首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Substitution matrices have been useful for sequence alignment and protein sequence comparisons. The BLOSUM series of matrices, which had been derived from a database of alignments of protein blocks, improved the accuracy of alignments previously obtained from the PAM-type matrices estimated from only closely related sequences. Although BLOSUM matrices are scoring matrices now widely used for protein sequence alignments, they do not describe an evolutionary model. BLOSUM matrices do not permit the estimation of the actual number of amino acid substitutions between sequences by correcting for multiple hits. The method presented here uses the Blocks database of protein alignments, along with the additivity of evolutionary distances, to approximate the amino acid substitution probabilities as a function of actual evolutionary distance. The PMB (Probability Matrix from Blocks) defines a new evolutionary model for protein evolution that can be used for evolutionary analyses of protein sequences. Our model is directly derived from, and thus compatible with, the BLOSUM matrices. The model has the additional advantage of being easily implemented.  相似文献   

2.
Position-specific substitution matrices, known as profiles,derived from multiple sequence alignments are currently usedto search sequence databases for distantly related members ofprotein families. The performance of the database searches isenhanced by using (i) a sequence weighting scheme which assignshigher weights to more distantly related sequences based onbranch lengths derived from phylogenetic trees, (ii) exclusionof positions with mainly padding characters at sites of insertionsor deletions and (iii) the BLOSUM62 residue comparison matrix.A natural consequence of these modifications is an improvementin the alignment of new sequences to the profiles. However,the accuracy of the alignments can be further increased by employinga similarity residue comparison matrix. These developments areimplemented in a program called PROFILEWEIGHT which runs onUnix and Vax computers. The only input required by the programis the multiple sequence alignment. The output from PROFILEWEIGHTis a profile designed to be used by existing searching and alignmentprograms. Test results from database searches with four differentfamilies of proteins show the improved sensitivity of the weightedprofiles.  相似文献   

3.
Comparative sequence analyses, including such fundamental bioinformatics techniques as similarity searching, sequence alignment and phylogenetic inference, have become a mainstay for researchers studying type 1 Human Immunodeficiency Virus (HIV-1) genome structure and evolution. Implicit in comparative analyses is an underlying model of evolution, and the chosen model can significantly affect the results. In general, evolutionary models describe the probabilities of replacing one amino acid character with another over a period of time. Most widely used evolutionary models for protein sequences have been derived from curated alignments of hundreds of proteins, usually based on mammalian genomes. It is unclear to what extent these empirical models are generalizable to a very different organism, such as HIV-1-the most extensively sequenced organism in existence. We developed a maximum likelihood model fitting procedure to a collection of HIV-1 alignments sampled from different viral genes, and inferred two empirical substitution models, suitable for describing between-and within-host evolution. Our procedure pools the information from multiple sequence alignments, and provided software implementation can be run efficiently in parallel on a computer cluster. We describe how the inferred substitution models can be used to generate scoring matrices suitable for alignment and similarity searches. Our models had a consistently superior fit relative to the best existing models and to parameter-rich data-driven models when benchmarked on independent HIV-1 alignments, demonstrating evolutionary biases in amino-acid substitution that are unique to HIV, and that are not captured by the existing models. The scoring matrices derived from the models showed a marked difference from common amino-acid scoring matrices. The use of an appropriate evolutionary model recovered a known viral transmission history, whereas a poorly chosen model introduced phylogenetic error. We argue that our model derivation procedure is immediately applicable to other organisms with extensive sequence data available, such as Hepatitis C and Influenza A viruses.  相似文献   

4.
The genomic era has seen a remarkable increase in the number of genomes being sequenced and annotated. Nonetheless, annotation remains a serious challenge for compositionally biased genomes. For the preliminary annotation, popular nucleotide and protein comparison methods such as BLAST are widely employed. These methods make use of matrices to score alignments such as the amino acid substitution matrices. Since a nucleotide bias leads to an overall bias in the amino acid composition of proteins, it is possible that a genome with nucleotide bias may have introduced atypical amino acid substitutions in its proteome. Consequently, standard matrices fail to perform well in sequence analysis of these genomes. To address this issue, we examined the amino acid substitution in the AT-rich genome of Plasmodium falciparum, chosen as a reference and reconstituted a substitution matrix in the genome's context. The matrix was used to generate protein sequence alignments for the parasite proteins that improved across the functional regions. We attribute this to the consistency that may have been achieved amid the target and background frequencies calculated exclusively in our study. This study has important implications on annotation of proteins that are of experimental interest but give poor sequence alignments with standard conventional matrices.  相似文献   

5.
A widely used algorithm for computing an optimal local alignment between two sequences requires a parameter set with a substitution matrix and gap penalties. It is recognized that a proper parameter set should be selected to suit the level of conservation between sequences. We describe an algorithm for selecting an appropriate substitution matrix at given gap penalties for computing an optimal local alignment between two sequences. In the algorithm, a substitution matrix that leads to the maximum alignment similarity score is selected among substitution matrices at various evolutionary distances. The evolutionary distance of the selected substitution matrix is defined as the distance of the computed alignment. To show the effects of gap penalties on alignments and their distances and help select appropriate gap penalties, alignments and their distances are computed at various gap penalties. The algorithm has been implemented as a computer program named SimDist. The SimDist program was compared with an existing local alignment program named SIM for finding reciprocally best-matching pairs (RBPs) of sequences in each of 100 protein families, where RBPs are commonly used as an operational definition of orthologous sequences. SimDist produced more accurate results than SIM on 50 of the 100 families, whereas both programs produced the same results on the other 50 families. SimDist was also used to compare three types of substitution matrices in scoring 444,461 pairs of homologous sequences from the 100 families.  相似文献   

6.
MOTIVATION: In recent years, advances have been made in the ability of computational methods to discriminate between homologous and non-homologous proteins in the 'twilight zone' of sequence similarity, where the percent sequence identity is a poor indicator of homology. To make these predictions more valuable to the protein modeler, they must be accompanied by accurate alignments. Pairwise sequence alignments are inferences of orthologous relationships between sequence positions. Evolutionary distance is traditionally modeled using global amino acid substitution matrices. But real differences in the likelihood of substitutions may exist for different structural contexts within proteins, since structural context contributes to the selective pressure. RESULTS: HMMSUM (HMMSTR-based substitution matrices) is a new model for structural context-based amino acid substitution probabilities consisting of a set of 281 matrices, each for a different sequence-structure context. HMMSUM does not require the structure of the protein to be known. Instead, predictions of local structure are made using HMMSTR, a hidden Markov model for local structure. Alignments using the HMMSUM matrices compare favorably to alignments carried out using the BLOSUM matrices or structure-based substitution matrices SDM and HSDM when validated against remote homolog alignments from BAliBASE. HMMSUM has been implemented using local Dynamic Programming and with the Bayesian Adaptive alignment method.  相似文献   

7.

Background  

While substitution matrices can readily be computed from reference alignments, it is challenging to compute optimal or approximately optimal gap penalties. It is also not well understood which substitution matrices are the most effective when alignment accuracy is the goal rather than homolog recognition. Here a new parameter optimization procedure, POP, is described and applied to the problems of optimizing gap penalties and selecting substitution matrices for pair-wise global protein alignments.  相似文献   

8.
Almost all protein database search methods use amino acid substitution matrices for scoring, optimizing, and assessing the statistical significance of sequence alignments. Much care and effort has therefore gone into constructing substitution matrices, and the quality of search results can depend strongly upon the choice of the proper matrix. A long-standing problem has been the comparison of sequences with biased amino acid compositions, for which standard substitution matrices are not optimal. To address this problem, we have recently developed a general procedure for transforming a standard matrix into one appropriate for the comparison of two sequences with arbitrary, and possibly differing compositions. Such adjusted matrices yield, on average, improved alignments and alignment scores when applied to the comparison of proteins with markedly biased compositions. Here we review the application of compositionally adjusted matrices and consider whether they may also be applied fruitfully to general purpose protein sequence database searches, in which related sequence pairs do not necessarily have strong compositional biases. Although it is not advisable to apply compositional adjustment indiscriminately, we describe several simple criteria under which invoking such adjustment is on average beneficial. In a typical database search, at least one of these criteria is satisfied by over half the related sequence pairs. Compositional substitution matrix adjustment is now available in NCBI's protein-protein version of blast.  相似文献   

9.
Qiu J  Elber R 《Proteins》2006,62(4):881-891
In template-based modeling of protein structures, the generation of the alignment between the target and the template is a critical step that significantly affects the accuracy of the final model. This paper proposes an alignment algorithm SSALN that learns substitution matrices and position-specific gap penalties from a database of structurally aligned protein pairs. In addition to the amino acid sequence information, secondary structure and solvent accessibility information of a position are used to derive substitution scores and position-specific gap penalties. In a test set of CASP5 targets, SSALN outperforms sequence alignment methods such as a Smith-Waterman algorithm with BLOSUM50 and PSI_BLAST. SSALN also generates better alignments than PSI_BLAST in the CASP6 test set. LOOPP server prediction based on an SSALN alignment is ranked the best for target T0280_1 in CASP6. SSALN is also compared with several threading methods and sequence alignment methods on the ProSup benchmark. SSALN has the highest alignment accuracy among the methods compared. On the Fischer's benchmark, SSALN performs better than CLUSTALW and GenTHREADER, and generates more alignments with accuracy >50%, >60% or >70% than FUGUE, but fewer alignments with accuracy >80% than FUGUE. All the supplemental materials can be found at http://www.cs.cornell.edu/ approximately jianq/research.htm.  相似文献   

10.
Alignment of RNA base pairing probability matrices   总被引:6,自引:0,他引:6  
MOTIVATION: Many classes of functional RNA molecules are characterized by highly conserved secondary structures but little detectable sequence similarity. Reliable multiple alignments can therefore be constructed only when the shared structural features are taken into account. Since multiple alignments are used as input for many subsequent methods of data analysis, structure-based alignments are an indispensable necessity in RNA bioinformatics. RESULTS: We present here a method to compute pairwise and progressive multiple alignments from the direct comparison of base pairing probability matrices. Instead of attempting to solve the folding and the alignment problem simultaneously as in the classical Sankoff's algorithm, we use McCaskill's approach to compute base pairing probability matrices which effectively incorporate the information on the energetics of each sequences. A novel, simplified variant of Sankoff's algorithms can then be employed to extract the maximum-weight common secondary structure and an associated alignment. AVAILABILITY: The programs pmcomp and pmmulti described in this contribution are implemented in Perl and can be downloaded together with the example datasets from http://www.tbi.univie.ac.at/RNA/PMcomp/. A web server is available at http://rna.tbi.univie.ac.at/cgi-bin/pmcgi.pl  相似文献   

11.
Fodor AA  Aldrich RW 《Proteins》2004,56(2):211-221
It has long been argued that algorithms that find correlated mutations in multiple sequence alignments can be used to find structurally or functionally important residues in proteins. We examined the properties of four different methods for detecting these correlated mutations. On both simple, artificial alignments and real alignments from the Pfam database, we found a surprising lack of agreement between the four correlated mutation methods. We argue that these differences are caused in part by differing sensitivities to background conservation. Correlated mutation algorithms can be envisioned as "filters" of background conservation with each algorithm searching for correlated mutations that occur at a different background conservation frequency.  相似文献   

12.
ABSTRACT: BACKGROUND: A number of software packages are available to generate DNA multiple sequence alignments (MSAs) evolved under continuous-time Markov processes on phylogenetic trees. On the other hand, methods of simulating the DNA MSA directly from the transition matrices do not exist. Moreover, existing software restricts to the time-reversible models and it is not optimized to generate nonhomogeneous data (i.e. placing distinct substitution rates at different lineages). RESULTS: We present the first package designed to generate MSAs evolving under discrete-time Markov processes on phylogenetic trees, directly from probability substitution matrices. Based on the input model and a phylogenetic tree in the Newick format (with branch lengths measured as the expected number of substitutions per site), the algorithm produces DNA alignments of desired length. GenNon-h is publicly available for download. CONCLUSION: The software presented here is an efficient tool to generate DNA MSAs on a given phylogenetic tree. GenNon-h provides the user with the nonstationary or nonhomogeneous phylogenetic data that is well suited for testing complex biological hypotheses, exploring the limits of the reconstruction algorithms and their robustness to such models.  相似文献   

13.
14.
An improved general amino acid replacement matrix   总被引:2,自引:0,他引:2  
Amino acid replacement matrices are an essential basis of protein phylogenetics. They are used to compute substitution probabilities along phylogeny branches and thus the likelihood of the data. They are also essential in protein alignment. A number of replacement matrices and methods to estimate these matrices from protein alignments have been proposed since the seminal work of Dayhoff et al. (1972). An important advance was achieved by Whelan and Goldman (2001) and their WAG matrix, thanks to an efficient maximum likelihood estimation approach that accounts for the phylogenies of sequences within each training alignment. We further refine this method by incorporating the variability of evolutionary rates across sites in the matrix estimation and using a much larger and diverse database than BRKALN, which was used to estimate WAG. To estimate our new matrix (called LG after the authors), we use an adaptation of the XRATE software and 3,912 alignments from Pfam, comprising approximately 50,000 sequences and approximately 6.5 million residues overall. To evaluate the LG performance, we use an independent sample consisting of 59 alignments from TreeBase and randomly divide Pfam alignments into 3,412 training and 500 test alignments. The comparison with WAG and JTT shows a clear likelihood improvement. With TreeBase, we find that 1) the average Akaike information criterion gain per site is 0.25 and 0.42, when compared with WAG and JTT, respectively; 2) LG is significantly better than WAG for 38 alignments (among 59), and significantly worse with 2 alignments only; and 3) tree topologies inferred with LG, WAG, and JTT frequently differ, indicating that using LG impacts not only the likelihood value but also the output tree. Results with the test alignments from Pfam are analogous. LG and a PHYML implementation can be downloaded from http://atgc.lirmm.fr/LG.  相似文献   

15.
There has been considerable interest in the problem of making maximum likelihood (ML) evolutionary trees which allow insertions and deletions. This problem is partly one of formulation: how does one define a probabilistic model for such trees which treats insertion and deletion in a biologically plausible manner? A possible answer to this question is proposed here by extending the concept of a hidden Markov model (HMM) to evolutionary trees. The model, called a tree-HMM, allows what may be loosely regarded as learnable affine-type gap penalties for alignments. These penalties are expressed in HMMs as probabilities of transitions between states. In the tree-HMM, this idea is given an evolutionary embodiment by defining trees of transitions. Just as the probability of a tree composed of ungapped sequences is computed, by Felsenstein's method, using matrices representing the probabilities of substitutions of residues along the edges of the tree, so the probabilities in a tree-HMM are computed by substitution matrices for both residues and transitions. How to define these matrices by a ML procedure using an algorithm that learns from a database of protein sequences is shown here. Given these matrices, one can define a tree-HMM likelihood for a set of sequences, assuming a particular tree topology and an alignment of the sequences to the model. If one could efficiently find the alignment which maximizes (or comes close to maximizing) this likelihood, then one could search for the optimal tree topology for the sequences. An alignment algorithm is defined here which, given a particular tree topology, is guaranteed to increase the likelihood of the model. Unfortunately, it fails to find global optima for realistic sequence sets. Thus further research is needed to turn the tree-HMM into a practical phylogenetic tool.  相似文献   

16.
17.
Amino acid substitution matrices from an information theoretic perspective   总被引:33,自引:0,他引:33  
Protein sequence alignments have become an important tool for molecular biologists. Local alignments are frequently constructed with the aid of a "substitution score matrix" that specifies a score for aligning each pair of amino acid residues. Over the years, many different substitution matrices have been proposed, based on a wide variety of rationales. Statistical results, however, demonstrate that any such matrix is implicitly a "log-odds" matrix, with a specific target distribution for aligned pairs of amino acid residues. In the light of information theory, it is possible to express the scores of a substitution matrix in bits and to see that different matrices are better adapted to different purposes. The most widely used matrix for protein sequence comparison has been the PAM-250 matrix. It is argued that for database searches the PAM-120 matrix generally is more appropriate, while for comparing two specific proteins with suspected homology the PAM-200 matrix is indicated. Examples discussed include the lipocalins, human alpha 1 B-glycoprotein, the cystic fibrosis transmembrane conductance regulator and the globins.  相似文献   

18.
MOTIVATION: Database searching algorithms for proteins use scoring matrices based on average protein properties, and thus are dominated by globular proteins. However, since transmembrane regions of a protein are in a distinctly different environment than globular proteins, one would expect generalized substitution matrices to be inappropriate for transmembrane regions. RESULTS: We present the PHAT (predicted hydrophobic and transmembrane) matrix, which significantly outperforms generalized matrices and a previously published transmembrane matrix in searches with transmembrane queries. We conclude that a better matrix can be constructed by using background frequencies characteristic of the twilight zone, where low-scoring true positives have scores indistinguishable from high-scoring false positives, rather than the amino acid frequencies of the database. The PHAT matrix may help improve the accuracy of sequence alignments and evolutionary trees of membrane proteins.  相似文献   

19.
Most pairwise and multiple sequence alignment programs seek alignments with optimal scores. Central to defining such scores is selecting a set of substitution scores for aligned amino acids or nucleotides. For local pairwise alignment, substitution scores are implicitly of log-odds form. We now extend the log-odds formalism to multiple alignments, using Bayesian methods to construct “BILD” (“Bayesian Integral Log-odds”) substitution scores from prior distributions describing columns of related letters. This approach has been used previously only to define scores for aligning individual sequences to sequence profiles, but it has much broader applicability. We describe how to calculate BILD scores efficiently, and illustrate their uses in Gibbs sampling optimization procedures, gapped alignment, and the construction of hidden Markov model profiles. BILD scores enable automated selection of optimal motif and domain model widths, and can inform the decision of whether to include a sequence in a multiple alignment, and the selection of insertion and deletion locations. Other applications include the classification of related sequences into subfamilies, and the definition of profile-profile alignment scores. Although a fully realized multiple alignment program must rely upon more than substitution scores, many existing multiple alignment programs can be modified to employ BILD scores. We illustrate how simple BILD score based strategies can enhance the recognition of DNA binding domains, including the Api-AP2 domain in Toxoplasma gondii and Plasmodium falciparum.  相似文献   

20.
Bioinformatic software has used various numerical encoding schemes to describe amino acid sequences. Orthogonal encoding, employing 20 numbers to describe the amino acid type of one protein residue, is often used with artificial neural network (ANN) models. However, this can increase the model complexity, thus leading to difficulty in implementation and poor performance. Here, we use ANNs to derive encoding schemes for the amino acid types from protein three-dimensional structure alignments. Each of the 20 amino acid types is characterized with a few real numbers. Our schemes are tested on the simulation of amino acid substitution matrices. These simplified schemes outperform the orthogonal encoding on small data sets. Using one of these encoding schemes, we generate a colouring scheme for the amino acids in which comparable amino acids are in similar colours. We expect it to be useful for visual inspection and manual editing of protein multiple sequence alignments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号