concentration-dependent manner by gamma-aminobutyric acid (GABA) agonists and drugs which facilitate GABAergic transmission like etazolate, (+)-etomidate, and pentobarbital. The enhancing effect of GABA agonists was antagonized by bicuculline and picrotoxinin. These results suggest that the intact cultured spinal cord neurons exhibit the properties of benzodiazepine GABA receptor-ionophore complex. Since these cells can also be studied in parallel for characterizing GABA-induced 36Cl-influx, they provide an ideal in vitro assay preparation to study GABA synaptic pharmacology.  相似文献   

5.
Abstract: Antilirium®, which contains eserine (physostigmine) and benzyl alcohol, is effective in reversing diazepam-induced sleep in man and is capable in vitro of inhibiting the binding of labeled benzodiazepine to both rat and human brain homogenates in a dose-dependent manner. We have examined the constituents of Antilirium and report that both benzyl alcohol and eserine inhibit [3HI-diazepam binding to rat brain in a dose-dependent manner. A major portion of the inhibition of binding found with Antilirium is accounted for by benzyl alcohol. Scatchard analysis of inhibition of benzodiazepine binding by benzyl alcohol reveals loss of binding sites and change in equilibrium dissociation constant. Methanol, ethanol, and butanol did not inhibit benzodiazepine binding. The inhibition by benzyl alcohol may be specific since there was no inhibition of labeled ligand binding to the γ-aminobutyric acid, opiate, muscarinic acetylcholine, or β-adrenergic receptors. The other constituent, eserine, is a competitive inhibitor. While eserine is a more potent inhibitor at the benzodiazepine receptor than is benzyl alcohol, it is also much less specific. Eserine inhibited binding of labeled ligand to the γ-aminobutyric acid, opiate, and muscarinic acetylcholine receptors. The inhibition of benzodiazepine binding to brain in vitro by Antilirium and its constituents, eserine and benzyl alcohol, may be the explanation, at least in part, for the reversal by Antilirium of diazepam-induced narcosis in viva, without postulating a cholinergic mechanism for the in vivo effect.  相似文献   

6.
Four nerve agents and one therapeutic organophosphate (OP) anticholinesterase (anti-ChE) bind to acetylcholine (ACh) receptors, inhibit or modulate binding of radioactive ligands to these receptors, and modify events regulated by them. The affinity of nicotinic (n) ACh receptors of Torpedo electric organs and most muscarinic (m) ACh receptors of rat brain and N1E-115 neuroblastoma cultures for the OP compounds was usually two to three orders of magnitude lower than concentrations required to inhibit 50% (IC-50) of ACh-esterase activity. However, a small population of m-ACh receptors had an affinity as high as that of ACh-esterase for the OP compound. This population is identified by its high-affinity [3H]-cis-methyldioxolane ([3H]-CD) binding. Although sarin, soman, and tabun had no effect, (O-ethyl S[2-(diisopropylamino)ethyl)] methyl phosphonothionate (VX) and echothiophate inhibited competitivel the binding of receptors. However, VX was more potent than echothiophate in inhibiting this binding and 50-fold more potent in inhibiting carbamylcholine (carb)-stimulated [3H]-cGMP synthesis in N1E-115 neuroblastoma cells—both acting as m receptor antagonist. All five OPs inhibited [3H]-CD binding, with IC-50s of 3, 10, 40, 100, and 800 nM for VX, soman, sarin, echothiophate, and tabun, respectively. The OP anticholinesterases also bound to allosteric sites on the n-ACh receptor (identified by inhibition of [3H]-phencyclidine binding), but some bound as well to the receptor's recognition site (identified by inhibition of [125I]-α-bungarotoxin binding). Soman and echothiophate in micromolar concentrations acted as partial agonists of the n-ACh receptor and induced receptor desensitization. On the other hand, VX acted as an open channel blocker of the activated receptor and also enhanced receptor desensitization. It is suggested that the toxicity of OP anticholinesterases may include their action on n-ACh as well as m-ACh receptors if their concentrations in circulation rise above micromolar levels. At nanomolar concentrations their toxicity is due mainly to their inhibition of ACh-esterase. However, at these low concentrations, many OP anticholinesterases (eg, VX and soman) may affect a small population of m-ACh receptors, which have a high affinity for CD. Such effects on m-ACh receptors may play an important role in the toxicity of certain OP compounds.  相似文献   

7.
[3H]Flunitrazepam was used to characterize benzodiazepine binding sites in human brain. The benzodiazepine binding sites exhibited high affinity, pharmacological specificity and saturability in their binding of [3H]flunitrazepam. The dissociation constant (KD) of [3H]flunitrazepam binding was determined by three different methods and found to be in the range of 2–3 nM. The potency of several benzodiazepine analogs to inhibit specific [3H]-flunitrazepam binding invitro correlated well with their potency in several invivo human and animal tests. The density of [3H]-flunitrazepam binding sites was highest in the cerebrocortical and rhinencephalic areas, intermediate in the cerebellum, and lowest in the brain stem and commissural tracts.  相似文献   

8.
The biochemical and the pharmacological effects of beta-carbolines in animals and man are reviewed. Biochemical studies have revealed beta-carbolines' several actions, including inhibition of MAO-A, competitive inhibition of 5-HT uptake, general inhibition of Na+ dependent transports, binding to benzodiazepine and opiate receptors and probable action on dopamine receptors, which may all participate to a variable degree in the actions of different beta-carbolines. Many early in vivo studies, however, have concentrated on some harmala alkaloids, particularly harmaline or harmine. The effects of beta-carbolines in man are compared in this review with the symptoms of alcohol withdrawal. However, no human studies have been reported with those tetrahydro-beta-carbolines shown to occur in human body in normal conditions or after alcohol intake. To prove any connections of beta-carbolines with the withdrawal syndromes or other neurological and psychiatric diseases means that these compounds have to be shown to have abnormal central nervous system concentrations in these diseases. The physiological role of beta-carbolines has yet to be shown. They may act as neuromodulators and some, especially 6-methoxytetrahydro-beta-carboline, may have an endocrinological function. It has been suggested that some beta-carbolines act as the physiological ligands (agonists) of the benzodiazepine receptors, but the physiological beta-carbolines so far known seem to have other effects, such as the inhibition of MAO-A or 5-HT uptake in low concentrations.  相似文献   

9.
1. In order to determine the selectivity of classical and novel adrenergic agents for alpha 1- and beta-adrenergic receptors in brown adipose tissue, the ability of these agents to compete for binding sites labelled with [3H]prazosin and [3H]CGP-12177, respectively, was investigated. 2. The beta-antagonist propranolol, known to inhibit norepinephrine-induced respiration in micromolar concentrations, bound to the [3H]CGP-12177 site with nanomolar affinity. 3. Among agonists, only isoprenaline showed high selectivity for beta-receptors, and only oxymetazoline for alpha 1-receptors. 4. Unexpectedly, the novel thermogenic agonists (BRL-agonists), shown to be potent and selective stimulators of brown fat thermogenesis, were unselective and bound only with low affinity to the [3H]CGP-12177 binding sites. 5. These results suggest that the beta-adrenergic binding site in brown adipose tissue identified here with [3H]CGP-12177 may not be the one (or not the only one) coupled to thermogenesis.  相似文献   

10.
The hippocampal formation has been extensively research in terms of its putative neurotransmitters, anatomical connections, and behavioral relevance. An aspect of importance is the assessment of apparent neurotransmitter receptors by using receptor binding assays. In the present study, such assays were done in vitro to investigate alpha 1-adrenergic, alpha 2-adrenergic, beta-adrenergic, muscarinic cholinergic, benzodiazepine, and opiate receptors in the rat hippocampal formation. The corresponding radioligands for these receptors were [3H]prazosin, [3H]p-aminoclonidine, [3H]dihydroalprenolol, [3H]quinuclidinyl benzilate, [3H]flunitrazepam, and [3H]naloxone. An analysis of the binding parameters for the ligands indicated saturable binding of a high affinity and the following rank order of maximal binding capacities: [3H]flunitrazepam greater than [3H]quinuclidinyl benzilate greater than [3H]naloxone greater than [3H]p-aminoclonidine greater than [3H]prazosin greater than [3H]dihydroalprenolol. Competition experiments with pharmacologic agonists and antagonists confirmed the specificity of each ligand. The results are integrated with information on other types of receptors and with neurotransmitter concentrations, and discussed in terms of hippocampal function.  相似文献   

11.
A cystamine-enkephalin dimer, containing two molecules of [D-Ala2, Leu5] enkephalin cross-linked at the COOH-terminal leucine residue with cystamine, (NH2-CH2-CH2-S-)2, has been synthesized in order to examine directly the dimerization effect of an enkephalin molecule on the opiate receptor interactions. In a comparison of potencies against [3H]-[D-Ala2,D-Leu5] enkephalin (3H-DADLE) and [3H]-[D-Ala2,MePhe4,Gly-ol5] enkephalin (3H-DAGO) as delta and mu tracers, respectively, enkephalin dimer showed a very high affinity, especially for the delta opiate receptors. Dimer was almost threefold more potent than DADLE, which is one of the most utilized delta ligand to date. When the binding affinity of cystamine-dimer was compared with that of its reduced thiol-monomer, namely [D-Ala2,Leu5,cysteamine6] enkephalin, the increment in affinity was four to fivefold for both delta and mu receptors. The results strongly indicate that the dimeric enkephalin is more potent presumably due to the simultaneous interaction with the two binding sites of the opiate receptors.  相似文献   

12.
Neosurugatoxin, a Specific Antagonist of Nicotinic Acetylcholine Receptors   总被引:8,自引:6,他引:2  
Neosurugatoxin (NSTX) (3 nM-30 nM), recently isolated from the Japanese ivory mollusc (Babylonia japonica) exerted a potent antinicotinic action in the isolated guinea pig ileum. Specific [3H]nicotine binding to rat forebrain membranes was saturable, reversible, and of high affinity. Nicotinic cholinergic agonists exhibited a markedly greater affinity for [3H]nicotine binding sites than a muscarinic agonist, oxotremorine. Although alpha-bungarotoxin had no effect on [3H]nicotine binding, low concentrations (1 nM-1 microM) of NSTX inhibited [3H]nicotine binding in the forebrain membranes and its IC50 value was 69 +/- 6 nM. On the other hand, NSTX did not affect muscarinic receptor binding in the brain. These data indicate that NSTX may be of appreciable interest as a neurotoxin with a selective affinity for ganglionic nicotinic receptors.  相似文献   

13.
The interaction of benzodiazepines and beta-carbolines with metal cations was investigated. Among numerous transition metal cations, only three, CO2+, Ni2+ and Zn2+, specifically inhibited the binding of [3H]beta-carboline-3-carboxylate ethyl ester (beta-CCE). The effects of these cations on [3H]beta-CCE binding were exactly opposite to those on [3H]diazepam binding. The effects of these cations was not dependent on lipid peroxidation. The differential effect of these cations may reflect a general difference in the way agonists and antagonists bind to the benzodiazepine receptor.  相似文献   

14.
《Life sciences》1987,40(15):1537-1543
The pineal gland and particularly its major hormone, melatonin, may participate in several physiological functions, including sleep promotion, anticonvulsant activity and the modulation of biological rhythms and affective disorders. These effects may be related to an interaction with benzodiazepine receptors, which have been demonstrated to be present in the pineal gland of several species including man. The present study examined the characteristics of benzodiazepine binding site subtypes in the human pineal gland, using [3H] flunitrazepam and [3H] PK 11195 as specific ligands for central and peripheral type benzodiazepine binding sites respectively. Scatchard analysis of [3H] flunitrazepam binding to pineal membrane preparations was linear, indicating the presence of a single population of sites. Clonazepam and RO 15-1788, which have a high affinity for central benzodiazepine binding sites, were potent competitors for [3H] flunitrazepam binding in the human pineal, whereas RO 5-4864 had a low affinity for these sites. Analyses of [3H] PK 11195 binding to pineal membranes also revealed the presence of a single population of sites. RO 5-4864, a specific ligand for peripheral benzodiazepine binding sites was the most potent of the drugs tested in displacing [3H] PK 11195, whereas clonazepam and RO 15-1788 were weak inhibitors of [3H] PK 11195 binding to pineal membranes. Overall, these results demonstrate, for the first time, the coexistence of peripheral and central benzodiazepine binding sites in the human pineal gland.  相似文献   

15.
The heterogeneity of rat brain opiate receptors was examined by analyzing competition data. The binding of three prototypical tritiated opioid agonists, [3H]-dihydromorphine ([3H]-DHM), [3H]-D-ala2-D-leu5-enkephalin ([3H]-DADLE), and [3H]-ethylketocyclazocine ([3H]-EKC) was determined in the presence of varying concentrations of each of these unlabeled ligands, generating nine displacement curves. A computer program was then used to find the best fit of a model system to these data, assuming two, three or four independent binding sites. The best fit was a four-site model. One of these sites is specific for DHM; two are relatively selective for DHM and DADLE respectively, but also bind EKC. The remaining site binds only EKC with high affinity. These results, together with displacement data using naloxone, FK33824, and D-ala2-met5-enkephalinamide, are discussed in terms of current opiate receptor models.  相似文献   

16.
The novel kappa agonist U50-488H in vitro produced a concentration-dependent decrease (0.25-25 microM) in [3H]nimodipine binding in neuronal P2 fractions [corrected] from rat brain cortex. Kinetic analysis indicates the decrease in binding results from a reduced Bmax with no change in affinity (Kd). The kappa antagonist, MR2266, blocked the decrease in [3H]nimodipine binding to membrane fractions. At equimolar concentrations (25 microM), morphine in vitro had no effect on [3H]nimodipine binding, while U50-488H demonstrated potent inhibition. Further kinetic analysis indicates that the IC50 for U50-488H is 0.5-0.7 microM with a KI by a Dixon plot of 1.5-1.7 microM [corrected]. These results suggest that kappa opiate receptors may be coupled to dihydropyridine receptors and as a result modulate Ca++ entry and neurotransmitter release in brain neurons.  相似文献   

17.
Chronic caffeine consumption increases the number of brain adenosine receptors   总被引:10,自引:0,他引:10  
Caffeine, a potent central stimulant, is known to competitively inhibit the specific binding of both adenosine and benzodiazepine receptor ligands to brain membranes in vitro. In mice receiving a diet containing non-toxic doses of caffeine (200 or 400 mg/kg diet) for periods up to 40 days, a dose-related increase in the number of binding sites for [3H]-CHA and [3H] DPX was observed in whole brain membranes without modifications of the receptors' affinity. Furthermore, a transitory increase in the number of [3H]-DZP binding sites was observed. These preliminary data seem to confirm the involvement of the adenosine receptors in the mode of action of caffeine and may be relevant to the development of both tolerance and dependence to some of the central effects of this compound.  相似文献   

18.
The regional distribution of [3H]zolpidem, a novel imidazopyridine hypnotic possessing preferential affinity for the BZD1 (benzodiazepine subtype 1) receptor, has been studied autoradiographically in the rat CNS and compared with that of [3H]flunitrazepam. The binding of [3H]zolpidem to rat brain sections was saturable, specific, reversible, and of high affinity (KD = 6.4 nM). It occurred at a single population of sites whose pharmacological characteristics were similar to those of the benzodiazepine receptors labeled with [3H]flunitrazepam. However, ethyl-beta-carboline-3-carboxylate and CL 218,872 were more potent displacers of [3H]zolpidem than of [3H]flunitrazepam. The autoradiographic brain distribution of [3H]zolpidem binding sites was qualitatively similar to that previously reported for benzodiazepine receptors. The highest levels of [3H]-zolpidem binding sites occurred in the olfactory bulb (glomerular layer), inferior colliculus, ventral pallidum, nucleus of the diagonal band of Broca, cerebral cortex (layer IV), medial septum, islands of Calleja, subthalamic nucleus, and substantia nigra pars reticulata, whereas the lowest densities were found in parts of the thalamus, pons, and medulla. Comparative quantitative autoradiographic analysis of the binding of [3H]zolpidem and [3H]flunitrazepam [a mixed BZD1/BZD2 (benzodiazepine subtype 2) receptor agonist] in the CNS revealed that the relative density of both 3H-labeled ligands differed in several brain areas. Similar levels of binding for both ligands were found in brain regions enriched in BZD1 receptors, e.g., substantia nigra pars reticulata, inferior colliculus, cerebellum, and cerebral cortex lamina IV. The levels of [3H]zolpidem binding were five times lower than those of [3H]flunitrazepam binding in those brain regions enriched in BZD2 receptors, e.g., nucleus accumbens, dentate gyrus, and striatum. Moreover, [3H]zolpidem binding was undetectable in the spinal cord (which contains predominantly BZD2 receptors). Finally, like CL 218,872 and ethyl-beta-carboline-3-carboxylate, zolpidem was a more potent displacer of [3H]flunitrazepam binding in brain regions enriched in BZD1 receptors than in brain areas enriched in BZD2 receptors. The present data add further support to the view that zolpidem, although structurally unrelated to the benzodiazepines, binds to the benzodiazepine receptor and possesses selectivity for the BZD1 receptor subtype.  相似文献   

19.
Specific binding of [3H][D-Ala2,D-Leu5]enkephalin, [3H]ethylketocyclazocine, 5-[3H]hydroxytryptamine, and [3H]spiperone was examined in neuroblastoma-brain hybrid cell line NCB-20 following exposure to inhibitors of N-linked protein glycosylation (tunicamycin, TM) and oligosaccharide processing (swainsonine, SW). TM treatment reduced ligand binding at delta- and sigma-opiate receptors and neuroleptic binding sites (20 to 50% of control), with no discernible effect on the binding properties of 5HT1-serotonin receptors. In contrast, exposure to SW resulted in a three-fold increase in binding capacity of sigma-receptors, while decreasing receptor affinity for ligand. SW treatment did not alter ligand interactions with either sigma-receptors or neuroleptic binding sites, but did reduce specific binding of serotonin to 5HT1-receptors. The effects of TM and SW on distinct receptor subpopulations were further demonstrated by attenuation of opiate and serotonin-mediated regulation of intracellular cyclic AMP.  相似文献   

20.
Receptor binding and behavioral profiles of N-(4-chloro-2-phenoxyphenyl)-N-(2-isopropoxybenzyl)acetamide (DAA1097) and N-(2,5-dimethoxybenzyl)-N-(5-fluoro-2-phenoxyphenyl)acetamide (DAA1106), novel, selective agonists for the peripheral benzodiazepine receptor (PBR) were examined. DAA1097 and DAA1106 inhibited [3H]PK 11195 binding to crude mitochondrial preparations of rat whole brain, with IC50 values of 0.92 and 0.28 nM. Likewise, DAA1097 and DAA1106 inhibited [3H]Ro 5-4864 binding to the same mitochondrial preparation, with IC50 values of 0.64 and 0.21 nM. In contrast, DAA1097 and DAA1106 did not inhibit [3H]-flunitrazepam, the central benzodiazepine receptor (CBR) ligand, binding to membranes of rat whole brain (IC50>10,000nM). Oral administration of DAA1097 and DAA1106 had anxiolytic effects in the mouse light/dark exploration test and in the rat elevated plus- maze test. Oral administration of DAA1106, diazepam and buspirone but not DAA1097 significantly increased sleeping time in hexobarbital-induced anesthesia in mice. The order of potency of potentiation of hexobarbital anesthesia was diazepam> buspirone> DAA1106> DAA1097. Oral administration of DAA1097 and DAA1106 but not diazepam and buspirone did not affect spontaneous locomotor activity in mice. These findings indicate that DAA1097 and DAA1106 are PBR selective ligands with potent anxiolytic-like properties, in laboratory animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号