共查询到20条相似文献,搜索用时 0 毫秒
1.
The importance of light acquisition and utilization by individuals in intraspecific competition was evaluated by determining
growth and photosynthesis of individual plants in a dense monospecific stand of an annual, Xanthium canadense. Photosynthesis of individual plants in the stand was calculated using a canopy photosynthesis model in which leaf photosynthesis
was assumed to be function of leaf nitrogen content and light availability. The estimated photosynthetic rates of individuals
were strongly correlated with the measured growth rates. Photosynthetic rates per unit aboveground mass (RPR, relative photosynthetic
rate) increased with increasing aboveground mass, suggesting asymmetric (one-sided) competition in the stand. However, larger
individuals had similar RPRs, suggesting symmetric (two-sided) competition. These results were consistent with the observation
that size inequality over the whole stand increased with growth, but it remained stable among the larger individuals. The
RPR of an individual was calculated as the product of absorbed photon flux per unit aboveground mass (Φmass) and light use efficiency (LUE, photosynthesis per unit absorbed photon flux). Φmass indicates the efficiency of light acquisition, and was higher in larger individuals in the stand, while LUE was highest in
individuals with intermediate aboveground mass. LUE depends on leaf nitrogen content. At an early stage, leaf nitrogen contents
of smaller individuals were similar to those that maximize LUE. Light availability to smaller individuals decreased as they
grew, while their nitrogen contents did not change markedly, which decreased their LUE. We concluded that asymmetric competition
among individuals in the stand resulted mainly from lower efficiencies in both light acquisition and light use by smaller
individuals.
Received: 31 January 1998 / Accepted: 12 November 1998 相似文献
2.
Noriyuki Osada 《Plant Ecology》2013,214(12):1493-1504
The theory of optimal nitrogen (N) distribution predicts that the carbon gain of plants will be maximised when leaves of higher irradiance have higher N content per area (N area). Most previous studies have examined optimal N distribution without explicitly considering the branching status of plants. I investigated light environment, N distribution and photosynthetic traits of individual leaves of an herbaceous species, Xanthium canadense. X. canadense was grown solitary under high (HN) and low nutrients (LN). Light availability, leaf mass per unit area and N area were measured for all leaves within plants. Daily photosynthesis of the plants of actual N distribution was compared with those of optimal and constant N distribution. Branch production was facilitated in HN but not in LN plants. N area was correlated more with leaf order than with leaf light environment. Although N was more limited and the light environment was less heterogeneous within crowns in LN than in HN plants, leaf N distribution was closer to optimal in the latter. These results suggest that leaf N distribution was not optimised in solitary plants of X. canadense. Because this species often regenerates in a dense stand, leaf N distribution might be selected to maximise carbon gain only in such a stand. Leaf N distribution might thus be constrained by the regeneration strategy of the species. 相似文献
3.
In a dense stand, individuals compete with each other for resources, especially for light. Light availability decreases with increasing depth in the canopy, thus light competition becoming stronger with time in the vegetative phase. In the reproductive phase, on the other hand, leaves start senescing, and the light environment, particularly of smaller individuals, will be improved. To study the effect of change in light climate on reproduction of individuals, we established an experimental stand of an annual, Xanthium canadense, and assessed temporal changes in whole plant photosynthesis through the reproductive phase with particular reference to light availability of individuals. At flowering, 83% of individuals were still alive, but only 27% survived to set seeds. Most of the individuals that died in the reproductive phase were smaller than those that produced seeds. Individuals that died at the early stage of the reproductive phase had a lower leaf to stem mass ratio, suggesting that the fate of individuals was determined partly by the pattern of biomass allocation in this period. At the early stage of the reproductive phase, leaf area index (LAI) of the stand was high and larger individuals had higher whole plant photosynthesis than smaller individuals. Although light availability at later stages was improved with reduction in LAI, whole plant photosynthesis was very low in all individuals due to a lower light use efficiency, which was caused by a decrease in photosynthetic N use efficiency. We conclude that light competition was still strong at the early stage of the reproductive phase and that later improvement of light availability did not ameliorate the photosynthesis of smaller individuals. 相似文献
4.
Nitrogen use efficiency in instantaneous and daily photosynthesis of leaves in the canopy of a Solidago altissima stand 总被引:6,自引:0,他引:6
Photosynthetic capacity was measured on detached leaves sampled in a canopy of Solidago altissima L. Non-rectangular hyperbola fitted the light response curve of photosynthesis and significant correlations were observed between leaf nitrogen per unit area and four parameters which characterize the light-response curve. Using regressions of the parameters on leaf nitrogen, a model of leaf photosynthesis was constructed which gave the relationships between leaf nitrogen, photon flux density (PFD) and photosynthesis. Curvilinear relations were obtained between leaf nitrogen and photosynthetic rate on both an instantaneous and a daily basis. Nitrogen use efficiency (NUE, photosynthesis per unit leaf nitrogen) was calculated against leaf nitrogen under varying PFDs. The optimum nitrogen content per unit leaf area that maximizes NUE shifted to higher values with increasing PFD. Field measurements of PFD showed high positive correlations between the distribution of leaf nitrogen in the canopy and relative PFD. The predicted optimum leaf nitrogen content for each level in the canopy, to achieve maximized NUE during a clear day, was close to the actual nitrogen distribution as found through sampling. 相似文献
5.
Background and Aims
Plants in open, uncrowded habitats typically have relatively short stems with many branches, whereas plants in crowded habitats grow taller and more slender at the expense of mechanical stability. There seems to be a trade-off between height growth and mechanical stability, and this study addresses how stand density influences stem extension and consequently plant safety margins against mechanical failure.Methods
Xanthium canadense plants were grown either solitarily (S-plants) or in a dense stand (D-plants) until flowering. Internode dimensions and mechanical properties were measured at the metamer level, and the critical buckling height beyond which the plant elastically buckles under its own weight and the maximum lateral wind force the plant can withstand were calculated.Key Results
Internodes were longer in D- than S-plants, but basal diameter did not differ significantly. Relative growth rates of internode length and diameter were negatively correlated to the volumetric solid fraction of the internode. Internode dry mass density was higher in S- than D-plants. Young''s modulus of elasticity and the breaking stress were higher in lower metamers, and in D- than in S-plants. Within a stand, however, both moduli were positively related to dry mass density. The buckling safety factor, a ratio of critical buckling height to actual height, was higher in S- than in D-plants. D-plants were found to be approaching the limiting value 1. Lateral wind force resistance was higher in S- than in D-plants, and increased with growth in S-plants.Conclusions
Critical buckling height increased with height growth due mainly to an increase in stem stiffness and diameter and a reduction in crown/stem mass ratio. Lateral wind force resistance was enhanced due to increased tissue strength and diameter. The increase in tissue stiffness and strength with height growth plays a crucial role in maintaining a safety margin against mechanical failure in herbaceous species that lack the capacity for secondary growth. 相似文献6.
Estimating photosynthetic radiation use efficiency using incident light and photosynthesis of individual leaves 总被引:1,自引:0,他引:1
It has been theorized that photosynthetic radiation use efficiency (PhRUE) over the course of a day is constant for leaves throughout a canopy if leaf nitrogen content and photosynthetic properties are adapted to local light so that canopy photosynthesis over a day is optimized. To test this hypothesis, 'daily' photosynthesis of individual leaves of Solanum melongena plants was calculated from instantaneous rates of photosynthesis integrated over the daylight hours. Instantaneous photosynthesis was estimated from the photosynthetic responses to photosynthetically active radiation (PAR) and from the incident PAR measured on individual leaves during clear and overcast days. Plants were grown with either abundant or scarce N fertilization. Both net and gross daily photosynthesis of leaves were linearly related to daily incident PAR exposure of individual leaves, which implies constant PhRUE over a day throughout the canopy. The slope of these relationships (i.e. PhRUE) increased with N fertilization. When the relationship was calculated for hourly instead of daily periods, the regressions were curvilinear, implying that PhRUE changed with time of the day and incident radiation. Thus, linearity (i.e. constant PhRUE) was achieved only when data were integrated over the entire day. Using average PAR in place of instantaneous incident PAR increased the slope of the relationship between daily photosynthesis and incident PAR of individual leaves, and the regression became curvilinear. The slope of the relationship between daily gross photosynthesis and incident PAR of individual leaves increased for an overcast compared with a clear day, but the slope remained constant for net photosynthesis. This suggests that net PhRUE of all leaves (and thus of the whole canopy) may be constant when integrated over a day, not only when the incident PAR changes with depth in the canopy, but also when it varies on the same leaf owing to changes in daily incident PAR above the canopy. The slope of the relationship between daily net photosynthesis and incident PAR was also estimated from the photosynthetic light response curve of a leaf at the top of the canopy and from the incident PAR above the canopy, in place of that measured on individual leaves. The slope (i.e. net PhRUE) calculated in this simple way did not differ statistically from that calculated using data from individual leaves. 相似文献
7.
8.
叶物候、构建消耗和偿还时间对入侵植物碳积累的影响 总被引:2,自引:0,他引:2
随着全球经济一体化进程的深入,生物入侵已成为严重的全球性问题之一.外来种入侵打破了物种生存的自然平衡,导致生态系统趋于均质化,并给社会经济发展和人类健康造成了无法估量的损失.然而,目前人们对外来种的入侵机理仍不十分清楚.叶物候如叶片发生时间、凋落时间、及由二者决定的叶寿命和叶片发育进程是植物在季节和非季节性变化的环境中为了获得碳收益所采取的适应策略.叶构建消耗是植物碳收获过程中必要的成本投入,反映了植物在叶片水平上的能量分配策略.偿还时间能在一定程度上反映叶片碳的积累情况.从叶物候、构建消耗和偿还时间入手,分析了入侵植物的资源捕获能力和成本对其碳积累的影响,并提出了今后的研究方向. 相似文献
9.
Elizabeth D. Sharp Patrick F. Sullivan Heidi Steltzer Adam Z. Csank Jeffrey M. Welker 《Global Change Biology》2013,19(6):1780-1792
The Arctic has experienced rapid warming and, although there are uncertainties, increases in precipitation are projected to accompany future warming. Climate changes are expected to affect magnitudes of gross ecosystem photosynthesis (GEP), ecosystem respiration (ER) and the net ecosystem exchange of CO2 (NEE). Furthermore, ecosystem responses to climate change are likely to be characterized by nonlinearities, thresholds and interactions among system components and the driving variables. These complex interactions increase the difficulty of predicting responses to climate change and necessitate the use of manipulative experiments. In 2003, we established a long‐term, multi‐level and multi‐factor climate change experiment in a polar semidesert in northwest Greenland. Two levels of heating (30 and 60 W m?2) were applied and the higher level was combined with supplemental summer rain. We made plot‐level measurements of CO2 exchange, plant community composition, foliar nitrogen concentrations, leaf δ13C and NDVI to examine responses to our treatments at ecosystem‐ and leaf‐levels. We confronted simple models of GEP and ER with our data to test hypotheses regarding key drivers of CO2 exchange and to estimate growing season CO2‐C budgets. Low‐level warming increased the magnitude of the ecosystem C sink. Meanwhile, high‐level warming made the ecosystem a source of C to the atmosphere. When high‐level warming was combined with increased summer rain, the ecosystem became a C sink of magnitude similar to that observed under low‐level warming. Competition among our ER models revealed the importance of soil moisture as a driving variable, likely through its effects on microbial activity and nutrient cycling. Measurements of community composition and proxies for leaf‐level physiology suggest GEP responses largely reflect changes in leaf area of Salix arctica, rather than changes in leaf‐level physiology. Our findings indicate that the sign and magnitude of the future High Arctic C budget may depend upon changes in summer rain. 相似文献
10.
Changes in light or water availability can result in synchronous leaf production, concentrating food availability for herbivores of young leaves to only a few months. To determine the importance of food availability on herbivory, leaf phenology and leaf damage were studied in the Luquillo Experimental Forest (LEF) of Puerto Rico. We studied 20 individuals of eight species for two years. Every month, new leaves were marked; the following month, leaf area and area of damage were measured. Over two years, comparison of leaf production and percent herbivory were performed for each species, and for all species taken together. More than 30 percent of the annual leaf production occurred in May and June. Leaf production was associated with an increase in PFD (photon flux density) and was not related to the patterns of rainfall. Although leaf production was synchronous, there were no differences in herbivory between the peak and non‐peak periods of leaf production. Possible explanations for the constant levels of herbivory throughout the year are the presence of a generalist herbivore community, the ability of herbivores to track changes in food availability, or high densities of herbivore predators that control herbivore populations. 相似文献
11.
Relationships between soil microbial properties and aboveground stand characteristics of conifer forests in Oregon 总被引:4,自引:0,他引:4
Eight forest sites representing a large range of climate, vegetation, and productivity were sampled in a transect across Oregon to study the relationships between aboveground stand characteristics and soil microbial properties. These sites had a range in leaf area index of 0.6 to 16 m2 m–2 and net primary productivity of 0.3 to 14 Mg ha–1 yr–1.Measurements of soil and forest floor inorganic N concentrations and in situ net N mineralization, nitrification, denitrification, and soil respiration were made monthly for one year. Microbial biomass C and anaerobic N mineralization, an index of N availability, were also measured. Annual mean concentrations of NH
4
+
ranged from 37 to 96 mg N kg–1 in the forest floor and from 1.7 to 10.7 mg N kg–1 in the mineral soil. Concentrations of NO
3
–
were low ( < 1 mg N kg–1) at all sites. Net N mineralization and nitrification, as measured by the buried bag technique, were low on most sites and denitrification was not detected at any site. Available N varied from 17 to 101 mg N kg–1, microbial biomass C ranged from 190 to 1230 mg Ckg–1, and soil respiration rates varied from 1.3 to 49 mg C kg–1 day–1 across these sites. Seasonal peaks in NH
4
+
concentrations and soil respiration rates were usually observed in the spring and fall.The soils data were positively correlated with several aboveground variables, including leaf area index and net primary productivity, and the near infrared-to-red reflectance ratio obtained from the airborne simulator of the Thematic Mapper satellite. The data suggest that close relationships between aboveground productivity and soil microbial processes exist in forests approaching semi-equilibrium conditions.Abbreviations IR
infrared
- LAI
leaf area index
-
k
c
proportion of microbial biomass C mineralized to CO2
- NPP
net primary productivity
- TM
Thematic Mapper 相似文献
12.
人类活动导致氮和磷输入到草原生态系统,对土壤有机碳循环产生影响,但是土壤微生物呼吸(Soil microbial respiration,Rs)及其温度敏感性(Q10)对于氮沉降和磷有效性增加的响应还存在争议。因此,依托多伦草原氮添加样地(0、50 kg N hm-2 a-1和100 kg N hm-2 a-1),并添加磷进行室内恒温培养(10℃和15℃),研究氮添加和磷有效性增加对Rs及其Q10的影响。结果发现:氮添加显著降低胞壁酸含量和显著增加真菌丰富度(Fungal richness, F-richness)。与N0处理相比,N50和N100处理使累积呼吸量显著降低了61.2%和67.1%,但Q10显著升高了32.7%和50.8%;磷有效性增加没有对累积呼吸量及其Q10产生显著影响。逐步回归结果表明,F-richness和pH值分别是累积呼吸量及其Q10最重要的影响因子。研究表明氮添加... 相似文献
13.
Abstract. The influence of leaf age, total leaf area and its dispersion in space on canopy photosynthesis were studied using microswards of red clover ( Trifolium pratense L.) which were established in the greenhouse. Two varieties, Renova (flowering) and Molstad (non-flowering), were sown in separate plastic boxes at densities of 225, 400 and 625 plants per m2 .
Vertical distribution of photosynthetically active radiation (PAR), leaf area, leaf age and14 CO2 -fixation were determined periodically. Net photosynthesis and dark respiration of canopies were measured. Maximum photosynthetic capacity of individual leaves was measured on plants taken from the intact canopy or from plants where shading of the growing leaves had been prevented.
Net photosynthetic rate of canopies increased linearly with leaf area index (LAI) up to an LAI of 3.5 and then declined at higher LAI, independent of variety and sowing density. Below the optimum LAI, net photosynthesis depended mainly on interception of PAR. Decrease in canopy photosynthesis above the optimum LAI was due to a higher proportion of old leaves with decreased photosynthetic capacity, and not to an increase in respiring plant parts. It is concluded that LAI and position of leaf age categories in the canopy are more important than vertical distribution of leaf area in determining canopy photosynthesis of red clover. 相似文献
Vertical distribution of photosynthetically active radiation (PAR), leaf area, leaf age and
Net photosynthetic rate of canopies increased linearly with leaf area index (LAI) up to an LAI of 3.5 and then declined at higher LAI, independent of variety and sowing density. Below the optimum LAI, net photosynthesis depended mainly on interception of PAR. Decrease in canopy photosynthesis above the optimum LAI was due to a higher proportion of old leaves with decreased photosynthetic capacity, and not to an increase in respiring plant parts. It is concluded that LAI and position of leaf age categories in the canopy are more important than vertical distribution of leaf area in determining canopy photosynthesis of red clover. 相似文献
14.
BACKGROUND AND AIMS: The light availability on a temperate, deciduous-forest floor varies greatly, reflecting the seasonal leaf dynamics of the canopy trees. The growth and/or reproductive activity of understorey plants should be influenced by the length of the high-irradiance period from snowmelt to canopy closure. The aim of the present study was to clarify how spring-blooming species regulate the translocation of photosynthetic products to current reproduction and storage organs during a growing season in accordance with the changing light conditions. METHODS: Growth pattern, net photosynthetic rate, seed production, and shoot and flower production in the next year of Trillium apetalon were compared between natural and experimentally shaded conditions. Furthermore, translocation of current photosynthetic products within plants was assessed by a labelled carbon-chase experiment. KEY RESULTS: During the high-irradiance period, plants showed high photosynthetic ability, in which current products were initially used for shoot growth, then reserved in the rhizome. Carbon translocation to developing fruit occurred after canopy closure, but this was very small due to low photosynthetic rates under the darker conditions. The shading treatment in the early season advanced the time of carbon translocation to fruit, but reduced seed production in the current year and flower production of the next year. CONCLUSIONS: Carbon translocation to the storage organ had priority over seed production under high-irradiance conditions. A shortened bright period due to early canopy closure effectively restricts carbon assimilation, which greatly reduces subsequent reproductive output owing to low photosynthetic products for fruit development and small carbon storage for future reproduction. As populations of this species are maintained by seedling recruitment, acceleration of canopy closure timing may influence the maintenance and dynamics of populations. 相似文献
15.
A whole-plant carbon balance model incorporating a light acclimation response was developed for Alocasia macrorrhiza based on empirical data and the current understanding of light acclimation in this species. The model was used to predict the relative growth rate (RGR) for plants that acclimated to photon flux density (PFD) by changing their leaf type, and for plants that produced only sun or shade leaves regardless of PFD. The predicted RGR was substantially higher for plants with shade leaves than for those with sun leaves at low PFD. However, the predicted RGR was not higher, and in fact was slightly lower, for plants with sun leaves than for those with shade leaves at high PFD. The decreased leaf area ratios (LARs) of the plants with sun leaves counteracted their higher photosynthetic capacities per unit leaf area (Amax). The model was manipulated by changing parameters to examine the sensitivity of RGR to variation in single factors. Overall, RGR was most sensitive to LAR and showed relatively little sensitivity to variation in Amax or maintenance respiration. Similarly, RGR was relatively insensitive to increases in leaf life-span beyond those observed. Respiration affected RGR only at low PFD, whereas Amax was moderately important only at high PFD. 相似文献
16.
Growth and carbon economy of a fast-growing and a slow-growing grass species as dependent on nitrate supply 总被引:5,自引:0,他引:5
Hendrik Poorter Claudius A. D. M. van de Vijver René G. A. Boot Hans Lambers 《Plant and Soil》1995,171(2):217-227
In previous experiments systematic differences have been found in the morphology, carbon economy and chemical composition
of seedlings of inherently fast- and slow-growing plant species, grown at a non-limiting nutrient supply. In the present experiment
it was investigated whether these differences persist when plants are grown at suboptimal nutrient supply rates. To this end,
plants of the inherently fast-growing Holcus lanatus L. and the inherently slow-growing Deschampsia flexuosa (L.) Trin. were grown in sand at two levels of nitrate supply. Growth, photosynthesis, respiration and carbon and nitrogen
content were studied over a period of 4 to 7 weeks.
At low N-supply, the potentially fast-growing species still grew faster than the potentially slow-growing one. Similarly,
differences in leaf area ratio (leaf area:total dry weight), specific leaf area (leaf area:leaf dry weight) and leaf weight
ratio (leaf dry weight:total dry weight), as observed at high N-supply persisted at low N-availability. The only growth parameter
for which a substantial Species × N-supply interaction was found was the net assimilation rate (increase in dry weight per
unit leaf area and time). Rates of photosynthesis, shoot respiration and root respiration, expressed per unit leaf, shoot
and root weight, respectively, were lower for the plants at low N-availability and higher for the fast-growing species. Species-specific
variation in the daily carbon budget was mainly due to variation in carbon fixation. Lower values at low N were largely determined
by both a lower C-gain of the leaves and a higher proportion of the daily gain spent in root respiration.
Interspecific variation in C-content and dry weight:fresh weight ratio were similar at low and high N-supply. Total plant
organic N decreased with decreasing N-supply, without differences between species. It is concluded that most of the parameters
related to growth, C-economy and chemical composition differ between species and/or are affected by N-supply, but that differences
between the two species at high N-availability persist at low N-supply. 相似文献
17.
We investigated seasonal changes in dry mass and CO2 exchange rate in fruit and leaves of the evergreen tree Cinnamomum camphora with the aim of quantitatively determining the translocation balance between the two organs. The fruit dry mass growth peaked
in both August and October: the first increase was due to fruit pulp development and the second to seed development. Fruit
respiration also increased with the rapid increase in fruit dry mass. Therefore, the carbohydrates required for fruit development
showed two peaks during the reproductive period. Fruit photosynthesis was relatively high in early August, when fruit potentially
re-fixed 75% of respired CO2, indicating that fruit photosynthesis contributed 15–35% of the carbon requirement for fruit respiration. Current-year leaves
completed their growth in June when fruit growth began. Current-year leaves translocated carbohydrates at a rate of approximately
10–25 mg dry weight (dw) leaf−1 day−1 into other organs throughout the entire fruit growth period. This rate of translocation from current-year leaves was much
higher than the amount of carbohydrate required for reproduction (ca. 3 mg dw fruit−1 day−1). Given the carbon balance between fruit and current-year leaves, carbohydrates for reproduction were produced within the
current-year fruit-bearing shoots. C. camphora would be adaptive for steadily supplying enough amount of carbohydrate to the fruits, as there was little competition for
carbohydrates between the two organs. As assimilates by leaves are used for processes such as reproduction and the formation
of new shoots, photosynthesis by reproductive organs is considered to be important to compensate for reproductive cost. 相似文献
18.
Smyrnium perfoliatum L. (Apiaceae), an endangered forest herb with only one main locality in South-West Slovakia (Devínska Kobyla in the Little Carpathian Mountains),
is capable to recover chlorophylls at the end of the growing season. This regreening only within bracts was observed during
two weeks before achieving the so-called “point of no return” that leads to the last stage of ontogenesis — leaf senescence.
The effect not only of endogenous cytokinins on chlorophyll content and carbon dioxide exchange (photosynthesis, mitochondrial
respiration, and photorespiration) is discussed but also of other factors such as strong irradiance, high temperature or drought
stress on studied parameters was considered. 相似文献
19.
Tuula Larmola Jill L. Bubier Christine Kobyljanec Nathan Basiliko Sari Juutinen Elyn Humphreys Michael Preston Tim R. Moore 《Global Change Biology》2013,19(12):3729-3739
To study vegetation feedbacks of nutrient addition on carbon sequestration capacity, we investigated vegetation and ecosystem CO2 exchange at Mer Bleue Bog, Canada in plots that had been fertilized with nitrogen (N) or with N plus phosphorus (P) and potassium (K) for 7–12 years. Gross photosynthesis, ecosystem respiration, and net CO2 exchange were measured weekly during May–September 2011 using climate‐controlled chambers. A substrate‐induced respiration technique was used to determine the functional ability of the microbial community. The highest N and NPK additions were associated with 40% less net CO2 uptake than the control. In the NPK additions, a diminished C sink potential was due to a 20–30% increase in ecosystem respiration, while gross photosynthesis rates did not change as greater vascular plant biomass compensated for the decrease in Sphagnum mosses. In the highest N‐only treatment, small reductions in gross photosynthesis and no change in ecosystem respiration led to the reduced C sink. Substrate‐induced microbial respiration was significantly higher in all levels of NPK additions compared with control. The temperature sensitivity of respiration in the plots was lower with increasing cumulative N load, suggesting more labile sources of respired CO2. The weaker C sink potential could be explained by changes in nutrient availability, higher woody : foliar ratio, moss loss, and enhanced decomposition. Stronger responses to NPK fertilization than to N‐only fertilization for both shrub biomass production and decomposition suggest that the bog ecosystem is N‐P/K colimited rather than N‐limited. Negative effects of further N‐only deposition were indicated by delayed spring CO2 uptake. In contrast to forests, increased wood formation and surface litter accumulation in bogs seem to reduce the C sink potential owing to the loss of peat‐forming Sphagnum. 相似文献
20.
Hikosaka K 《Annals of botany》2005,95(3):521-533
BACKGROUND AND AIMS: In a leaf canopy, there is a turnover of leaves; i.e. they are produced, senesce and fall. These processes determine the amount of leaf area in the canopy, which in turn determines canopy photosynthesis. The turnover rate of leaves is affected by environmental factors and is different among species. This mini-review discusses factors responsible for leaf dynamics in plant canopies, focusing on the role of nitrogen. SCOPE: Leaf production is supported by canopy photosynthesis that is determined by distribution of light and leaf nitrogen. Leaf nitrogen determines photosynthetic capacity. Nitrogen taken up from roots is allocated to new leaves. When leaves age or their light availability is lowered, part of the leaf nitrogen is resorbed. Resorbed nitrogen is re-utilized in new organs and the rest is lost with dead leaves. The sink-source balance is important in the regulation of leaf senescence. Several models have been proposed to predict response to environmental changes. A mathematical model that incorporated nitrogen use for photosynthesis explained well the variations in leaf lifespan within and between species. CONCLUSION: When leaf turnover is at a steady state, the ratio of biomass production to nitrogen uptake is equal to the ratio of litter fall to nitrogen loss, which is an inverse of the nitrogen concentration in dead leaves. Thus nitrogen concentration in dead leaves (nitrogen resorption proficiency) and nitrogen availability in the soil determine the rate of photosynthesis in the canopy. Dynamics of leaves are regulated so as to maximize carbon gain and resource-use efficiency of the plant. 相似文献