首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have documented the capacity of European earthworms belonging to the family Lumbricidae to emit the greenhouse gas nitrous oxide (N2O), an activity attributed primarily to the activation of ingested soil denitrifiers. To extend the information base to earthworms in the Southern Hemisphere, four species of earthworms in New Zealand were examined for gut-associated denitrification. Lumbricus rubellus and Aporrectodea rosea (introduced species of Lumbricidae) emitted N2O, whereas emission of N2O by Octolasion cyaneum (an introduced species of Lumbricidae) and emission of N2O by Octochaetus multiporus (a native species of Megascolecidae) were variable and negligible, respectively. Exposing earthworms to nitrite or nitrate and acetylene significantly increased the amount of N2O emitted, implicating denitrification as the primary source of N2O and indicating that earthworms emitted dinitrogen (N2) in addition to N2O. The alimentary canal displayed a high capacity to produce N2O when it was supplemented with nitrite, and alimentary canal contents contained large amounts of carbohydrates and organic acids indicative of fermentation (e.g., succinate, acetate, and formate) that could serve as sources of reductant for denitrification. nosZ encodes a portion of the terminal oxidoreductase used in denitrification. The nosZ sequences detected in the alimentary canals of L. rubellus and O. multiporus were similar to those retrieved from soil and were distantly related to sequences of uncultured soil bacteria and genera common in soils (i.e., Bradyrhizobium, Azospirillum, Rhodopseudomonas, Rhodospirillum, Pseudomonas, Oligotropha, and Sinorhizobium). These findings (i) suggest that the capacity to emit N2O and N2 is a general trait of earthworms and not geographically restricted, (ii) indicate that species belonging to different earthworm families (i.e., Megascolecidae and Lumbricidae) may not have equal capacities to emit N2O, and (iii) also corroborate previous findings that link this capacity to denitrification in the alimentary canal.Earthworms are dominant members of the soil fauna and affect the structure and fertility of soils (5, 20, 22, 23). Various species of European earthworms belonging to the family Lumbricidae (e.g., Aporrectodea caliginosa, Lumbricus rubellus, and Octolasion lacteum) emit dinitrogen (N2) and the greenhouse gas nitrous oxide (N2O), and their burrowing activities and feeding habits in combination with in situ conditions can influence the emission of nitrogenous gases from soils that they inhabit (1, 2, 13, 17, 25, 27, 39).The microbiology of the earthworm alimentary canal has been addressed in numerous studies (3, 4, 6, 9, 14, 16, 32). The alimentary canal of the earthworm is anoxic, in marked contrast to the aerated material that earthworms ingest (14, 39). Anoxia and other in situ conditions of the alimentary canal appear to stimulate soil microbes capable of surviving under anaerobic conditions during passage through the gut (3, 4). Soils are rich in denitrifying bacteria (37), and the capacity of European earthworms to emit nitrogenous gases has been attributed primarily to the in situ activity of ingested denitrifying bacteria that appear to be highly active under the anoxic conditions of the earthworm alimentary canal (12, 15, 17, 25, 39). However, it is not known if the capacity to emit nitrogenous gases is a general trait of earthworms independent of their taxonomic family or geographic location. The main objectives of this study were to examine the capacity of Southern Hemisphere earthworms in New Zealand to emit N2O and to determine if this capacity was linked to denitrifying bacteria in the alimentary canal.  相似文献   

2.
3.
4.
5.
Dissimilatory NO3 reduction in sediments is often measured in bulk incubations that destroy in situ gradients of controlling factors such as sulfide and oxygen. Additionally, the use of unnaturally high NO3 concentrations yields potential rather than actual activities of dissimilatory NO3 reduction. We developed a technique to determine the vertical distribution of the net rates of dissimilatory nitrate reduction to ammonium (DNRA) with minimal physical disturbance in intact sediment cores at millimeter-level resolution. This allows DNRA activity to be directly linked to the microenvironmental conditions in the layer of NO3 consumption. The water column of the sediment core is amended with 15NO3 at the in situ 14NO3 concentration. A gel probe is deployed in the sediment and is retrieved after complete diffusive equilibration between the gel and the sediment pore water. The gel is then sliced and the NH4+ dissolved in the gel slices is chemically converted by hypobromite to N2 in reaction vials. The isotopic composition of N2 is determined by mass spectrometry. We used the combined gel probe and isotopic labeling technique with freshwater and marine sediment cores and with sterile quartz sand with artificial gradients of 15NH4+. The results were compared to the NH4+ microsensor profiles measured in freshwater sediment and quartz sand and to the N2O microsensor profiles measured in acetylene-amended sediments to trace denitrification.Nitrate accounts for the eutrophication of many human-affected aquatic ecosystems (19, 21). Sediment bacteria may mitigate NO3 pollution by denitrification and anaerobic ammonium oxidation (anammox), which produce N2 (13, 18). However, inorganic nitrogen is retained in aquatic ecosystems when sediment bacteria reduce NO3 to NH4+ by dissimilatory nitrate reduction to ammonium (DNRA) (5, 12, 16, 39). Hence, DNRA contributes to rather than counteracts eutrophication (23). DNRA may be the dominant pathway of dissimilatory NO3 reduction in sediments that are rich in electron donors, such as labile organic carbon and sulfide (4, 8, 17, 38, 55). High rates of DNRA are thus found in sediments affected by coastal aquaculture (8, 36) and settling algal blooms (16).DNRA, denitrification, and the chemical factors that control the partitioning between them (e.g., sulfide) should ideally be investigated in undisturbed sediments. The redox stratification of sediments involves vertical concentration gradients of pore water solutes. These gradients are often very steep, and their measurement requires high-resolution techniques, such as microsensors (26, 42) and gel probes (9, 54). If, for instance, the influence of sulfide on DNRA and denitrification is to be investigated, one wants to know exactly the sulfide concentration in the layers of DNRA and denitrification activity, as well as the flux of sulfide into these layers. This information can easily be obtained using H2S and pH microsensors (22, 43). It is less trivial to determine the vertical distribution of DNRA and denitrification activity in undisturbed sediments. Denitrification activity can be traced using a combination of the acetylene inhibition technique (51) and N2O microsensors (1). Acetylene inhibits the last step of denitrification, and therefore, N2O accumulates in the layer of denitrification activity (44). This method underestimates the denitrification activity in sediments with high rates of coupled nitrification-denitrification because acetylene also inhibits nitrification (50).The vertical distribution of DNRA activity in undisturbed sediment has, to the best of our knowledge, never been determined; thus, the microenvironmental conditions in the layer of DNRA activity remain unknown. Until now, the influence of chemical factors on DNRA and denitrification in sediments has been assessed by slurry incubations (4, 12, 30), by flux measurements with sealed sediment cores (7, 47) or flowthrough sediment cores (16, 27, 37), and in one case, in reconstituted sediment cores sliced at centimeter-level resolution (39). Here, we present a new method, the combined gel probe and isotope labeling technique, to determine the vertical distribution of the net rates of DNRA in sediments. The sediments remain largely undisturbed and the NO3 amendments are within the range of in situ concentrations. The DNRA measurements can be related to the microprofiles of potential influencing factors measured in close vicinity of the gel probe. This allows DNRA activity to be directly linked with the microenvironmental conditions in the sediment.  相似文献   

6.
7.
Soil is exposed to hydrogen when symbiotic rhizobia in legume root nodules cannot recycle the hydrogen that is generated during nitrogen fixation. The hydrogen emitted is most likely taken up by free-living soil bacteria that use hydrogen as an energy source, though the bacteria that do this in situ remain unclear. In this study, we investigated the effect of hydrogen exposure on the bacteria of two different soils in a microcosm setup designed to simulate hydrogen-emitting root nodules. Although the size and overall composition of the soil bacterial community did not significantly alter after hydrogen exposure, one ribotype increased in relative abundance within each soil. This single-ribotype shift was identified by generating multiple terminal restriction fragment length polymorphism (T-RFLP) profiles of 16S rRNA genes from each soil sample, with gene sequence confirmation to identify terminal restriction fragments. The increased abundance of a single ribotype after hydrogen exposure, within an otherwise similar community, was found in replicate samples taken from each microcosm and was reproducible across replicate experiments. Similarly, only one member of the soil bacterial community increased in abundance in response to hydrogen exposure in soil surrounding the root nodules of field-grown soybean (Glycine max). The ribotypes that increased after hydrogen exposure in each soil system tested were all from known hydrogen-oxidizing lineages within the order Actinomycetales. We suggest that soil actinomycetes are important utilizers of hydrogen at relevant concentrations in soil and could be key contributors to soil''s function as a sink in the global hydrogen cycle.Soil is the major sink in the global hydrogen cycle and accounts for approximately 75 to 80% of uptake from the atmosphere (7, 11). Soil is such a strong sink that the atmospheric mixing ratio of molecular hydrogen, H2, is hemispherically asymmetric because of the greater landmass in the Northern Hemisphere (11). Many nitrogen-fixing bacteria that form symbiotic relationships with legume plants cannot recycle the H2 that is generated during N2 fixation (2, 13). Most of the H2 emitted from legume root nodules is taken up by the surrounding soil, within a few centimeters of the nodule surface, and is not released to the atmosphere (20). Although the H2 emitted by the rhizobial symbionts costs the legume approximately 5% of its daily photosynthate and “represents a significant investment by the plant” (9), there is growing evidence to suggest that soil exposed to H2 is beneficial to plant growth, separate from the benefits derived from N2 fixation (8, 10, 28). Previously, La Favre and Focht have hypothesized that “the hydrogen which is evolved during N2 fixation represents an additional energy input into the plant-soil ecosystem… since metabolism of H2 by chemolithotrophic bacteria results in an input of fixed carbon to the system” (20). A number of studies have found that when H2 is taken up by soil, net CO2 fixation occurs at the rate of 7 to 8 nmol CO2 per g of soil per h (22, 34). For a legume fixing 200 kg of atmospheric N2 per hectare, over 200,000 liters of H2 could be released into the legume''s rhizosphere over the duration of the growing season and CO2 fixation could result in an extra 25 kg of soil carbon fixed per hectare (9, 10, 28).Many bacteria isolated from soil are able to utilize H2 as an energy source (2, 5-7, 21), and free-living bacteria are most likely responsible for the H2 uptake observed by soil surrounding legume roots (22). Adding a bacterial energy source, such as H2, could affect the microbial population size, as has been observed previously (34), but more specific shifts within the bacterial community may occur if just the microorganisms able to utilize the energy source multiply. Their activity could also have downstream consequences specifically on other members of the community. Most H2-oxidizing cultures have required enrichment with concentrations of H2 that are not environmentally relevant and therefore cannot be assumed to be carrying out H2 oxidation at much lower, naturally occurring concentrations (5-7). Recent surveys of microbes present in soil samples, via their nucleic acids, have revealed many novel bacterial inhabitants that have been little studied and thus may also be contributing to the repertoire of bacterial soil processes, such as H2 uptake (16). A recent study into the effect of H2 on soil bacteria focused on a few groups of H2-oxidizing, autotrophic bacteria and thus ignored many other H2 utilizers potentially present in soil (34).There are now many ways of characterizing the entire microbial community in environmental samples, either via their entire genomic content, though metagenomic analysis of soil is difficult at present, or via analysis of the lineages present according to 16S rRNA gene sequences, or ribotypes (36). A recent study comparing high-throughput pyrosequencing of 16S rRNA genes and an easily accessible profiling method, known as terminal restriction fragment length polymorphism (T-RFLP), found the simpler profiles were appropriate for comparing the dominant ribotypes in multiple samples (24). Although T-RFLP profiles only provide a simplified snapshot of the dominant members in microbial communities, compared to the deeper analyses provided by microarrays or high-throughput sequencing technologies, T-RFLP profiling is a cost-effective, reproducible, and robust method of “fingerprinting” many soil samples rapidly and efficiently (14, 24, 25, 32).In this study, we chose to assess the dominant members of the soil bacterial community via T-RFLP profiles of ribotypes present in H2-treated and control soils to avoid a narrow focus on well-studied H2 oxidizers. We investigated the bacterial community structure in two different soils, utilizing a microcosm setup with concentrations of H2 calculated to occur in the rhizosphere of N2-fixing legumes, to determine whether common responses to H2 exposure could be predicted from soils that differ by climate, edaphic characteristics, and starting communities. Soil in microcosms has previously been shown to have similar H2 uptake properties to soil close to H2-emitting legume nodules (9), but we also complemented our plant-free microcosm work with an examination of soil collected from the root systems of field-grown soybean (Glycine max (L.) Merr.).  相似文献   

8.
Wetlands are sources of denitrification-derived nitrous oxide (N2O). Thus, the denitrifier community of an N2O-emitting fen (pH 4.7 to 5.2) was investigated. N2O was produced and consumed to subatmospheric concentrations in unsupplemented anoxic soil microcosms. Total cell counts and most probable numbers of denitrifiers approximated 1011 cells·gDW−1 (where DW is dry weight) and 108 cells·gDW−1, respectively, in both 0- to 10-cm and 30- to 40-cm depths. Despite this uniformity, depth-related maximum reaction rate (vmax) values for denitrification in anoxic microcosms ranged from 1 to 24 and −19 to −105 nmol N2O h−1· gDW−1, with maximal values occurring in the upper soil layers. Denitrification was enhanced by substrates that might be formed via fermentation in anoxic microzones of soil. N2O approximated 40% of total nitrogenous gases produced at in situ pH, which was likewise the optimal pH for denitrification. Gene libraries of narG and nosZ (encoding nitrate reductase and nitrous oxide reductase, respectively) from fen soil DNA yielded 15 and 18 species-level operational taxonomic units, respectively, many of which displayed phylogenetic novelty and were not closely related to cultured organisms. Although statistical analyses of narG and nosZ sequences indicated that the upper 20 cm of soil contained the highest denitrifier diversity and species richness, terminal restriction fragment length polymorphism analyses of narG and nosZ revealed only minor differences in denitrifier community composition from a soil depth of 0 to 40 cm. The collective data indicate that the regional fen harbors novel, highly diverse, acid-tolerant denitrifier communities capable of complete denitrification and consumption of atmospheric N2O at in situ pH.Nitrous oxide (N2O) is a potent greenhouse gas with a global warming potential that is 300-fold higher than that of CO2, and its concentration increased from 270 ppb in 1750 to 319 ppb in 2005 (17). N2O can be produced in soils during denitrification, nitrification, the dissimilatory reduction of nitrate to nitrite and/or ammonium (hereafter referred to as dissimilatory nitrate reduction), or the chemical transformation of nitrite or hydroxylamine (5, 7, 49). The percentage of N2O produced in any of these processes is variable, depending mainly on the redox potential, pH, and C/N ratio (49). In anoxic ecosystems such as waterlogged soils, most of the N2O is considered to be denitrification derived (7, 9). Complete denitrification is the sequential reduction of nitrate to dinitrogen (N2) via nitrite, nitric oxide (NO), and N2O (75). The main product of denitrification varies with the organism and in situ conditions and is usually either N2O or N2 (68). N2O can occur as a by-product during dissimilatory nitrate reduction when accumulated nitrite interacts with nitrate reductase to form N2O (59). The production of N2O by dissimilatory nitrate reducers is favored in environments with large amounts of readily available organic carbon (65). Thus, their contribution to nitrate-dependent production of N2O in soils is likely insignificant compared to that of denitrifiers.The oxidoreductases involved in denitrification are termed dissimilatory nitrate reductase (Nar, encoded by narGHJI, or Nap, encoded by napEDABC), nitrite reductase (Nir, encoded by nirK and nirS), NO reductase (cNor and qNor, encoded by norBC and norB, respectively), and N2O reductase (Nos, encoded by nosZ) (75). Nitrate reductase is also found in dissimilatory nitrate reducers (60). narG can therefore be used as a molecular marker to assess both denitrifiers and dissimilatory nitrate reducers, whereas nosZ is specific for the assessment of denitrifiers (25, 43, 48).Denitrification in soils is regulated by temperature, pH, substrate (i.e., carbon) availability, and water content (10, 24, 66). Although denitrification increases with increasing temperature, it can still occur at temperatures below 0°C (10, 24). Low temperatures appear to limit the activity of N2O reductase more severely than other enzymes involved in denitrification and thus yield higher relative amounts of denitrification-derived N2O (24). Although denitrification activity usually decreases under acidic conditions, the relative percentage of N2O to total denitrification-derived nitrogenous gases increases with increasing acidity, a result attributed to the sensitivity of N2O reductase to low pH (27, 70). However, denitrifier communities can be adapted to the in situ pH of the system (40, 58, 73).Wetlands are ecosystems in which denitrification is likely a dominant source of emitted N2O (7, 44, 45). The identification and analysis of main drivers for N2O production (i.e., the microbiota catalyzing N2O production and consumption) is thus of major concern in such environments. Fens are specialized wetlands characterized by soil acidity (67). However, information on acid-tolerant denitrifier communities of such wetlands is scarce. It is hypothesized that fens harbor a diverse, hitherto unknown, denitrifier community that is adapted to in situ conditions and associated with N2O fluxes (i.e., fen denitrifiers are acid tolerant and have a high affinity for nitrate and N2O). Thus, the main objectives of the present study were to evaluate the capacities of denitrifier communities of an N2O-emitting fen (20) to produce or consume N2O and to determine if a novel and diverse denitrifier community was associated with these capacities.  相似文献   

9.
The pyrene-degrading Mycobacterium sp. strain AP1 grew in nutrient-supplemented artificial seawater with a heavy fuel oil as the sole carbon source, causing the complete removal of all linear (C12 to C40) and branched alkanes from the aliphatic fraction, as well as an extensive degradation of the three- and four-ring polycyclic aromatic hydrocarbons (PAHs) phenanthrene (95%), anthracene (80%), fluoranthene (80%), pyrene (75%), and benzo(a)anthracene (30%). Alkylated PAHs, which are more abundant in crude oils than the nonsubstituted compounds, were selectively attacked at extents that varied from more than 90% for dimethylnaphthalenes, methylphenanthrenes, methylfluorenes, and methyldibenzothiophenes to about 30% for monomethylated fluoranthenes/pyrenes and trimethylated phenanthrenes and dibenzothiophenes. Identification of key metabolites indicated the utilization of phenanthrene, pyrene, and fluoranthene by known assimilatory metabolic routes, while other components were cooxidized. Detection of mono- and dimethylated phthalic acids demonstrated ring cleavage and further oxidation of alkyl PAHs. The extensive degradation of the alkanes, the two-, three-, and four-ring PAHs, and their 1-, 2-, and 3-methyl derivatives from a complex mixture of hydrocarbons by Mycobacterium sp. strain AP1 illustrates the great substrate versatility of alkane- and PAH-degrading mycobacteria.Accidental oil spills cause extensive ecological damage to marine shorelines and also have an enormous impact on related economic activities due to the potential risk to public health. One of the most recent examples is the heavy fuel oil spill from the tanker Prestige in 2002, which affected 1,900 km of coast in northwestern Spain. While the light fractions of the oil evaporate in the early stages of a spill, microbial degradation plays a major role in the removal of the heavier fractions. Stimulation of natural biodegradation processes by nutrient and fertilizer addition has proven to enhance oil degradation in a variety of coastal environments (3, 42, 44).Oil is a complex mixture of hundreds of components that can be separated into saturates, aromatics, resins, and asphaltenes. The saturated hydrocarbons are usually the most abundant, while polycyclic aromatic hydrocarbons (PAHs) cause the greatest concern because of their toxic and genotoxic potentials.Most of the available knowledge on the microbial processes involved in PAH biodegradation has been obtained from studies involving bacterial isolates acting on single substrates that serve as the sole source of carbon and energy for growth (7, 20, 22). The pathways for the complete degradation of hydrocarbons containing two and three aromatic rings by gram-negative bacteria are well characterized for such conditions (7, 22). Conversely, degradation of hydrocarbons containing four or more fused aromatic rings, such as pyrene, has been reported only for soil actinomycetes (20, 25, 29, 30, 36, 45), which use multibranched pathways involving both classical dioxygenation and meta-cleavage reactions and novel ortho-cleavage mechanisms uncommon in gram-negative organisms (23). Due to the relaxed specificity of some degradative enzymes, mainly dioxygenases (15, 37), PAH-degrading strains have a wide range of substrates, being able to act simultaneously on a number of structural analogs and to oxidize them to different extents (18, 37). However, the individual processes involved in the degradation of naturally occurring complex mixtures of PAHs (crude oils and coal derivatives) have rarely been addressed (18, 31).Early studies on biodegradation of crude oil were carried out with bacterial strains able to use this mixture for growth. Since PAHs and other components are contained within a predominantly aliphatic matrix in crude oil, most of these studies reported actions of alkane degraders on individual oil components (2, 34, 38, 41, 50). In addition to alkanes, these alkane degraders selectively depleted some alkylated PAHs (2, 41), a process that has been attributed to partial oxidation due to a monooxygenase attack on the methyl groups to produce the corresponding carboxylic acids (35). Recent studies reported the isolation of a number of two- and three-ring-PAH-degrading bacterial strains from coastal sediments affected by crude oil spills. These strains include members of genera commonly isolated from PAH-contaminated soils, such as Pseudomonas (39, 43) and Sphingomonas (49), as well as less common genera, such as Marinobacter (13), Moraxella (43), Vibrio (51), and Cycloclasticus (12). The last genus seems to play a major role in the fate of low-molecular-weight PAHs in the marine environment, as members of this genus have been isolated from several crude oil-contaminated locations (6, 14, 21). When incubated with crude oil, Cycloclasticus strains degraded most of the two- and three-ring PAHs and some of their alkyl derivatives (C0-4 naphthalene, C0-2 dibenzothiophene, C0-2 phenanthrene, and C0-2 fluorene [numerals indicate the number of methyl groups]). However, neither alkanes, trimethyl derivatives of three-ring PAHs, or higher-molecular-weight PAHs were significantly depleted (21). On the other hand, no attempts were made to identify metabolic intermediates indicative of specific degradation or cometabolic pathways.Alkyl-PAH degradation is isomer specific, a feature that has been used in geochemistry to define source recognition and oil weathering ratios (47). For example, given the resistance of 9-methyl phenanthrene to microbial oxidation in relation to the other isomers, the ratio of 3-methylphenanthrene plus 2-methylphenanthrene to 9-methylphenanthrene plus 1-methylphenanthrene has been utilized as a diagnostic ratio (47). These ratios have been defined on the basis of analysis of environmental samples (47) and results of crude oil biodegradation assays with mixed cultures (10, 48) or single strains (2, 41), mainly alkane-degrading pseudomonads. The actions of high-molecular-weight-PAH-degrading mycobacteria on the alkylated families of PAHs present in crude oil and derivatives have not been addressed.Mycobacterium strains isolated by their ability to grow on pyrene have often been shown to also utilize phenanthrene, fluoranthene, and high-molecular-weight alkanes as single carbon sources (8, 45). In a recent study, we showed that when Mycobacterium strain AP1, isolated from an oil-polluted marine beach, was incubated with a mixture of PAHs from creosote, this strain caused a significant depletion of the three-aromatic-ring PAHs but had a limited action on the higher-molecular-weight PAHs fluoranthene and pyrene (31). Given the wide substrate versatility of pyrene-degrading mycobacteria, especially for alkane degradation, their presence in marine environments (16), and their distinctive reactions during PAH degradation (22, 25, 30), in this study we used strain AP1 to investigate the catabolic potential of mycobacteria in the removal of the most abundant hydrocarbon families and their derivatives from crude oil in a marine medium under laboratory conditions. The identification of key metabolites indicative of previously proposed reactions gave insight into the metabolic and cometabolic processes involved. As a model mixture, we used the heavy fuel oil spilled from the Prestige, a Russian M100 fuel oil especially rich in aromatic hydrocarbons (52%) (27).  相似文献   

10.
Within the field of predictive microbiology, the number of studies that quantify the effect of food structure on microbial behavior is very limited. This is mainly due to impracticalities related to the use of a nonliquid growth medium. In this study, an experimental food model system for studying yeast spoilage in acid sauces was developed by selecting a suitable thickening/gelling agent. In a first step, a variety of thickening/gelling agents was screened, with respect to the main physicochemical (pH, water activity, and acetic acid and sugar concentrations) and rheological (weak gel viscoelastic behavior and presence of a yield stress) characteristics of acid sauces. Second, the rheological behavior of the selected thickening/gelling agent, Carbopol 980, was extensively studied within the following range of conditions: pH 4.0 to 5.0, acetic acid concentration of 0 to 1.0% (vol/vol), glycerol concentration of 0 to 15% (wt/vol), and Carbopol concentration of 1.0 to 1.5% (wt/vol). Finally, the applicability of the model system was illustrated by performing growth experiments in microtiter plates for Zygosaccharomyces bailii at 0, 0.5, 1.0, and 1.5% (wt/vol) Carbopol, 5% (wt/vol) glycerol, 0% (vol/vol) acetic acid, and pH 5.0. A shift from planktonic growth to growth in colonies was observed when the Carbopol concentration increased from 0.5 to 1.0%. The applicability of the model system was illustrated by estimating μmax at 0.5% Carbopol from absorbance detection times.Food structure is, next to the chemical composition and storage conditions, one of the key factors that affect microbial behavior in food products. The effects of food structure are mainly related to the mechanical distribution of water, the chemical redistribution of organic acids, and the mobility of microorganisms (55). In the case of a liquid food product, microbial growth is typically planktonic, and transport of nutrients and metabolites occurs by diffusion, resulting in a homogeneous environment. The majority of foods, however, have some degree of structure, causing microorganisms to be immobilized and constrained to grow as colonies. Within the field of predictive microbiology, where mathematical models are developed for describing microbial growth, inactivation, and survival in food (model systems), most models are based on data obtained in liquid broth media. The scarcity of predictive models that incorporate the effect of structure has been recognized as one of the most important shortcomings in this field of research (41).Conducting experiments on a structured culture medium gives rise to several impracticalities due to the nonliquid nature of the culture medium. Starting from a liquid culture medium, a thickening or gelling agent is added to obtain a structured model system that, ideally, mimics the microstructural properties of the target food product. In order to evaluate the effect of structure on a systematic and consistent basis, the experimental setup must enable careful control and sampling methods. A widely used experimental setup is the gel cassette system (Institute of Food Research, Norwich, United Kingdom). The system, described by Brocklehurst et al. (7, 8), consists of a frame sealed with gas-permeable plastic film. This setup has been used to study growth behavior both on the surface (8, 24) and within the gel matrix (7, 10, 30, 45, 51) by applying traditional microbiological methods or noninvasive microscopical techniques (29, 46). In most of these cases, gelatin was used to induce a gelled microstructure. Other experimental setups used agar or gelatin gels in petri dishes (1, 2, 3, 48) or studied bacterial growth in oil-in-water emulsions (9, 38, 39).The existing experimental model systems most often make use of agar or gelatin as these are widely used gelling agents within the field of microbiology. The main reasons for using agar are its stability at sterilization temperatures, high clarity, nontoxic nature, and physiologically inert behavior toward microorganisms. Gelatin has the advantage of a lower melting point (37°C compared to 85°C for agar), which facilitates sampling procedures. Main drawbacks include the possible metabolization by microorganisms and breakdown of structure during autoclaving. Although both agar and gelatin are widely used in food applications, their relevance is limited to food products with a gelled microstructure. Expanding structured food model systems to a wider range of food products, therefore, implies the use of other thickening or gelling agents. In the past, several attempts have been made to use food hydrocolloids as substitutes for agar and gelatin as solidifying agents in microbiological media (4, 19, 25, 35, 44, 53). The functional properties of a food hydrocolloid depend on its origin, preparation method, thermal processing, and environmental conditions, such as salt content, pH, and temperature (20). In choosing a food hydrocolloid for a structured food model system, the physical and chemical nature of the target food product must therefore be taken into account.So far, most studies in the field of predictive microbiology mention only the concentration of the gelling agent as a quantitative measure of food structure. Within our research group, we introduced the use of rheological properties as a more objective way to relate structural characteristics to microbial behavior (51). This allows comparisons between food model systems based on different thickening/gelling agents and accounts implicitly for the variability in structure between different brands or processing methods of the same gelling/thickening agent. Rheology quantifies the relation between stress and flow of materials, but its concepts can also be used to analyze behavior “at rest” (31). Its methods are widely used in the food industry as they are essential tools in product development, quality control, sensory evaluation, and the design of processing equipment (49).Among the wide range of existing foodstuffs, sauces are known for their complex microstructure and typical rheological properties. The group of acid sauces includes both emulsions, such as mayonnaise and salad dressings, and concentrated suspensions, such as ketchup. These sauces are viscoelastic, i.e., they have both viscous and elastic properties, and typically show non-Newtonian flow behavior, characterized by the presence of a yield stress. Yield stress is the minimum shear stress required to initiate flow and is an indication of the suspension abilities of a fluid. Other characteristics of acid sauces are low pH, low water activity (aw), and the presence of organic acid preservatives. Due to this harsh environment, spoilage is predominantly caused by yeasts and lactic acid bacteria (22). Within this range of microorganisms, Zygosaccharomyces bailii is particularly troublesome because of its high resistance toward organic acid preservatives and its osmophilic behavior (26).The objective of this research is to develop an experimental viscoelastic food model system for acid sauces. In a first step, a set of requirements is formulated, taking into account the main physicochemical properties and viscoelastic characteristics of the target food product. Several thickening and gelling agents are screened and evaluated with respect to these requirements, and a suitable thickening/gelling agent is selected. As a last step, the applicability of the model system is tested by performing growth experiments for the spoilage yeast Z. bailii.  相似文献   

11.
We examined the diversity of a marker gene for homoacetogens in two cockroach gut microbial communities. Formyltetrahydrofolate synthetase (FTHFS or fhs) libraries prepared from a wood-feeding cockroach, Cryptocercus punctulatus, were dominated by sequences that affiliated with termite gut treponemes. No spirochete-like sequences were recovered from the omnivorous roach Periplaneta americana, which was dominated by Firmicutes-like sequences.The guts of wood-feeding termites and Cryptocercus punctulatus cockroaches share an unusual pattern of electron flow, as high rates of CO2-reductive acetogenesis typically supplant methanogenesis as the terminal electron sink (2, 3). Past studies have shown that from 10 to 30% of gut acetate produced in environments of termites and wood-feeding cockroaches is microbially generated from CO2 (3, 28), ultimately powering 18 to 26% of the host insect''s own respiratory energy metabolism (25). Nevertheless, most termites emit methane (2), and termite emissions constitute approximately 4% of the global methane budget (27). Cockroaches have been proposed to represent an additional source of note (9). Interestingly, methanogenic termites and cockroaches exhibit increased acetogenesis following addition of exogenous H2 (3, 29). This suggests that these insects are host to a robust population of bacteria that are capable of homoacetogenesis but may be primarily using alternative electron donors (and other substrates and pathways) in vivo.Acetogenic bacteria belonging to two bacterial phyla, Firmicutes and Spirochaetes, have been isolated from the guts of termites (1, 4, 11, 12, 14). Several surveys have targeted and used the gene for formyltetrahydrofolate synthetase (FTHFS), a key gene in the Wood-Ljungdahl pathway of acetogenesis (16), as a potential marker for the pathway (15, 18). For the wood-feeding termites that have been examined, the studies have revealed an abundance of FTHFS sequences that form a coherent phylogenetic cluster, together with genes from homoacetogenic termite gut spirochetes belonging to the genus Treponema (24, 26, 30). This suggests that treponemes may be among the more abundant of the homoacetogens active in these environments.Little is known about the population structure and biology of CO2-reducing, acetogenic bacteria in the guts of either omnivorous or wood-feeding cockroaches. The wood-feeding cockroach Cryptocercus hosts an abundance of flagellate protozoa closely related to those believed to dominate polysaccharide fermentation in the guts of termites (5, 6, 22), suggesting that at least one key environmental niche is filled by similar microbes in both termites and Cryptocercidae. Additionally, Cryptocercidae cockroaches, like termites, house diverse spirochetes and are the site of intense CO2 reduction into acetate (3, 7). Possibly, spirochetes capable of CO2 reduction into acetate are present in the hindguts of cockroaches. However, no evidence has yet been presented for the existence of homoacetogenic treponemes in environments other than the guts of termites, and FTHFS surveys of human (21) or horse (15) fecal matter and bovine rumen samples (20) revealed only Firmicutes-like and other FTHFS alleles that are distinct from those comprising the termite treponeme cluster.Here, by examining FTHFS gene diversity in Cryptocercus punctulatus and Periplaneta americana guts, we endeavored to learn more about the distribution and origins of homoacetogenic treponemes (and their genes) that are found in wood-feeding termites. In particular, we wished to ascertain whether FTHFS genes present in either of the two cockroaches are termite treponeme-like and, if so, whether analysis reveals any obvious signal indicating recent or ancient lateral community transfer events between insect lineages.  相似文献   

12.
Recently, methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus pseudintermedius (MRSP) have been increasingly isolated from veterinarians and companion animals. With a view to preventing the spread of MRSA and MRSP, we evaluated the occurrence and molecular characteristics of each in a veterinary college. MRSA and MRSP were isolated from nasal samples from veterinarians, staff members, and veterinary students affiliated with a veterinary hospital. Using stepwise logistic regression, we identified two factors associated with MRSA carriage: (i) contact with an identified animal MRSA case (odds ratio [OR], 6.9; 95% confidence interval [95% CI], 2.2 to 21.6) and (ii) being an employee (OR, 6.2; 95% CI, 2.0 to 19.4). The majority of MRSA isolates obtained from individuals affiliated with the veterinary hospital and dog patients harbored spa type t002 and a type II staphylococcal cassette chromosome mec (SCCmec), similar to the hospital-acquired MRSA isolates in Japan. MRSA isolates harboring spa type t008 and a type IV SCCmec were obtained from one veterinarian on three different sampling occasions and also from dog patients. MRSA carriers can also be a source of MRSA infection in animals. The majority of MRSP isolates (85.2%) carried hybrid SCCmec type II-III, and almost all the remaining MRSP isolates (11.1%) carried SCCmec type V. MRSA and MRSP were also isolated from environmental samples collected from the veterinary hospital (5.1% and 6.4%, respectively). The application of certain disinfection procedures is important for the prevention of nosocomial infection, and MRSA and MRSP infection control strategies should be adopted in veterinary medical practice.Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of nosocomial infections in human hospitals. The prevalence of hospital-acquired MRSA (HA-MRSA) infection among inpatients in intensive care units (ICUs) continues to increase steadily in Japan. Recently, cases of community-acquired MRSA (CA-MRSA) have been documented in persons without an established risk factor for HA-MRSA infection (14, 32, 36, 49).There has also been an increase in the number of reports of the isolation of MRSA from veterinarians and companion animals (5, 21, 23-26, 28, 31, 34, 38, 44, 50, 51, 53). Values reported for the prevalence of MRSA among veterinary staff include 17.9% in the United Kingdom (21), 10% in Japan (38), 3.9% in Scotland (13), and 3.0% in Denmark (28). Loeffler et al. reported that the prevalence of MRSA among dog patients and healthy dogs owned by veterinary staff members was 8.9% (21). In Japan, an MRSA isolate was detected in only one inpatient dog (3.8%) and could not be detected in any of 31 outpatient dogs (38). In the United States, MRSA isolates were detected in both dog (0.1%) and cat (0.1%) patients (31). The prevalence of MRSA among healthy dogs has been reported to be 0.7% (5). Hanselman et al. suggested that MRSA colonization may be an occupational risk for large-animal veterinarians (12). Recently, Burstiner et al. reported that the frequency of MRSA colonization among companion-animal veterinary personnel was equal to the frequency among large-animal veterinary personnel (6).In addition, other methicillin-resistant coagulase-positive staphylococci (MRCPS), such as methicillin-resistant Staphylococcus pseudintermedius (MRSP) and methicillin-resistant Staphylococcus schleiferi (MRSS), isolated from dogs, cats, and a veterinarian have been reported (11, 31, 38, 40, 52). MRSP isolates have also been detected among inpatient dogs (46.2%) and outpatient dogs (19.4%) in a Japanese veterinary teaching hospital (38). In Canada, however, MRSP and MRSS isolates were detected in only 2.1% and 0.5% of dog patients, respectively (11).Methicillin-resistant staphylococci produce penicillin-binding protein 2′, which reduces their affinity for β-lactam antibiotics. This protein is encoded by the mecA gene (48), which is carried on the staphylococcal cassette chromosome mec (SCCmec). SCCmec is a mobile genetic element characterized by the combination of the mec and ccr complexes (16), and it is classified into subtypes according to differences in the junkyard regions (43). SCCmec typing can be used as a molecular tool (22, 27, 30, 33, 36, 55) for examining the molecular epidemiology of methicillin-resistant staphylococci.In this study, we investigated the occurrence and characteristics of MRCPS isolates in a veterinary hospital in order to establish the transmission route of MRCPS in a veterinary hospital and with a view to preventing the spread of MRCPS infection. In addition, we evaluated the factors associated with MRCPS. Further, as Heller et al. have reported the distribution of MRSA within veterinary hospital environments and suggested the necessity to review cleaning protocols of hospital environments (13), we also attempted to isolate MRCPS from environmental samples collected in a veterinary hospital for an evaluation of MRSA transmission cycle though environmental surfaces in the veterinary hospital.  相似文献   

13.
Dilute acid pretreatment is an established method for hydrolyzing the methylglucuronoxylans of hemicellulose to release fermentable xylose. In addition to xylose, this process releases the aldouronate methylglucuronoxylose, which cannot be metabolized by current ethanologenic biocatalysts. Enterobacter asburiae JDR-1, isolated from colonized wood, was found to efficiently ferment both methylglucuronoxylose and xylose in acid hydrolysates of sweet gum xylan, producing predominantly ethanol and acetate. Transformation of E. asburiae JDR-1 with pLOI555 or pLOI297, each containing the PET operon containing pyruvate decarboxylase (pdc) and alcohol dehydrogenase B (adhB) genes derived from Zymomonas mobilis, replaced mixed-acid fermentation with homoethanol fermentation. Deletion of the pyruvate formate lyase (pflB) gene further increased the ethanol yield, resulting in a stable E. asburiae E1(pLOI555) strain that efficiently utilized both xylose and methylglucuronoxylose in dilute acid hydrolysates of sweet gum xylan. Ethanol was produced from xylan hydrolysate by E. asburiae E1(pLOI555) with a yield that was 99% of the theoretical maximum yield and at a rate of 0.11 g ethanol/g (dry weight) cells/h, which was 1.57 times the yield and 1.48 times the rate obtained with the ethanologenic strain Escherichia coli KO11. This engineered derivative of E. asburiae JDR-1 that is able to ferment the predominant hexoses and pentoses derived from both hemicellulose and cellulose fractions is a promising subject for development as an ethanologenic biocatalyst for production of fuels and chemicals from agricultural residues and energy crops.Lignocellulosic resources, including forest and agricultural residues and evolving energy crops, offer benign alternatives to petroleum-based resources for production of fuels and chemicals. As renewable resources, these lignocellulosic materials are expected to decrease dependence on exhaustible supplies of petroleum and mitigate the net release of carbon dioxide into the atmosphere. The development of economically acceptable bioconversion processes requires pretreatments that release the maximal quantities of hexoses (predominantly glucose released from cellulose) and pentoses (arabinose and xylose) from hemicelluloses and also requires microbial biocatalysts that efficiently convert these compounds to a single targeted product.As one of three main components of lignocellulosics, hemicellulose contains polysaccharides comprised of pentoses, hexoses and sugar acids that account for 20 to 35% of the total biomass from different sources (21). Methylglucuronoxylans (MeGAXn), consisting of long chains of as many as 70 β-xylopyranose residues linked by β-1,4-glycosidic bonds (25), are the predominant components in the hemicellulose fractions of agricultural residues and energy crops, including corn stover, sugarcane bagasse, poplar, and switchgrass (7, 18, 23, 24). In hardwood and softwood xylans, a 4-O-methylglucuronic acid is attached at the 2′ position of every sixth to eighth xylose residue (12, 15). Dilute acid hydrolysis is commonly used to make the monosaccharides comprising hemicellulose accessible for fermentation (7, 22). However, the α-1,2 glucuronosyl linkage in xylan is resistant to dilute acid hydrolysis, which results in the release of methylglucuronoxylose (MeGAX) along with xylose and other monosaccharides. MeGAX is not fermented by bacterial biocatalysts currently used to convert hemicellulose to ethanol, such as Escherichia coli KO11 (2, 6). In sweet gum xylan, as much as 27% of the carbohydrate may be in this unfermentable fraction after dilute acid pretreatment (2, 20). Complete utilization of all hemicellulosic sugars can improve the efficiency of conversion of lignocellulosic materials to fuel ethanol and other value-added products.Our previous research on the processing of hemicelluloses for fermentation led to isolation of Enterobacter asburiae strain JDR-1. This isolate performed mixed-acid fermentation of the principal hexoses and pentoses that can be derived from cellulose and hemicellulose fractions of lignocellulosic biomass and exhibited a novel metabolic potential based on its ability to ferment MeGAX and xylose to ethanol and acetate as major fermentation products from sweet gum MeGAXn hydrolysates generated by dilute acid pretreatment (2). This strain has been genetically modified to produce d-(−)-lactate as the predominant product from acid hydrolysates of MeGAXn (3).In this study, the PET operon containing the pdc, adhA, and adhB genes from Zymomonas mobilis (10, 11) was incorporated into a pflB E. asburiae JDR-1 isolate by plasmid transformation to construct homoethanologenic strains. The resulting recombinant strains were compared with E. asburiae wild-type strain JDR-1 and the ethanologenic strain E. coli KO11 to evaluate their efficiencies of production of ethanol from dilute acid hydrolysates of sweet gum MeGAXn.  相似文献   

14.
16S rRNA gene libraries from the lithoautotrophic Fe(II)-oxidizing, nitrate-reducing enrichment culture described by Straub et al. (K. L. Straub, M. Benz, B. Schink, and F. Widdel, Appl. Environ. Microbiol. 62:1458-1460, 1996) were dominated by a phylotype related (95% 16S rRNA gene homology) to the autotrophic Fe(II) oxidizer Sideroxydans lithotrophicus. The libraries also contained phylotypes related to known heterotrophic nitrate reducers Comamonas badia, Parvibaculum lavamentivorans, and Rhodanobacter thiooxidans. The three heterotrophs were isolated and found to be capable of only partial (12 to 24%) Fe(II) oxidation, suggesting that the Sideroxydans species has primary responsibility for Fe(II) oxidation in the enrichment culture.A variety of microorganisms oxidize Fe(II) with nitrate under anaerobic, circumneutral pH conditions (29) and may contribute to an active microbially driven anoxic Fe redox cycle (1, 27-29, 31, 32). Straub et al. (28) obtained the first Fe(II)-oxidizing, nitrate-reducing (enrichment) culture capable of fully autotrophic growth by a reaction such as 5Fe2+ + NO3 + 12H2O → 5Fe(OH)3 + 0.5N2 + 9H+. This process has since been demonstrated in detail with the hyperthermophilic archaeon Ferroglobus placidus (9) and with the mesophilic Proteobacteria Chromobacterium violacens strain 2002 (34) and Paracoccus ferrooxidans strain BDN-1 (16). Nitrate-dependent Fe(II) oxidation in the presence of fixed carbon has been documented for Dechlorosoma suillum strain PS (4), Geobacter metallireducens (7), Desulfitobacterium frappieri (23), and Acidovorax strain BoFeN1 (15). In addition to oxidizing insoluble Fe(II)-bearing minerals (33), the enrichment culture described by Straub et al. (28) is the only autotrophic Fe(II)-oxidizing, nitrate-reducing culture capable of near-complete oxidation of uncomplexed Fe(II) with reduction of nitrate to N2. During Fe(II) oxidation, F. placidus reduces nitrate to nitrite, which may play a significant role in overall Fe(II) oxidation. Although both C. violacens and Paracoccus ferrooxidans reduce nitrate to N2, C. violacens oxidizes only 20 to 30% of the initial Fe(II), and P. ferrooxidans uses FeEDTA2− but not free (uncomplexed) Fe(II) in medium analogous to that used for cultivation of the enrichment culture described by Straub et al. (28). The enrichment culture described by Straub et al. (28) is thus the most robust culture capable of autotrophic growth coupled to nitrate-dependent Fe(II) oxidation available at present. The composition and activity of this culture was investigated with molecular and cultivation techniques. The culture examined is one provided by K. L. Straub to E. E. Roden in 1998 for use in studies of nitrate-dependent oxidation of solid-phase Fe(II) compounds (33) and has been maintained in our laboratory since that time.  相似文献   

15.
16.
A hydrogen utilizing exoelectrogenic bacterium (Geobacter sulfurreducens) was compared to both a nonhydrogen oxidizer (Geobacter metallireducens) and a mixed consortium in order to compare the hydrogen production rates and hydrogen recoveries of pure and mixed cultures in microbial electrolysis cells (MECs). At an applied voltage of 0.7 V, both G. sulfurreducens and the mixed culture generated similar current densities (ca. 160 A/m3), resulting in hydrogen production rates of ca. 1.9 m3 H2/m3/day, whereas G. metallireducens exhibited lower current densities and production rates of 110 ± 7 A/m3 and 1.3 ± 0.1 m3 H2/m3/day, respectively. Before methane was detected in the mixed-culture MEC, the mixed consortium achieved the highest overall energy recovery (relative to both electricity and substrate energy inputs) of 82% ± 8% compared to G. sulfurreducens (77% ± 2%) and G. metallireducens (78% ± 5%), due to the higher coulombic efficiency of the mixed consortium. At an applied voltage of 0.4 V, methane production increased in the mixed-culture MEC and, as a result, the hydrogen recovery decreased and the overall energy recovery dropped to 38% ± 16% compared to 80% ± 5% for G. sulfurreducens and 76% ± 0% for G. metallireducens. Internal hydrogen recycling was confirmed since the mixed culture generated a stable current density of 31 ± 0 A/m3 when fed hydrogen gas, whereas G. sulfurreducens exhibited a steady decrease in current production. Community analysis suggested that G. sulfurreducens was predominant in the mixed-culture MEC (72% of clones) despite its relative absence in the mixed-culture inoculum obtained from a microbial fuel cell reactor (2% of clones). These results demonstrate that Geobacter species are capable of obtaining similar hydrogen production rates and energy recoveries as mixed cultures in an MEC and that high coulombic efficiencies in mixed culture MECs can be attributed in part to the recycling of hydrogen into current.Electrohydrogenesis is an efficient method for generating hydrogen gas from organic matter in reactors known as microbial electrolysis cells (MECs) (17, 18, 26). MECs differ from air-cathode microbial fuel cells (MFCs) in that the cathode remains anaerobic, and voltage is added in order to generate hydrogen at the cathode. Under the biological conditions in MECs, hydrogen evolution is not a thermodynamically favorable reaction. However, combining the hydrogen formation reaction potential of −0.41 V at the cathode (ECAT) with the anode potential (EAN) typically obtained in MFCs with an EAN of −0.30 V (1 g of acetate/liter) results in a minimum required voltage of only 0.14 V. Applied voltages (EAP) of 0.2 V (0.45 kWh/m3 H2) or larger are needed in practice to produce measurable quantities of hydrogen, but this input is substantially less than the average of 2.3 V (5.1 kWh/m3 H2) required for water electrolysis (13).Recent improvements in designs and materials have substantially improved hydrogen yields, production rates, and energy recoveries (3, 18, 27-29, 33). Hydrogen recoveries using typical dead-end fermentation end products such as acetate and butyrate have reached 80 to 100%, whereas other complex substrates such as glucose and cellulose have yielded recoveries of ca. 70% (5). Production rates larger than 6 m3 H2/m3/day have been obtained using MECs (32), which are similar to an average rate of 2.5 m3 H2/m3/day obtained for hydrogen production by biological fermentation (10). Energy recoveries relative to the electrical energy input as high as 680% have already been shown (5), and overall energy recoveries that include the energy of the substrate have reached 85% (2, 5).Hydrogen losses can occur using a mixed culture in an MEC, reducing hydrogen yields, production rates, and recoveries (3, 11, 16, 32). Hydrogen recoveries can drop significantly at lower applied voltages in membraneless MECs because of methanogenic consumption of hydrogen (2, 8, 11, 34). Using a membraneless MEC, Call and Logan (2) found that the overall hydrogen recovery of 90% at an EAP of 0.6 V was reduced to 18% at an EAP of 0.2 V and that methane concentrations increased from 0.9 to 28% in the product gas. Reducing solution pH can help inhibit methanogens, but a methane concentration of 22% was observed in a membrane free MEC at pH 5.8 (11). When hydrogen is the intended product of an MEC, methane production is detrimental to the process. However, biologically produced methane is a renewable energy source, and membraneless MECs can be used to generate methane instead of hydrogen, although energy recoveries are lower (8). Hydrogen can also be consumed by chemolithotrophic bacteria in mixed-culture MECs. These bacteria may transfer the associated electrons to a suitable electron acceptor, such as carbon dioxide, and in some cases, the anode. In the latter scenario, the electrons from hydrogen would be recycled internally, causing an increase in coulombic efficiency (16). Hydrogen losses reduce hydrogen and energy recoveries, and alternative methods for generating methane-free and high hydrogen content gas are needed.Pure culture MECs are one method to avoid losses to methanogens, but production rates and efficiencies with pure cultures can be low compared to those with mixed cultures. Using a pure culture of Shewanella oneidensis MR-1 and lactate, Hu et al. obtained a hydrogen production rate of 0.025 m3 H2/m3/day at an EAP of 0.6 V (11). However, production rates at this same applied voltage using mixed cultures have reached 1 to 2 m3 H2/m3/day (2, 5). In MFCs, S. oneidensis has produced low coulombic efficiencies (<10%) (24, 25) and maximum current densities of ca. 50 mA/m2 (15) with lactate, compared to ca. 9,900 mA/m2 (9) for mixed cultures.Several Geobacter species are commonly found in mixed culture MFCs, and tests with pure cultures of Geobacter sulfurreducens have demonstrated power and current densities close to or equal to those achieved with mixed cultures. In an air cathode MFC, G. sulfurreducens produced a lower power density (461 mW/m2, 1.5 A/m2) than a mixed culture (576 mW/m2, 1.3 A/m2) (12). The reduced performance of G. sulfurreducens in the air cathode MFC may have been due to oxygen intrusion across the cathode. Using an MFC with a ferricyanide cathode, Nevin et al. (23) reported a power density of 1.9 W/m2 (4.6 A/m2) for G. sulfurreducens compared to 1.6 W/m2 (3.2 A/m2) for a mixed consortium. When the authors placed the G. sulfurreducens MFC in an anaerobic chamber, the coulombic efficiency improved from 55% to ca. 100%, confirming the importance of strictly anaerobic conditions for G. sulfurreducens. This suggests that the anaerobic environment of MECs may provide excellent conditions for obtaining current densities comparable to those of mixed cultures with pure cultures of Geobacter species, while at the same time eliminating methane gas production.In order to investigate the performance of Geobacter species in MECs, we selected two Geobacter species based on their differences in hydrogen utilization. G. sulfurreducens was selected because it is capable of producing high current densities in MFCs, and it can utilize hydrogen. G. metallireducens, which does not oxidize hydrogen, was examined to determine whether higher hydrogen recoveries were possible with a bacterium that cannot oxidize hydrogen. Both of these cultures were compared to a mixed culture under identical conditions in order to further examine the role of internal hydrogen recycling in MECs and to show that methane-free gas can be produced in MECs at rates comparable to those obtained with mixed cultures.  相似文献   

17.
Staphylococcus saprophyticus is a common cause of uncomplicated urinary tract infections in women. S. saprophyticus strain ATCC 15305 carries two staphylococcal cassette chromosome genetic elements, SCC15305RM and SCC15305cap. The SCC15305cap element carries 13 open reading frames (ORFs) involved in capsular polysaccharide (CP) biosynthesis, and its G+C content (26.7%) is lower than the average G+C content (33.2%) for the whole genome. S. saprophyticus strain ATCC 15305 capD, capL, and capK (capDSsp, capLSsp, and capKSsp) are homologous to genes encoding UDP-FucNAc biosynthesis, and gtaB and capISsp show homology to genes involved in UDP-glucuronic acid synthesis. S. saprophyticus ATCC 15305 CP, visualized by immunoelectron microscopy, was extracted and purified using anionic-exchange and size exclusion chromatography. Analysis of the purified CP by 1H and 13C nuclear magnetic resonance (NMR) spectroscopy and gas-liquid chromatography revealed two types of branched tetrasaccharide repeating units composed of the following: Sug represents two stereoisomers of 2-acetamido-2,6-dideoxy-hexos-4-ulose residues, one of which has an arabino configuration. The encapsulated ATCC 15305 strain was resistant to complement-mediated opsonophagocytic killing by human neutrophils, whereas the acapsular mutant C1 was susceptible. None of 14 clinical isolates reacted with antibodies to the ATCC 15305 CP. However, 11 of the 14 S. saprophyticus isolates were phenotypically encapsulated based on their resistance to complement-mediated opsonophagocytic killing and their failure to hemagglutinate when cultivated aerobically. Ten of the 14 clinical strains carried homologues of the conserved staphylococcal capD gene or the S. saprophyticus gtaB gene, or both. Our results suggest that some strains of S. saprophyticus are encapsulated and that more than one capsular serotype exists.Approximately 13 million women develop urinary tract infections (UTIs) annually in the United States, with a recurrence rate between 25% and 44% (45). Staphylococcus saprophyticus is second only to Escherichia coli as a cause of uncomplicated UTI in young women (45, 46). A novobiocin-resistant member of the coagulase-negative staphylococci (60), S. saprophyticus has rarely exhibited resistance to other antibiotics (25). However, a recent report (19) indicated that methicillin-resistant S. saprophyticus isolates have emerged in Japan. The gastrointestinal tract and the vagina are the major reservoirs of S. saprophyticus (18, 30) and the likely sources of recurrent infection (20, 37, 49). Approximately 40% of patients with S. saprophyticus UTI present with acute pyelonephritis (22, 30). These patients experience symptoms more severe than those of patients infected by E. coli (24), and they are more likely to develop recurrent infections (21).A number of potential virulence factors have been identified in S. saprophyticus. Gatermann et al. showed that in a rodent model of ascending UTI, the production of urease contributes to S. saprophyticus growth and pathogenicity in the bladder (10, 12). Other putative virulence factors of S. saprophyticus include a surface-associated lipase (11, 51, 53), the collagen binding protein SdrI (52), and a cell wall-anchored hemagglutinin protein that mediates the binding of S. saprophyticus to sheep erythrocytes, fibronectin, and human uroepithelial cells (14, 29, 34, 35). The hemagglutinin was dubbed UafA in the sequenced ATCC 15305 strain, and deletion of the uafA gene resulted in reduced S. saprophyticus hemagglutination (HA) and adherence to human bladder carcinoma cells (29). Kuroda et al. noted that UafA-mediated adherence of S. saprophyticus to the T24 cell line was inhibited by the presence of the ATCC 15305 polysaccharide capsule (29).Staphylococcal species produce a variety of extracellular glycopolymers that contribute to the surface properties and virulence of the bacterium, such as capsular polysaccharides (CP), teichoic acids, and poly-N-acetylglucosamine (PNAG). CP production renders Staphylococcus aureus resistant to opsonophagocytic killing; alanine modifications of teichoic acids promote bacterial resistance to antimicrobial peptides (40); and PNAG is involved in biofilm formation (4). Recently, the secretion of another anionic polymer (poly-γ-dl-glutamic acid) by certain other coagulase-negative staphylococci was reported (28). Polyglutamic acid production is enhanced under high-salt conditions and may contribute to the survival of Staphylococcus epidermidis on human skin.S. saprophyticus strain 15305 does not produce PNAG or polyglutamic acid (28, 29), but this uropathogenic species is encapsulated. CP are lacking in isolates of S. epidermidis, the most common of the coagulase-negative species, but genomic evidence indicates that Staphylococcus haemolyticus (7, 57), S. saprophyticus (29), and Staphylococcus carnosus (47) carry capsule loci with genetic similarity to the Staphylococcus aureus cap5 (cap8) gene locus. In this study, we purified and characterized the CP produced by S. saprophyticus ATCC 15305 and investigated the CP phenotype of S. saprophyticus clinical isolates.  相似文献   

18.
Two strains of the methylotrophic yeast Pichia pastoris were used to establish cyanophycin (multi-l-arginyl-poly-l-aspartic acid [CGP]) synthesis and to explore the applicability of this industrially widely used microorganism for the production of this polyamide. Therefore, the CGP synthetase gene from the cyanobacterium Synechocystis sp. strain PCC 6308 (cphA6308) was expressed under the control of the alcohol oxidase 1 promoter, yielding CGP contents of up to 10.4% (wt/wt), with the main fraction consisting of the soluble form of the polymer. To increase the polymer contents and to obtain further insights into the structural or catalytic properties of the enzyme, site-directed mutagenesis was applied to cphA6308 and the mutated gene products were analyzed after expression in P. pastoris and Escherichia coli, respectively. CphA6308Δ1, which was truncated by one amino acid at the C terminus; point mutated CphA6308C595S; and the combined double-mutant CphA6308Δ1C595S protein were purified. They exhibited up to 2.5-fold higher enzyme activities of 4.95 U/mg, 3.20 U/mg, and 4.17 U/mg, respectively, than wild-type CphA6308 (2.01 U/mg). On the other hand, CphA proteins truncated by two (CphA6308Δ2) or three (CphA6308Δ3) amino acids at the C terminus showed similar or reduced CphA enzyme activity in comparison to CphA6308. In flask experiments, a maximum of 14.3% (wt/wt) CGP was detected after the expression of CphA6308Δ1 in P. pastoris. For stabilization of the expression plasmid, the his4 gene from Saccharomyces cerevisiae was cloned into the expression vector used and the constructs were transferred to histidine auxotrophic P. pastoris strain GS115. Parallel fermentations at a one-to-one scale revealed 26°C and 6.0 as the optimal temperature and pH, respectively, for CGP synthesis. After optimization of fermentation parameters, medium composition, and the length of the cultivation period, CGP contents could be increased from 3.2 to 13.0% (wt/wt) in cells of P. pastoris GS115 expressing CphA6308 and up to even 23.3% (wt/wt) in cells of P. pastoris GS115 expressing CphA6308Δ1.Since the first isolation of a methylotrophic yeast, Kloeckera sp. strain 2201, in 1969 (43), the two methylotrophic yeasts Pichia pastoris and Hansenula polymorpha have become the most popular methylotrophs in industry and academia (9, 23, 24). The main benefits of these organisms for the production of recombinant proteins are their growth to cell densities as high as 130 g cell dry matter per liter (50, 57) and the availability of strong and tightly regulated promoters that result in a high product yield (13). Viral hepatitis B surface antigen, S. cerevisiae mating factor α, and S. cerevisiae invertase are only a few examples of compounds produced by recombinant P. pastoris (reviewed in reference 9).A variety of strains were optimized for the expression of recombinant proteins (9). Protease-deficient strains such as strain KM71(H) were generated to circumvent the proteolytic degradation of recombinant proteins (17). Three different phenotypes exist that differ in the ability to utilize methanol (reviewed in reference 37). (i) Mut+ strains grow on methanol as the sole carbon and energy source at the wild-type rate. (ii) Muts strains possess a disrupted alcohol oxidase 1 (AOX1) gene and therefore rely on the weaker AOX2 gene, leading to decreased methanol utilization rates in comparison to those exhibited by Mut+ strains. (iii) Mut strains are not able to utilize methanol as a carbon and energy source; consequently, such strains use the compound as an inducer only and are dependent on the concomitant addition of carbon sources that do not repress the AOX1 promoter (30, 31). Depending on the required product, any of these phenotypes can be optimal (37). The AOX1 promoter is totally repressed during growth on, e.g., glycerol, whereas it is strongly expressed after methanol is supplied (11). Therefore, P. pastoris fermentations are divided into two phases. (i) During growth on glycerol, high cell densities are reached; (ii) subsequent growth on methanol leads to induction of heterologous protein synthesis, resulting in a high product yield (14). Besides glycerol, several other carbon sources, such as, e.g., glucose, acetate, ethanol, or sorbitol, were used for the production of foreign proteins (30, 31). Several fermentation strategies that allow optimal cell and product yields have been established (8, 25, 28).Besides the AOX1 promoter, several other suitable promoters are available (10), e.g., the copper-inducible CUP1 promoter from S. cerevisiae (33, 38), the inducible ICL1 promoter from the isocitrate lyase gene (8), or the constitutive GAP promoter from glyceraldehydes-3-phosphate dehydrogenase (56).Synthesis of cyanophycin (multi-l-arginyl-poly-l-aspartic acid [CGP]) was only recently established in the yeast S. cerevisiae. Recombinant strains harboring cphA from Synechocystis sp. strain PCC 6308 but otherwise with a wild-type background accumulated CGP up to 6.9% (wt/wt) (52), whereas recombinant strains with a mutation in arginine metabolism accumulated CGP even up to 15.3% (wt/wt) of the cell dry mass (CDM) (54). All of the strains synthesized the polymer in soluble and insoluble forms, which was also observed in transgenic plants (29, 42); the soluble type of CGP was first observed in Escherichia coli expressing the cphA gene from Desulfitobacterium hafniense (59). Several cyanobacterial and heterotrophic CGP synthetase genes were expressed heterologously in the past (16, 26, 29, 52, 59). To unravel structurally or catalytically relevant residues of the enzyme, a few site-directed mutations were generated in cyanobacterial cphA genes (26, 27, 35, 53). In addition, several variations in the amino acid composition of the polymer were recently obtained; while cyanobacterial CGP or CGP synthesized by specific CphA proteins exhibiting a narrow substrate range contained aspartate and arginine only (18, 51); lysine was observed as a component replacing arginine at up to 18 mol% in recombinant strains of E. coli and S. cerevisiae harboring CphA with a broader substrate range (34, 54). Moreover, citrulline and ornithine were also detected as constituents replacing arginine in mutants of S. cerevisiae expressing CphA from Synechocystis sp. strain PCC 6308 (54). The soluble CGP contained up to 20 mol% citrulline or up to 8 mol% ornithine instead of arginine. The latter enzyme also revealed a wide substrate range in vitro comprising agmatine and canavanine besides arginine, lysine, citrulline, and ornithine (2, 58).A multitude of technical or pharmaceutical applications are known for degradation products of CGP (44, 48, 49). Dipeptides obtained after α cleavage of the polymer by cyanophycinases are employed as high-value pharmaceuticals (45, 46). Through β cleavage of the polymer, polyaspartic acid can be obtained, which serves as a biodegradable alternative to the persistent polyacrylic acid (9). Finally, research on the synthesis of bulk chemicals such as urea or acrylonitrile from CGP has become of special interest (40, 48, 49).In this study, the methylotrophic yeast P. pastoris was, for the first time, employed for synthesis of the polyamide CGP to analyze if this organism provides a perspective for the production of the polymer. For further optimization of polymer yields, mutated CphA proteins were generated by site-directed mutagenesis and characterized and optimal growth parameters were determined in parallel fermentations.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号