首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The antiarrhythmic drug amiodarone was recently demonstrated to have novel broad range fungicidal activity. We provide evidence that amiodarone toxicity is mediated by disruption of Ca2+ homeostasis in Saccharomyces cerevisiae. In mutants lacking calcineurin and various Ca2+ transporters, including pumps (Pmr1 and Pmc1), channels (Cch1/Mid1 and Yvc1), and exchangers (Vcx1), amiodarone sensitivity correlates with cytoplasmic calcium overload. Measurements of cytosolic Ca2+ by aequorin luminescence demonstrate a biphasic response to amiodarone. An immediate and extensive calcium influx was observed that was dose-dependent and correlated with drug sensitivity. The second phase consisted of a sustained release of calcium from the vacuole via the calcium channel Yvc1 and was independent of extracellular Ca2+ entry. To uncover additional cellular pathways involved in amiodarone sensitivity, we conducted a genome-wide screen of nearly 5000 single-gene yeast deletion mutants. 36 yeast strains with amiodarone hypersensitivity were identified, including mutants in transporters (pmr1, pdr5, and vacuolar H+-ATPase), ergosterol biosynthesis (erg3, erg6, and erg24), intracellular trafficking (vps45 and rcy1), and signaling (ypk1 and ptc1). Of three mutants examined (vps45, vma3, and rcy1), all were found to have defective calcium homeostasis, supporting a correlation with amiodarone hypersensitivity. We show that low doses of amiodarone and an azole (miconazole, fluconazole) are strongly synergistic and exhibit potent fungicidal effects in combination. Our findings point to the potentially effective application of amiodarone as a novel antimycotic, particularly in combination with conventional antifungals.  相似文献   

2.
The vacuole is the major site of intracellular Ca(2+) storage in yeast and functions to maintain cytosolic Ca(2+) levels within a narrow physiological range via a Ca(2+) pump (Pmc1p) and a H(+)/Ca(2+) antiporter (Vcx1p) driven by the vacuolar H(+)-ATPase (V-ATPase). We examined the function of the V-ATPase in cytosolic Ca(2+) homeostasis by comparing responses to a brief Ca(2+) challenge of a V-ATPase mutant (vma2Delta) and wild-type cells treated with the V-ATPase inhibitor concanamycin A. The kinetics of the Ca(2+) response were determined using transgenic aequorin as an in vivo cytosolic Ca(2+) reporter system. In wild-type cells, the V-ATPase-driven Vcx1p was chiefly responsible for restoring cytosolic Ca(2+) concentrations after a brief pulse. In cells lacking V-ATPase activity, brief exposure to elevated Ca(2+) compromised viability, even when there was little change in the final cytosolic Ca(2+) concentration. vma2Delta cells were more efficient at restoring cytosolic [Ca(2+)] after a pulse than concanamycin-treated wild-type cells, suggesting long term loss of V-ATPase triggers compensatory mechanisms. This compensation was dependent on calcineurin, and was mediated primarily by Pmc1p.  相似文献   

3.
It is well established that the vacuole plays an important role in the cellular adaptation to growth in the presence of elevated extracellular Ca2+ concentrations in Saccharomyces cerevisiae. The Ca2+ ATPase Pmc1p and the Ca2+/H+ exchanger Vcx1p/Hum1p have been shown to facilitate Ca2+ sequestration into the vacuole. However, the distinct physiological roles of these two vacuolar Ca2+ transporters remain uncertain. Here we show that Vcx1p can rapidly sequester a sudden pulse of cytosolic Ca2+ into the vacuole, while Pmc1p carries out this function much less efficiently. This finding is consistent with the postulated role of Vcx1p as a high capacity, low affinity Ca2+ transporter and suggests that Vcx1p may act to attenuate the propagation of Ca2+ signals in this organism.  相似文献   

4.
The Ca(2+)-dependent protein phosphatase calcineurin is an important regulator of ion transporters from many organisms, including the Saccharomyces cerevisiae vacuolar Ca(2+)/H(+) exchanger Vcx1p. In yeast and plants, cation/H(+) exchangers are important in shaping cytosolic Ca(2+) levels involved in signal transduction and providing tolerance to potentially toxic concentrations of cations such as Ca(2+), Mn(2+) and Cd(2+). Previous genetic evidence suggested Vcx1p is negatively regulated by calcineurin. By utilizing direct transport measurements into vacuolar membrane vesicles, we demonstrate that Vcx1p is a low-affinity Ca(2+) transporter and may also function in Cd(2+) transport, but cannot transport Mn(2+). Furthermore, direct Ca(2+) transport by Vcx1p is calcineurin sensitive. Using a yeast growth assay, a mutant allele of VCX1 (VCX1-S204A/L208P), termed VCX1-M1, was previously found to confer strong Mn(2+) tolerance. Here we demonstrate that this Mn(2+) tolerance is independent of the Ca(2+)/Mn(2+)-ATPase Pmr1p and results from Mn(2+)-specific vacuolar transport activity of Vcx1-M1p. This Mn(2+) transport by Vcx1-M1p is calcineurin dependent, although the localization of Vcx1-M1p to the vacuole appears to be calcineurin independent. Additionally, we demonstrate that mutation of L208P alone is enough to confer calcineurin-dependent Mn(2+) tolerance. This study demonstrates that calcineurin can positively regulate the transport of cations by VCX1-M1p.  相似文献   

5.
The engagement of integrin alpha7 in E63 skeletal muscle cells by laminin or anti-alpha7 antibodies triggered transient elevations in the intracellular free Ca(2+) concentration that resulted from both inositol triphosphate-evoked Ca(2+) release from intracellular stores and extracellular Ca(2+) influx through voltage-gated, L-type Ca(2+) channels. The extracellular domain of integrin alpha7 was found to associate with both ectocalreticulin and dihydropyridine receptor on the cell surface. Calreticulin appears to also associate with cytoplasmic domain of integrin alpha7 in a manner highly dependent on the cytosolic Ca(2+) concentration. It appeared that intracellular Ca(2+) release was a prerequisite for Ca(2+) influx and that calreticulin associated with the integrin cytoplasmic domain mediated the coupling of between the Ca(2+) release and Ca(2+) influx. These findings suggest that calreticulin serves as a cytosolic activator of integrin and a signal transducer between integrins and Ca(2+) channels on the cell surface.  相似文献   

6.
7.
Calcium ions, present inside all eukaryotic cells, are important second messengers in the transduction of biological signals. In mammalian cells, the release of Ca(2+) from intracellular compartments is required for signaling and involves the regulated opening of ryanodine and inositol-1,4,5-trisphosphate (IP3) receptors. However, in budding yeast, no signaling pathway has been shown to involve Ca(2+) release from internal stores, and no homologues of ryanodine or IP3 receptors exist in the genome. Here we show that hyperosmotic shock provokes a transient increase in cytosolic Ca(2+) in vivo. Vacuolar Ca(2+), which is the major intracellular Ca(2+) store in yeast, is required for this response, whereas extracellular Ca(2+) is not. We aimed to identify the channel responsible for this regulated vacuolar Ca(2+) release. Here we report that Yvc1p, a vacuolar membrane protein with homology to transient receptor potential (TRP) channels, mediates the hyperosmolarity induced Ca(2+) release. After this release, low cytosolic Ca(2+) is restored and vacuolar Ca(2+) is replenished through the activity of Vcx1p, a Ca(2+)/H(+) exchanger. These studies reveal a novel mechanism of internal Ca(2+) release and establish a new function for TRP channels.  相似文献   

8.
In animal cells, capacitative calcium entry (CCE) mechanisms become activated specifically in response to depletion of calcium ions (Ca(2+)) from secretory organelles. CCE serves to replenish those organelles and to enhance signaling pathways that respond to elevated free Ca(2+) concentrations in the cytoplasm. The mechanism of CCE regulation is not understood because few of its essential components have been identified. We show here for the first time that the budding yeast Saccharomyces cerevisiae employs a CCE-like mechanism to refill Ca(2+) stores within the secretory pathway. Mutants lacking Pmr1p, a conserved Ca(2+) pump in the secretory pathway, exhibit higher rates of Ca(2+) influx relative to wild-type cells due to the stimulation of a high-affinity Ca(2+) uptake system. Stimulation of this Ca(2+) uptake system was blocked in pmr1 mutants by expression of mammalian SERCA pumps. The high-affinity Ca(2+) uptake system was also stimulated in wild-type cells overexpressing vacuolar Ca(2+) transporters that competed with Pmr1p for substrate. A screen for yeast mutants specifically defective in the high-affinity Ca(2+) uptake system revealed two genes, CCH1 and MID1, previously implicated in Ca(2+) influx in response to mating pheromones. Cch1p and Mid1p were localized to the plasma membrane, coimmunoprecipitated from solubilized membranes, and shown to function together within a single pathway that ensures that adequate levels of Ca(2+) are supplied to Pmr1p to sustain secretion and growth. Expression of Cch1p and Mid1p was not affected in pmr1 mutants. The evidence supports the hypothesis that yeast maintains a homeostatic mechanism related to CCE in mammalian cells. The homology between Cch1p and the catalytic subunit of voltage-gated Ca(2+) channels raises the possibility that in some circumstances CCE in animal cells may involve homologs of Cch1p and a conserved regulatory mechanism.  相似文献   

9.
An analysis of the relationship between electrical membrane activity and Ca2+ influx in differentiated GnRH-secreting (GT1) neurons revealed that most cells exhibited spontaneous, extracellular Ca(2+)-dependent action potentials (APs). Spiking was initiated by a slow pacemaker depolarization from a baseline potential between -75 and -50 mV, and AP frequency increased with membrane depolarization. More hyperpolarized cells fired sharp APs with limited capacity to promote Ca2+ influx, whereas more depolarized cells fired broad APs with enhanced capacity for Ca2+ influx. Characterization of the inward currents in GT1 cells revealed the presence of tetrodotoxin-sensitive Na+, Ni(2+)-sensitive T-type Ca2+, and dihydropyridine-sensitive L-type Ca2+ components. The availability of Na+ and T-type Ca2+ channels was dependent on the baseline potential, which determined the activation/inactivation status of these channels. Whereas all three channels were involved in the generation of sharp APs, L-type channels were solely responsible for the spike depolarization in cells exhibiting broad APs. Activation of GnRH receptors led to biphasic changes in cytosolic Ca2+ concentration ([Ca2+]i), with an early, extracellular Ca(2+)-independent peak and a sustained, extracellular Ca(2+)-dependent phase. During the peak [Ca2+]i response, electrical activity was abolished due to transient hyperpolarization. This was followed by sustained depolarization of cells and resumption of firing of increased frequency with a shift from sharp to broad APs. The GnRH-induced change in firing pattern accounted for about 50% of the elevated Ca2+ influx, the remainder being independent of spiking. Basal [Ca2+]i was also dependent on Ca2+ influx through AP-driven and voltage-insensitive pathways. Thus, in both resting and agonist-stimulated GT1 cells, membrane depolarization limits the participation of Na+ and T-type channels in firing, but facilitates AP-driven Ca2+ influx.  相似文献   

10.
Members of class II of the HKT transporters, which have thus far only been isolated from grasses, were found to mediate Na(+)-K(+) cotransport and at high Na(+) concentrations preferred Na(+)-selective transport, depending on the ionic conditions. But the physiological functions of this K(+)-transporting class II of HKT transporters remain unknown in plants, with the exception of the unique class II Na(+) transporter OsHKT2;1. The genetically tractable rice (Oryza sativa; background Nipponbare) possesses two predicted K(+)-transporting class II HKT transporter genes, OsHKT2;3 and OsHKT2;4. In this study, we have characterized the ion selectivity of the class II rice HKT transporter OsHKT2;4 in yeast and Xenopus laevis oocytes. OsHKT2;4 rescued the growth defect of a K(+) uptake-deficient yeast mutant. Green fluorescent protein-OsHKT2;4 is targeted to the plasma membrane in transgenic plant cells. OsHKT2;4-expressing oocytes exhibited strong K(+) permeability. Interestingly, however, K(+) influx in OsHKT2;4-expressing oocytes did not require stimulation by extracellular Na(+), in contrast to other class II HKT transporters. Furthermore, OsHKT2;4-mediated currents exhibited permeabilities to both Mg(2+) and Ca(2+) in the absence of competing K(+) ions. Comparative analyses of Ca(2+) and Mg(2+) permeabilities in several HKT transporters, including Arabidopsis thaliana HKT1;1 (AtHKT1;1), Triticum aestivum HKT2;1 (TaHKT2;1), OsHKT2;1, OsHKT2;2, and OsHKT2;4, revealed that only OsHKT2;4 and to a lesser degree TaHKT2;1 mediate Mg(2+) transport. Interestingly, cation competition analyses demonstrate that the selectivity of both of these class II HKT transporters for K(+) is dominant over divalent cations, suggesting that Mg(2+) and Ca(2+) transport via OsHKT2;4 may be small and would depend on competing K(+) concentrations in plants.  相似文献   

11.
Transient increases in the cytoplasmic Ca(2+) concentration are key events that initiate many cellular signaling pathways in response to developmental and environmental cues in plants; however, only a few extracellular mediators regulating cytoplasmic Ca(2+) singling are known to date. To identify endogenous cell signaling peptides regulating cytoplasmic Ca(2+) signaling, Arabidopsis seedlings expressing aequorin were used for an in vivo luminescence assay for Ca(2+) changes. These seedlings were challenged with fractions derived from plant extracts. Multiple heat-stable, protease-sensitive peaks of calcium elevating activity were observed after fractionation of these extracts by high-performance liquid chromatography. Tandem mass spectrometry identified the predominant active molecule isolated by a series of such chromatographic separations as a 49-amino acid polypeptide, AtRALF1 (the rapid alkalinization factor protein family). Within 40 s of treatment with nanomolar concentrations of the natural or synthetic version of the peptides, the cytoplasmic Ca(2+) level increased and reached its maximum. Prior treatment with a Ca(2+) chelator or inhibitor of IP 3-dependent signaling partially suppressed the AtRALF1-induced Ca(2+) concentration increase, indicating the likely involvement of Ca(2+) influx across the plasma membrane as well as release of Ca(2+) from intracellular reserves. Ca(2+) imaging using seedlings expressing the FRET-based Ca(2+) sensor yellow cameleon (YC) 3.6 showed that AtRALF1 could induce an elevation in Ca(2+) concentration in the surface cells of the root consistent with the very rapid effects of addition of AtRALF1 on Ca(2+) levels as reported by aequorin. Our data support a model in which the RALF peptide mediates Ca(2+)-dependent signaling events through a cell surface receptor, where it may play a role in eliciting events linked to stress responses or the modulation of growth.  相似文献   

12.
The effects of extracellular Na+ (Na+o) on cytosolic ionized calcium (Ca2+i) and on calcium and sodium fluxes were measured in monkey kidney cells (LLC-MK2). Ca2+i was measured with aequorin and the ion fluxes with 45Ca and 22Na. Na+-free media rapidly increased Ca2+i from 60 to a maximum of about 700 nM in 2-3 min. After the peak, Ca2+i declined and reached a plateau of about twice the resting Ca2+i. The peak Ca2+i was inversely proportional to Na+o and directly proportional to the extracellular calcium concentration (Ca2+o). On the other hand, a pH of 6.8 reduced and Ca2+o substitution with Sr2+ completely blocked the Ca2+i response to low Na+o. A Na+-free medium stimulated calcium efflux from the cells 4-5-fold, a response which was abolished in the absence of extracellular Ca2+. Na+-free media also stimulated calcium influx and sodium efflux. The cell calcium content, however, was not increased. These results indicate that removal of extracellular Na+ increases Ca2+i by stimulating calcium influx and not by inhibiting calcium efflux; the increased calcium influx takes place on the Na+-Ca2+ antiporter operating in the reverse mode in exchange for sodium efflux. The increased calcium efflux occurs as a consequence of the rise in Ca2+i and presumably takes place on the (Ca2+-Mg2+) ATPase-dependent calcium pump.  相似文献   

13.
14.
Metabotropic Ca2+ channel-induced calcium release in vascular smooth muscle   总被引:2,自引:0,他引:2  
Contraction of vascular smooth muscle cells (VSMCs) depends on the rise of cytosolic [Ca(2+)] owing to either Ca(2+) influx through voltage-gated Ca(2+) channels of the plasmalemma or to receptor-mediated Ca(2+) release from the sarcoplasmic reticulum (SR). Although the ionotropic role of L-type Ca(2+) channels is well known, we review here data suggesting a new role of these channels in arterial myocytes. After sensing membrane depolarization Ca(2+) channels activate G proteins and the phospholipase C/inositol 1,4,5-trisphosphate (InsP(3)) pathway. Ca(2+) released through InsP(3)-dependent channels of the SR activates ryanodine receptors to amplify the cytosolic Ca(2+) signal, thus triggering arterial cerebral vasoconstriction in the absence of extracellular calcium influx. This metabotropic action of L-type Ca(2+) channels, denoted as calcium channel-induced Ca(2+) release, could have implications in cerebral vascular pharmacology and pathophysiology, because it can be suppressed by Ca(2+) channel antagonists and potentiated with small concentrations of extracellular vasoactive agents as ATP.  相似文献   

15.
Yeast cell morphology can be treated as a quantitative trait using the image processing software CalMorph. In the present study, we investigated Ca(2+)-induced morphological changes in Ca(2+)-sensitive (cls) mutants of Saccharomyces cerevisiae, based on the discovery that the characteristic Ca(2+)-induced morphological changes in the Ca(2+)-sensitive mutant zds1 reflect changes in the Ca(2+) signaling-mediated cell cycle control pathway. By applying hierarchical cluster analysis to the quantitative morphological data of 58 cls mutants, 31 of these mutants were classified into seven classes based on morphological similarities. The patterns of morphological change induced by Ca(2+) in one class differed from those of another class. Based on the results obtained using versatile methods for phenotypic analysis, we conclude that a high concentration of Ca(2+) exerts a wide variety of effects on yeast and that there are multiple Ca(2+)-regulatory pathways that are distinct from the Zds1p-related pathway.  相似文献   

16.
Fura-2 antagonises calcium-induced calcium release   总被引:1,自引:0,他引:1  
Calcium-induced calcium release (CICR) from the endoplasmic reticulum (ER) takes place through ryanodine receptors (RyRs) and it is often revealed by an increase of the cytosolic Ca(2+) concentration ([Ca(2+)](c)) induced by caffeine. Using fura-2-loaded cells, we find such an effect in bovine adrenal chromaffin cells, but not in cerebellar granule neurones or in HEK-293 cells. In contrast, a caffeine-induced [Ca(2+)](c) increase was clearly visible with either fluo-3 or cytosolic aequorin. Simultaneous loading with fura-2 prevented the [Ca(2+)](c) increase reported by the other Ca(2+) probes. Caffeine-induced Ca(2+) release was also measured by following changes of [Ca(2+)] inside the ER ([Ca(2+)](ER)) with ER-targeted aequorin in HEK-293 cells. Fura-2 loading did not modify Ca(2+) release from the ER. Thus, fura-2, but not fluo-3, antagonises the generation of the cytosolic Ca(2+) signal induced by activation of RyRs. Cytosolic Ca(2+) buffering and/or acceleration of Ca(2+) diffusion through the cytosol may contribute to these actions. Both effects may interfere with the generation of microdomains of high [Ca(2+)](c) near the ER release channels, which are essential for the propagation of the Ca(2+) wave through the cytosol. In any case, our results caution the use of fura-2 to study CICR.  相似文献   

17.
Two novel approaches for the study of Ca2+-mediated signal transduction in stomatal guard cells are described. Stimulus-induced changes in guard-cell cytosolic Ca2+ ([Ca2+]cyt) were monitored using viable stomata in epidermal strips of a transgenic line of Nicotiana plumbaginifolia expressing aequorin (the proteinous luminescent reporter of Ca2+) and in a new transgenic line in which aequorin expression was targeted specifically to the guard cells. The results indicated that abscisic acid (ABA)-induced stomatal closure was accompanied by increases in [Ca2+]cyt in epidermal strips. In addition to ABA, mechanical and low-temperature signals directly affected stomatal behaviour, promoting rapid closure. Elevations of guard-cell [Ca2+]cyt play a key role in the transduction of all three stimuli. However, there were striking differences in the magnitude and kinetics of the three responses. Studies using Ca2+ channel blockers and the Ca2+ chelator EGTA further suggested that mechanical and ABA signals primarily mobilize Ca2+ from intracellular store(s), whereas the influx of extracellular Ca2+ is a key component in the transduction of low-temperature signals. These results illustrate an aspect of Ca2+ signalling whereby the specificity of the response is encoded by different spatial or kinetic Ca2+ elevations.  相似文献   

18.
In mammalian cells, intracellular sphingosine 1-phosphate (S1P) can stimulate calcium release from intracellular organelles, resulting in the activation of downstream signaling pathways. The budding yeast Saccharomyces cerevisiae expresses enzymes that can synthesize and degrade S1P and related molecules, but their possible role in calcium signaling has not yet been tested. Here we examine the effects of S1P accumulation on calcium signaling using a variety of yeast mutants. Treatment of yeast cells with exogenous sphingosine stimulated Ca(2+) accumulation through two distinct pathways. The first pathway required the Cch1p and Mid1p subunits of a Ca(2+) influx channel, depended upon the function of sphingosine kinases (Lcb4p and Lcb5p), and was inhibited by the functions of S1P lyase (Dpl1p) and the S1P phosphatase (Lcb3p). The biologically inactive stereoisomer of sphingosine did not activate this Ca(2+) influx pathway, suggesting that the active S1P isomer specifically stimulates a calcium-signaling mechanism in yeast. The second Ca(2+) influx pathway stimulated by the addition of sphingosine was not stereospecific, was not dependent on the sphingosine kinases, occurred only at higher doses of added sphingosine, and therefore was likely to be nonspecific. Mutants lacking both S1P lyase and phosphatase (dpl1 lcb3 double mutants) exhibited constitutively high Ca(2+) accumulation and signaling in the absence of added sphingosine, and these effects were dependent on the sphingosine kinases. These results show that endogenous S1P-related molecules can also trigger Ca(2+) accumulation and signaling. Several stimuli previously shown to evoke calcium signaling in wild-type cells were examined in lcb4 lcb5 double mutants. All of the stimuli produced calcium signals independent of sphingosine kinase activity, suggesting that phosphorylated sphingoid bases might serve as messengers of calcium signaling in yeast during an unknown cellular response.  相似文献   

19.
Sai J  Johnson CH 《The Plant cell》2002,14(6):1279-1291
Using transgenic Nicotiana plumbaginifolia seedlings in which the calcium reporter aequorin is targeted to the chloroplast stroma, we found that darkness stimulates a considerable flux of Ca(2+) into the stroma. This Ca(2+) flux did not occur immediately after the light-to-dark transition but began approximately 5 min after lights off and increased to a peak at approximately 20 to 30 min after the onset of darkness. Imaging of aequorin emission confirmed that the dark-stimulated luminescence emanated from chloroplast-containing tissues of the seedling. The magnitude of the Ca(2+) flux was proportional to the duration of light exposure (24 to 120 h) before lights off; the longer the duration of light exposure, the larger the dark-stimulated Ca(2+) flux. On the other hand, the magnitude of the dark-stimulated Ca(2+) flux did not appear to vary as a function of circadian time. When seedlings were maintained on a 24-h light/dark cycle, there was a stromal Ca(2+) burst after lights off every day. Moreover, the waveform of the Ca(2+) spike was different during long-day versus short-day light/dark cycles. The dark-stimulated Ca(2+) flux into the chloroplastidic stroma appeared to affect transient changes in cytosolic Ca(2+) levels. DCMU, an inhibitor of photosynthetic electron transport, caused a significant increase in stromal Ca(2+) levels in the light but did not affect the magnitude of the dark-stimulated Ca(2+) flux. This robust Ca(2+) flux likely plays regulatory roles in the sensing of both light/dark transitions and photoperiod.  相似文献   

20.
ABSTRACT: BACKGROUND: Calcium (Ca2+) signalling is fundamental for host cell invasion, motility, in vivo synchronicity and sexual differentiation of the malaria parasite. Consequently, cytoplasmic free Ca2+ is tightly regulated through the co-ordinated action of primary and secondary Ca2+ transporters. Identifying selective inhibitors of Ca2+ transporters is key towards understanding their physiological role as well as having therapeutic potential, therefore screening systems to facilitate the search for potential inhibitors are a priority. Here, the methodology for the expression of a Calcium membrane transporter that can be scaled to high throughputs in yeast is presented. METHODS: The Plasmodium falciparum Ca2+/H+ antiporter (PfCHA) was expressed in the yeast Saccharomyces cerevisiae and its activity monitored by the bioluminescence from apoaequorin triggered by divalent cations, such as calcium, magnesium and manganese. RESULTS: Bioluminescence assays demonstrated that PfCHA effectively suppressed induced cytoplasmic peaks of Ca2+, Mg2+ and Mn2+ in yeast mutants lacking the homologue yeast antiporter Vcx1p. In the scalable format of 96-well culture plates pharmacological assays with a cation antiporter inhibitor allowed the measurement of inhibition of the Ca2+ transport activity of PfCHA conveniently translated to the familiar concept of fractional inhibitory concentrations. Furthermore, the cytolocalization of this antiporter in the yeast cells showed that whilst PfCHA seems to locate to the mitochondrion of P. falciparum, in yeast PfCHA is sorted to the vacuole. This facilitates the real-time Ca2+-loading assays for further functional and pharmacological studies. DISCUSSION: The functional expression of PfCHA in S. cerevisiae and luminescence-based detection of cytoplasmic cations as presented here offer a tractable system that facilitates functional and pharmacological studies in a high-throughput format. PfCHA is shown to behave as a divalent cation/H+ antiporter susceptible to the effects of cation/H+ inhibitors such as KBR7943. This type of gene expression systems should advance the efforts for the screening of potential inhibitors of this type of divalent cation transporters as part of the malaria drug discovery initiatives and for functional studies in general. CONCLUSION: The expression and activity of the PfCHA detected in yeast by a bioluminescence assay that follows the levels of cytoplasmic Ca2+ as well as Mg2+ and Mn2+ lend itself to highthroughput and quantitative settings for pharmacological screening and functional studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号