首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
1. At high concentrations, in 10mm-phosphate buffer, pH7.0, the sedimentation coefficient of bacterial catalase varies with concentration according to: [Formula: see text] with S(0) (20,w)=11.30S and k(s)=6.29x10(-3)ml mg(-1). Sedimentation-equilibrium experiments yield a molecular weight of 240000. 2. Parallel studies of changes in sedimentation-velocity behaviour and in electronic spectra of bacterial catalase at pH>11 were made. Dissociation is indicated by the appearance of a slow-moving (2.9S) component in sedimentation patterns and this is accompanied by marked changes in absorption spectrum in the Soret region. Values of R=E(406)/E(355) show a theoretically predictable near-linear dependence on alpha, the degree of dissociation calculated from ultracentrifuge data. 3. The Soret absorption of bacterial catalase subunits is much lower than that of the native enzyme, and it is suggested that dissociation produces an environmental constraint on the prosthetic group that results in distortion of the porphyrin ring.  相似文献   

2.
The optical absorption and circular dichroic spectra of human erythrocyte catalase (EC 1.11.1.6) and its cyanide, azide, and fluoride derivatives over the wavelength range of 210 to 700 nm are reported. Treatment with acid or alkaline solutions causes spectral changes which may be due to dissociation of the enzyme into subunits and removal of the heme group from the protein. The fractions of the protein structure present as alpha helix, beta pleated sheet, and unordered structure have been estimated from the CD spectrum in the far-ultraviolet region. The CD spectra also indicate that the protein conformation does not change appreciably after cyanide binding. The epr spectroscopy of the native enzyme and its cyanide complex are reported. The spectral results are compared with catalase obtained from other mammalian and bacterial sources.  相似文献   

3.
利用紫外差谱、荧光光谱和园二色谱法对比地研究了α-淀粉酶盐酸胍和碳酸胍变性,分析了两种胍变性明显差异的原因。通过等同的胍基浓度下,α-淀粉酶两种胍变性的构象变化与活性关系的实验,表明同等摩尔浓度的两种胍盐变性能力上的明显差异并不主要是由于它们胍基含量上的不同。将盐酸胍从中性pH(6.5)调至碱性pH(10.4),其变性能力大增,紫外差谱与碳酸胍变性相似,出现了290nm的正肩和296nm的正峰,与此同时,酶的荧光强度大大降低,大部分酶活性丧失。由此推论,两种胍变性能力的明显差异的重要原因之一是在碱性介质中胍基的变性能力明显增强,并分析了其增强的原因。  相似文献   

4.
The subunit structure, dissociation, and unfolding of the hemoglobin of the earthworm, Lumbricus terrestris, were investigated by light scattering molecular weight methods and changes in optical rotatory dispersion (at 233 nm) and absorption in the Soret region. Urea and the alkylureas, methyl-, ethyl-, propyl-, and butylurea, were employed as the reagents to cause both dissociation and unfolding of the protein. Analysis of the light scattering data suggests that the dissociation patterns as a function of hemoglobin concentration in the various dissociating solvents can be described in quantitative terms, either as an equilibrium mixture consisting of parent duodecamers and hexamers of 3 x 10(6) and 1.5 x 10(6) molecular weight (in 1-3 M urea, 1-2 M methyl- and ethylurea, and 1 M propylurea), as a mixture of hexamers and monomers, the latter with a molecular weight of 250000 (i.e., in 4 M urea), or as a mixture of all three species of duodecamers, hexamers, and monomers, seen in 2 M propylurea. Parallel studies by optical rotation and absorption measurements indicate that there is little or no unfolding of the subunits at urea and alkylurea concentrations where complete dissociation to hexamers and extensive dissociation to monomers can be achieved. Further splitting of the monomers (A subunits) to smaller fragments of one-third to one-quarter of the molecular weight of the monomers (B subunits) is seen in the presence of 7 and 8 M urea (pH 7) and in alkaline urea to propylurea solutions. Analysis of the dissociation data of duodecamers to monomers, based on equations used in studies of the urea and amide dissociation of human hemoglobin A from our laboratory, suggests few urea and alkylurea binding sites at the areas of hexamer contacts in the associated duodecameric form of L. terrestris hemoglobin. This suggests that hydrophobic interactions are not the dominant forces that govern the state of association of L. terrestris hemoglobin relative to polar and ionic interactions. The unfolding effects of the ureas, at concentrations above the dissociation transitions, are closely similar to their effects on other globular proteins, suggesting that hydrophobic interactions play an important role in the maintenance of the folded conformation of the subunits. Use of the Peller-Flory equation, with binding constants based on free energy transfer data of hydrophobic amino acid side chains and denaturation data used in previous denaturation studies, gave a relatively good acount of the observed denaturation midpoints obtained with the various ureas supporting these conclusions.  相似文献   

5.
颜青 《生物物理学报》1996,12(3):404-408
用不同浓度的变性剂盐酸胍、脲、十二烷基硫酸锂(LDS)对无花果蛋白酶(Ficin)变性,用荧光光谱及圆二色谱(CD谱)监测无花果蛋白酶去折叠过程中的构象变化并与活力变化比较,发现在1-2mol/L胍浓度及9.2×10-4mol/LLDS浓度条件下,CD谱显示的二级结构含量较高,荧光谱的发射峰位刚开始红移,活力的变化则较为显著,表现为胍溶液中激活,LDS溶液中失活,揭示酶的这二种变性剂的这二个浓度范围内,可能存在变性中间态。  相似文献   

6.
UDP-galactose 4-epimerase from yeast (Kluyveromyces fragilis) is a homodimer of total molecular mass 150 kDa having possibly one mole of NAD/dimer acting as a cofactor. The molecule could be dissociated and denatured by 8 M urea at pH 7.0 and could be functionally reconstituted after dilution with buffer having extraneous NAD. The unfolded and refolded equilibrium intermediates of the enzyme between 0-8 M urea have been characterized in terms of catalytic activity, NADH like characteristic coenzyme fluorescence, interaction with extrinsic fluorescence probe 1-anilino 8-naphthelene sulphonic acid (ANS), far UV circular dichroism spectra, fluorescence emission spectra of aromatic residues and subunit dissociation. While denaturation monitored by parameters associated with active site region e.g. inactivation and coenzyme fluorescence, were found to be cooperative having delta G between -8.8 to -4.4 kcals/mole, the overall denaturation process in terms of secondary and tertiary structure was however continuous without having a transition point. At 3 M urea a stable dimeric apoenzyme was formed having 65% of native secondary structure which was dissociated to monomer at 6 M urea with 12% of the said structure. The unfolding and refolding pathways involved identical structures except near the final stage of refolding where catalytic activity reappeared.  相似文献   

7.
The SH groups of glutamine synthetase [EC 6.3.1.2] from Bacillus stearothermophilus were modified with 5, 5'-dithiobis(2-nitrobenzoic acid) in order to determine the number of SH groups in the molecule as well as the effect of the modification on the enzyme activity. Three SH groups per subunit were detected after complete denaturation of the enzyme with 6 M urea, one of which was essential for the enzyme activity in view of its reactivity with 5, 5'-dithiobis(2-nitrobenzoic acid) on addition of MgCl2 with loss of the activity. The CD spectra of the modified enzyme in the near ultraviolet region changed from that of the native enzyme, indicating that aromatic amino acid residues were affected by modification of the SH group. The fluorescence derived from tryptophanyl residue(s) was quenched depending on the extent of modification of the SH group, suggesting that the tryptophanyl residue(s) was located in the proximity of the SH group. The thermostability of the enzyme was remarkably decreased by modification of the SH group.  相似文献   

8.
The influence of urea on the allosteric phosphofructokinase from Escherichia coli has been studied by measuring the changes in enzymatic activity, protein fluorescence, circular dichroism, and retention in size-exclusion chromatography. Tetrameric, dimeric, and monomeric forms of the protein can be discriminated by their elution from a high-performance liquid chromatography gel filtration column. Three successive steps can be detected during the urea-induced denaturation of phosphofructokinase: (i) the dissociation of the native tetramer into dimers which abolishes the activity; (ii) the dissociation of dimers into monomers which exposes the unique tryptophan, Trp-311, to the aqueous solvent; (iii) the unfolding of the monomers which disrupts most of the secondary structure. This pathway involves the ordered dissociation of the interfaces between subunits and supports a previous hypothesis (Deville-Bonne et al., 1989). Phosphofructokinase can be quantitatively renatured from urea solutions, provided that precautions are taken to avoid the aggregation of one insoluble monomeric state. The renaturation of phosphofructokinase from urea implies three steps: an initial folding reaction within the monomeric state is followed by two successive association steps. The faster association step restores the native fluorescence, and the slower regenerates the active enzyme. The renaturation and denaturation of phosphofructokinase correspond to the complex pathway: tetramer in equilibrium dimer in equilibrium folded monomer in equilibrium unfolded monomer. It is found that the subunit interface which forms the regulatory site is more stable and associates 40 times more rapidly than the subunit interface which forms the active site.  相似文献   

9.
Structural changes in T7 RNA polymerase (T7RNAP) induced by temperature and urea have been studied over a wide range of conditions to obtain information about the structural organization and the stability of the enzyme. T7RNAP is a large monomeric enzyme (99 kD). Calorimetric studies of the thermal transitions in T7RNAP show that the enzyme consists of three cooperative units that may be regarded as structural domains. Interactions between these structural domains and their stability strongly depend on solvent conditions. The unfolding of T7RNAP under different solvent conditions induces a highly stable intermediate state that lacks specific tertiary interactions, contains a significant amount of residual secondary structure, and undergoes further cooperative unfolding at high urea concentrations. Circular dichroism (CD) studies show that thermal unfolding leads to an intermediate state that has increased beta-sheet and reduced alpha-helix content relative to the native state. Urea-induced unfolding at 25 degrees C reveals a two-step process. The first transition centered near 3 M urea leads to a plateau from 3.5 to 5.0 M urea, followed by a second transition centered near 6.5 M urea. The CD spectrum of the enzyme in the plateau region, which is similar to that of the enzyme thermally unfolded in the absence of urea, shows little temperature dependence from 15 degrees to 60 degrees C. The second transition leads to a mixture of poly(Pro)II and unordered conformations. As the temperature increases, the ellipticity at 222 nm becomes more negative because of conversion of poly(Pro)II to the unordered conformation. Near-ultraviolet CD spectra at 25 degrees C at varying concentrations of urea are consistent with this picture. Both thermal and urea denaturation are irreversible, presumably because of processes that follow unfolding.  相似文献   

10.
The effects of the chaotropic agent, guanidine HCl, on the chlorinating activity, optical absorption, EPR, and resonance Raman spectra of myeloperoxidase have been studied. In the presence of the agent the Soret optical absorption of the reduced enzyme (lambda max = 474 nm) is blue shifted to 448 nm, a position similar to heme alpha-containing enzymes. The chlorinating activity of the enzyme disappears, and EPR spectra show a loss of intensity of the rhombic high spin heme signals (gx = 6.9; gy = 5.4) and the appearance of a more axial high spin signal (gx = gy = 6.0). Surprisingly the effects of guanidine HCl are partly reversible. Upon decreasing the concentration of the chaotropic agents by dilution, both the chlorinating activity and the original optical spectrum of native reduced enzyme (lambda max = 474 nm) are partly restored. The resonance Raman spectra of denatured cyanomyeloperoxidase are less complicated than those of native myeloperoxidase, which have been interpreted previously to suggest an iron chlorin chromophore. The multiple lines in the oxidation state marker region are not seen in the spectra of the denatured species. The changes suggest that upon denaturation the macrocycle is converted into a more symmetric structure. Since the effects on the optical absorption spectrum are reversible we speculate that, in the native enzyme, an apparent porphyrin macrocycle undergoes a reversible interaction with amino acid residues in the protein which creates an asymmetry in the electronic distribution of the macrocycle. Comparison of the Raman spectra of denatured cyanomyeloperoxidase with those of analogous heme alpha model complexes suggests the presence of a formyl group in the denatured species; our data, however, demonstrate that the chromophore structure is not identical to heme alpha and may contain a different C beta substitution on the ring macrocycle.  相似文献   

11.
Thermal denaturation of Streptomyces subtilisin inhibitor was studied by means of circular dichroism (CD) measurements in the far-UV and near-UV regions. The denaturation was found to be largely reversible; the partial irreversibility was associated with a slight loss of the inhibitory activity. Difference CD spectra in the far-UV region clarified the existence of two distinct steps in the thermal transition of the secondary structure. The first step below 80 degrees C is attributable to a partial conformational change in the alpha-helix portion, whereas the second step between 80 degrees C and 94 degrees C is attributable to a major conformational change involving the beta-sheet portion. On the assumption that the major denaturation involves dissociation of the SSI into its subunits, the enthalpy and entropy changes were determined to be 216 kcal X mol-1 and to be 603 cal X deg-1 X mol-1, respectively.  相似文献   

12.
Chaperonins cpn60/cpn10 (GroEL/GroES in Escherichia coli) assist folding of nonnative polypeptides. Folding of the chaperonins themselves is distinct in that it entails assembly of a sevenfold symmetrical structure. We have characterized denaturation and renaturation of the recombinant human chaperonin 10 (cpn10), which forms a heptamer. Denaturation induced by chemical denaturants urea and guanidine hydrochloride (GuHCl) as well as by heat was monitored by tyrosine fluorescence, far-ultraviolet circular dichroism, and cross-linking; all denaturation reactions were reversible. GuHCl-induced denaturation was found to be cpn10 concentration dependent, in accord with a native heptamer to denatured monomer transition. In contrast, urea-induced denaturation was not cpn10 concentration dependent, suggesting that under these conditions cpn10 heptamers denature without dissociation. There were no indications of equilibrium intermediates, such as folded monomers, in either denaturant. The different cpn10 denatured states observed in high [GuHCl] and high [urea] were supported by cross-linking experiments. Thermal denaturation revealed that monomer and heptamer reactions display the same enthalpy change (per monomer), whereas the entropy-increase is significantly larger for the heptamer. A thermodynamic cycle for oligomeric cpn10, combining chemical denaturation with the dissociation constant in absence of denaturant, shows that dissociated monomers are only marginally stable (3 kJ/mol). The thermodynamics for co-chaperonin stability appears conserved; therefore, instability of the monomer could be necessary to specify the native heptameric structure.  相似文献   

13.
Changes of activity and conformation of Ampullarium crossean beta-glucosidase in different concentrations of guanidine hydrochloride (GuHCl) have been studied by measuring the fluorescence spectra and its relative activity after denaturation. The fluorescence intensity of the enzyme decreased distinctly with increasing guanidine concentrations, the emission peaks appeared red shifted (from 338.4 to 350.8 nm), whereas a new fluorescence emission peak appeared near 310 nm. Changes in the conformation and catalytic activity of the enzyme were compared. A corresponding rapid decrease in catalytic activity of the enzyme was also observed. The extent of inactivation was greater than that of conformational changes, indicating that the active site of the enzyme is more flexible than the whole enzyme molecule. k(+0)>k(+0)' also showed that the enzyme was protected by substrate to a certain extent during guanidine denaturation.  相似文献   

14.
M. luteus catalase dissociates upon treatment with urea, dodecylsulfate and anhydrides into monomers, the molecular weight of which appears to be 1/4 of that of the native enzyme. The urea-induced dissociation depends upon the incubation time, the urea concentration and the pH of the incubation mixture. Reassociation of the subunits proved to be unsuccessful. Native M. luteus catalase only contains 30% alpha-helix. When fully dissociated in presence of urea, it still retains 15% alpha-helix. Catalase from M. luteus was found to lack cysteine residues.  相似文献   

15.
Detailed differential scanning calorimetry (DSC), steady-state tryptophan fluorescence and far-UV and visible CD studies, together with enzymatic assays, were carried out to monitor the thermal denaturation of horseradish peroxidase isoenzyme c (HRPc) at pH 3.0. The spectral parameters were complementary to the highly sensitive but integral method of DSC. Thus, changes in far-UV CD corresponded to changes in the overall secondary structure of the enzyme, while that in the Soret region, as well as changes in intrinsic tryptophan fluorescence emission, corresponded to changes in the tertiary structure of the enzyme. The results, supported by data about changes in enzymatic activity with temperature, show that thermally induced transitions for peroxidase are irreversible and strongly dependent upon the scan rate, suggesting that denaturation is under kinetic control. It is shown that the process of HRPc denaturation can be interpreted with sufficient accuracy in terms of the simple kinetic scheme N -->k D where k is a first-order kinetic constant that changes with temperature, as given by the Arrhenius equation; N is the native state, and D is the denatured state. On the basis of this model, the parameters of the Arrhenius equation were calculated.  相似文献   

16.
P Appel  W D Brown 《Biopolymers》1971,10(11):2309-2322
Purified sperm whale myoglobin was deuterated by being exposed to pD 3.5 in D2O buffer for 1 hr, then raised to pD 10.6 for an additional hour, and finally brought to neutrality in a D2O environment. Control myoglobin was similarly treated in H2O. The specific rotation at 233 mμ and/or the absorbance in the Soret region were used to follow the helix-coil transition of myoglobin subjected to denaturation by acid, alkali, urea and guanidine. Deuterated and control myoglobin had similar 50% transition points in the four denaturing media studied (acid: pH 4.4, pD 4.9; alkali: pH 9.4, pD 10.0; urea, 7.2M; guanidine, 2.5M). The shift toward the alkaline side of 0.5 or 0.6 units of the transition induced by either acid or alkaline denaturation reflects only the weakened acidity of ionizable groups in deuterium systems. Deuterated myoglobin in 3.25M guanidine had a 20% faster denaturation rate than that of control. Acid, urea, and guanidine denaturation curves showed fairly steep transitions, taken as indicative of a one-step process involving only two states (native and denatured molecules). Supporting this conclusion was the fact that plots of absorption and polarimetry measurements of the helix-coil transition induced by either acid or guanidine could be superimposed.  相似文献   

17.
Palczewsski等[1]以邻苯二甲醛修饰醛缩酶活性部位的氨基和流基以形成一异蚓噪环,利用该基团的荧光特性来探测醛缩酶的活性部位构象,Weq[2],Le[3]并成功地运用这一方法研究肌酸激酶和酵母乙醇脱氢酶的活性部位构象变化.中华猕猴桃蛋白酶的唯一游离流基(CyS-25)是催化功能团【'」,而且氨基也是活性部位的必需基因【到,符合邻苯二甲醛的反应性,所以我们借鉴Pal_ski等的方法【1]将这一荧光基因引人中华猕猴桃蛋白酶,用以探测该酶在抓溶液中活性部位的构象变化,并与相应的活力变化以及酶的内源荧光及CD谱变化作比较.1材…  相似文献   

18.
During chemical denaturation different intermediate states are populated or suppressed due to the nature of the denaturant used. Chemical denaturation by guanidine-HCl (GuHCl) of human carbonic anhydrase II (HCA II) leads to a three-state unfolding process (Cm,NI=1.0 and Cm,IU=1.9 M GuHCl) with formation of an equilibrium molten-globule intermediate that is stable at moderate concentrations of the denaturant (1-2 M) with a maximum at 1.5 M GuHCl. On the contrary, urea denaturation gives rise to an apparent two-state unfolding transition (Cm=4.4 M urea). However, 8-anilino-1-naphthalene sulfonate (ANS) binding and decreased refolding capacity revealed the presence of the molten globule in the middle of the unfolding transition zone, although to a lesser extent than in GuHCl. Cross-linking studies showed the formation of moderate oligomer sized (300 kDa) and large soluble aggregates (>1000 kDa). Inclusion of 1.5 M NaCl to the urea denaturant to mimic the ionic character of GuHCl leads to a three-state unfolding behavior (Cm,NI=3.0 and Cm,IU=6.4 M urea) with a significantly stabilized molten-globule intermediate by the chloride salt. Comparisons between NaCl and LiCl of the impact on the stability of the various states of HCA II in urea showed that the effects followed what could be expected from the Hofmeister series, where Li+ is a chaotropic ion leading to decreased stability of the native state. Salt addition to the completely urea unfolded HCA II also led to an aggregation prone unfolded state, that has not been observed before for carbonic anhydrase. Refolding from this state only provided low recoveries of native enzyme.  相似文献   

19.
The denaturation and reconstitution of Erwinia carotovora and Escherichia coli L-asparaginases has been followed by optical rotatory dispersion, circular dichroism and analytical ultracentrifugation. Denaturation in urea results in dissociation of the native enzyme (mol. wt. 140 000 approx.) to produce unfolded subunits (mol. wt. 35 000 approx.); the Erwinia L-asparaginase subunits can be refolded by dilution or dialysis in alkaline conditions, pH 10.5, without aggregation to the active tetramer, to give a rather unstable solution of a monomer possibly in equilibrium with dimer. These alkaline-reconstituted subunits undergo a conformational change to a more ordered state in the presence of sodium dodecylsulphate, similar to those produced by the action of sodium dodecylsulphate on the native enzyme. If the denatured subunits are reconstituted in the pH range 5.0-7.5, the enzymically active tetramer is reformed in up to 80% yield, depending upon the conditions of temperature and concentration. Kinetic data for these various transitions suggest that dissociation is a rate-limiting step while conformational changes of the polypeptide chains are relatively much more rapid. The possible significance of these different rates of change to therapeutic considerations is discussed.  相似文献   

20.
The stability of the Glossoscolex paulistus hemoglobin (HbGp), in two iron oxidation states (and three forms), as monitored by optical absorption, fluorescence emission and circular dichroism (CD) spectroscopies, in the presence of the chaotropic agent urea, is studied. HbGp oligomeric dissociation, denaturation and iron oxidation are observed. CD data show that the cyanomet-HbGp is more stable than the oxy-form. Oxy- and cyanomet-HbGp show good fits on the basis of a two state model with critical urea concentrations at 220-222 nm of 5.1±0.2 and 6.1±0.1 mol/L, respectively. The three-state model was able to reveal a subtle second transition at lower urea concentration (1.0-2.0 mol/L) associated to partial oligomeric dissociation. The intermediate state for oxy- and cyanomet-HbGp is very similar to the native state. For met-HbGp, a different equilibrium, in the presence of urea, is observed. A sharp transition at 1.95±0.05 mol/L of denaturant is observed, associated to oligomeric dissociation and hemichrome formation. In this case, analysis by a three-state model reveals the great similarity between the intermediate and the unfolded states. Analysis of spectroscopic data, by two-state and three-state models, reveals consistency of obtained thermodynamic parameters for HbGp urea denaturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号