首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Mutants of Salmonella enterica carrying the igaA1 allele, selected as able to overgrow within fibroblast cells in culture, are mucoid and show reduced motility. Mucoidy is caused by derepression of wca genes (necessary for capsule synthesis); these genes are regulated by the RcsC/YojN/RcsB phosphorelay system and by the RcsA coregulator. The induction of wca expression in an igaA1 mutant is suppressed by mutations in rcsA and rcsC. Reduced motility is caused by lowered expression of the flagellar master operon, flhDC, and is suppressed by mutations in rcsB or rcsC, suggesting that mutations in the igaA gene reduce motility by activating the RcsB/C system. A null igaA allele can be maintained only in an igaA(+)/igaA merodiploid, indicating that igaA is an essential gene. Lethality is suppressed by mutations in rcsB, rcsC, and yojN, but not in rcsA, suggesting that the viability defect of an igaA null mutant is mediated by the RcsB/RcsC system, independently of RcsA (and therefore of the wca genes). Because all the defects associated with igaA mutations are suppressed by mutations that block the RcsB/RcsC system, we propose a functional interaction between the igaA gene product and either the Rcs regulatory network or one of its regulated products.  相似文献   

3.
4.
Insertion of factor MudJ in the intergenic region between divergent genes yrfF and yrfE, at centisome 76 in the genome of Salmonella enterica serovar Typhimurium LT2, confers the characteristics recently described for mucM mutants, i.e. mucoidy and resistance to mecillinam. Cloning of the intergenic region plus either the yrfF or the yrfE gene in a multicopy plasmid showed that only the plasmid carrying the yrfF gene complemented mucM mutants, thus suggesting that mucM mutations are in fact yrfF mutations. A null yrfF mutation obtained by insertion of a kanamycin cassette into the yrfF open reading frame (yrfF28::Kan) produced abortive colonies when transduced to a wild-type strain but was normally accepted by rcsB, rcsC or yojN strains. Neither mutations preventing synthesis of the capsular exopolysaccharide colanic acid (cps, galE) nor rcsA mutations, which reduce expression of cps genes, conferred tolerance to the lethal yrfF28::Kan mutation. Spontaneous suppressor mutations arose very frequently in abortive yrfF28::Kan colonies, and all of them affected either rcsC, yojN, or rcsB genes. Thus, the lethal effect caused by inactivation of gene yrfF appears to be mediated by a function that is dependent on the rcsC-yojN-rcsB phosphorelay system but does not involve synthesis of colanic acid.  相似文献   

5.
6.
The Rcs phosphorelay system is a modified two-component signal transduction system found exclusively in Enterobacteriaceae . In this study, we characterized the roles of the Rcs system in Erwinia amylovora , a highly virulent and necrogenic enterobacterium causing fire blight disease on rosaceous plants. Our results showed that rcsB , rcsC , rcsD and rcsBD mutants were non-pathogenic on immature pear fruit. The bacterial growth of these mutants was also greatly reduced compared with that of the wild-type strain in immature pear fruit. In an in vitro amylovoran assay, rcsB and rcsD mutants were deficient in amylovoran production, whereas the rcsC mutant exhibited higher amylovoran production than that of the wild-type. Consistent with amylovoran production, expression of the amylovoran biosynthetic gene amsG , using green fluorescent protein as a reporter, was not detectable in rcsB , rcsD and rcsBD mutants both in vitro and in vivo . The expression of amsG in vitro was higher in the rcsC mutant than in the wild-type, whereas its expression in vivo was higher in the wild-type than in the rcsC mutant. In addition, rcs mutants were more susceptible to polymyxin B treatment than the wild-type, suggesting that the Rcs system conferred some level of resistance to polymyxin B. Furthermore, rcs mutants showed irregular and slightly reduced motility on swarming plates. Together, these results indicate that the Rcs system plays a major role in virulence and survival of E. amylovora in immature pear fruit.  相似文献   

7.
The lethal effect of an Escherichia coli pgsA null mutation, which causes a complete lack of the major acidic phospholipids, phosphatidylglycerol and cardiolipin, is alleviated by a lack of the major outer membrane lipoprotein encoded by the lpp gene, but an lpp pgsA strain shows a thermosensitive growth defect. Using transposon mutagenesis, we found that this thermosensitivity was suppressed by disruption of the rcsC, rcsF, and yojN genes, which code for a sensor kinase, accessory positive factor, and phosphotransmitter, respectively, of the Rcs phosphorelay signal transduction system initially identified as regulating the capsular polysaccharide synthesis (cps) genes. Disruption of the rcsB gene coding for the response regulator of the system also suppressed the thermosensitivity, whereas disruption of cpsE did not. By monitoring the expression of a cpsB'-lac fusion, we showed that the Rcs system is activated in the pgsA mutant and is reverted to a wild-type level by the rcs mutations. These results indicate that envelope stress due to an acidic phospholipid deficiency activates the Rcs phosphorelay system and thereby causes the thermosensitive growth defect independent of the activation of capsule synthesis.  相似文献   

8.
Proteus mirabilis is a Gram-negative bacterium that exists as a short rod when grown in liquid medium, but during growth on surfaces it undergoes a distinct physical and biochemical change that culminates in the formation of a swarmer cell. How P. mirabilis senses a surface is not fully understood; however, the inhibition of flagellar rotation and accumulation of putrescine have been proposed to be sensory mechanisms. Our lab recently isolated a transposon insertion in waaL, encoding O-antigen ligase, that resulted in a loss of swarming but not swimming motility. The waaL mutant failed to activate flhDC, the class 1 activator of the flagellar gene cascade, when grown on solid surfaces. Swarming in the waaL mutant was restored by overexpression of flhDC in trans or by a mutation in the response regulator rcsB. To further investigate the role of the Rcs signal transduction pathway and its possible relationship with O-antigen surface sensing, mutations were made in the rcsC, rcsB, rcsF, umoB (igaA), and umoD genes in wild-type and waaL backgrounds. Comparison of the swarming phenotypes of the single and double mutants and of strains overexpressing combinations of the UmoB, UmoD, and RcsF proteins demonstrated the following: (i) there is a differential effect of RcsF and UmoB on swarming in wild-type and waaL backgrounds, (ii) RcsF inhibits UmoB activity but not UmoD activity in a wild-type background, and (iii) UmoD is able to modulate activity of the Rcs system.  相似文献   

9.
10.
11.
Production of plant cell wall degrading enzymes, the major virulence factors of soft-rot Pectobacterium species, is controlled by many regulatory factors. Pectobacterium carotovorum ssp. carotovorum SCC3193 encodes an Rcs phosphorelay system that involves two sensor kinases, RcsC(Pcc) and RcsD(Pcc), and a response regulator RcsB(Pcc) as key components of this system, and an additional small lipoprotein RcsF(Pcc). This study indicates that inactivation of rcsC(Pcc), rcsD(Pcc) and rcsB(Pcc) enhances production of virulence factors with the highest effect detected for rcsB(Pcc). Interestingly, mutation of rcsF(Pcc) has no effect on virulence factors synthesis. These results suggest that in SCC3193 a parallel phosphorylation mechanism may activate the RcsB(Pcc) response regulator, which acts as a repressor suppressing the plant cell wall degrading enzyme production. Enhanced production of virulence factors in Rcs mutants is more pronounced when bacteria are growing in the absence of plant signal components.  相似文献   

12.
Colanic acid capsule synthesis in Escherichia coli K-12 is regulated by RcsB and RcsC. The amino acid sequences of these two proteins, deduced from the nucleotide sequence reported here, demonstrate their homology to environmentally responsive two-component regulators that have been reported in both gram-positive and gram-negative bacteria. In our model, RcsC acts as the sensor and RcsB acts as the receiver or effector to stimulate capsule synthesis from cps genes. In addition, RcsC shows limited homology to the other effectors in its C terminus. Fusions of rcsC to phoA that resulted in PhoA+ strains demonstrated that RcsC is a transmembrane protein with a periplasmic N-terminal domain and cytoplasmic C-terminal domain. Additional control of this regulatory network is provided by the dependence on the alternate sigma factor, RpoN, for the synthesis of RcsB. The rcsB and rcsC genes, which are oriented convergently with their stop codons 196 base pairs apart, are separated by a long direct repeat including two repetitive extragenic palindromic sequences.  相似文献   

13.
14.
15.
16.
17.
18.
The RcsCB His-Asp phosphorelay system regulates the expression of several genes of Escherichia coli, but the molecular nature of the inducing signal is still unknown. We show here that treatment of an exponentially growing culture of E. coli with the cationic amphipathic compound chlorpromazine (CPZ) stimulates expression of a set of genes positively regulated by the RcsCB system. This induction is abolished in rcsB or rcsC mutant strains. In addition, treatment with CPZ inhibits growth. The wild-type strain is able to recover from this inhibition and resume growth after a period of adaptation. In contrast, strains deficient in the RcsCB His-Asp phosphorelay system are hypersensitive to CPZ. These results suggest that cells must express specific RcsCB-regulated genes in order to cope with the CPZ-induced stress. This is the first report of the essential role of the RcsCB system in a stress situation. These results also strengthen the notion that alterations of the cell envelope induce a signal recognized by the RcsC sensor.  相似文献   

19.
20.
The Rcs phosphorelay is a multicomponent signaling system that positively regulates colanic acid synthesis and negatively regulates motility and virulence. We have exploited a spontaneously isolated mutant, IgaA(T191P), that is nearly maximally activated for the Rcs system to identify a vast set of genes that respond to the stimulation, and we report new regulatory properties of this signaling system in Salmonella enterica serovar Typhimurium. Microarray data show that the Rcs system normally functions as a positive regulator of SPI-2 and other genes important for the growth of Salmonella in macrophages, although when highly activated the system completely represses the SPI-1/SPI-2 virulence, flagellar, and fimbrial biogenesis pathways. The auxiliary protein RcsA, which works with RcsB to positively regulate colanic acid and other target genes, not only stimulates but also antagonizes the positive regulation of many genes in the igaA mutant. We show that RcsB represses motility through the RcsB box in the promoter region of the master operon flhDC and that RcsA is not required for this regulation. Curiously, RcsB selectively stimulates expression of the flagellar type 3 secretion genes fliPQR; an RcsAB box located downstream of fliR influences this regulation. We show that excess colanic acid impairs swimming and inhibits swarming motility, consistent with the inverse regulation of the two pathways by the Rcs system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号