首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Early embryogenesis of Caenorhabditis elegans provides a striking example of the generation of polarity and the partitioning of cytoplasmic factors according to this polarity. Microfilaments (MFs) appear to play a critical role in these processes. By visualizing the distribution of MFs and by studying the consequences of disrupting MFs for short, defined periods during zygote development, we have generated some new ideas about when and how microfilaments function in the zygote.  相似文献   

2.
The spatial organization of the cytoskeleton in crayfish stretch receptor.   总被引:1,自引:0,他引:1  
An electron microscopic study of the cytoskeleton of the crayfish stretch receptor was carried out. Longitudinal sections of the sensory neuron axons and dendrites showed wave-like arrays of microtubules with a period of about 5 microns. Transverse sections showed that the microtubules displayed no regularity in the arrays. In oblique sections, transverse and longitudinal views of microtubules (or shorter and longer segments of microtubules) alternated yielding a festoon-like pattern. The data obtained indicate that the cytoskeleton of the stretch receptor has a helical structure in which all the microtubules, the major cytoskeletal components, are arranged in parallel helices that are in register along the length of axons and dendrites. The helical organization of the cytoskeleton is probably responsible for the banded appearance of sensory axons and primary dendrites as seen in the polarized light. Decrease of contrast and disappearance of the banding during stretch of the receptor muscle are supposedly due to the desynchronization of the helical trajectories of the microtubules and to the decrease of the helical amplitude.  相似文献   

3.
Beyond the sequence: cellular organization of genome function   总被引:30,自引:0,他引:30  
Misteli T 《Cell》2007,128(4):787-800
Genomes are more than linear sequences. In vivo they exist as elaborate physical structures, and their functional properties are strongly determined by their cellular organization. I discuss here the functional relevance of spatial and temporal genome organization at three hierarchical levels: the organization of nuclear processes, the higher-order organization of the chromatin fiber, and the spatial arrangement of genomes within the cell nucleus. Recent insights into the cell biology of genomes have overturned long-held dogmas and have led to new models for many essential cellular processes, including gene expression and genome stability.  相似文献   

4.
One prominent cytoskeletal feature of non-mammalian vertebrate erythrocytes is the marginal band (MB), composed of microtubules. However, there have been several reports of MB-associated F-actin. We have further investigated the function of MB-associated F-actin, using newt erythrocytes having large, thick MBs. Confocal microscopy revealed a distinctive band of F-actin colocalizing point- by-point with MB microtubules. Furthermore, the F-actin band was present in isolated elliptical MBs, but absent in membrane skeletons lacking MBs. F-actin depolymerizing agents did not affect F-actin band integrity in isolated MBs, indicating its non-dynamic state. However, exposure to elastase resulted in F-actin removal and MB circularization. These results provide evidence of a strong association of F-actin with MB microtubules in mature ellipsoidal erythrocytes. To assess the true extent of mechanical stress on the cytoskeleton, erythrocytes were observed by video microscopy during flow in vivo. Moving with long axis parallel to flow direction, cells underwent reversible shape distortion as they collided vigorously with other erythrocytes and vessel walls. In addition, cells twisted into figure-8 shapes, a cytoskeletal property that may provide physiological advantages during flow. Our results, together with those of others, yield a consistent picture in which developing erythrocytes undergo transition from spheroids to immature discoids to mature ellipsoids. The causal step in discoid formation is biogenesis of circular MBs with sufficient flexural rigidity to determine cell shape. F-actin binding to MB microtubules then creates a composite system, enhancing flexural rigidity to produce and maintain ellipsoidal shape during the physical challenges of blood flow in vivo.  相似文献   

5.
Garima Gupta 《FEBS letters》2010,584(9):1634-15082
Plasma membranes regulate the influx and efflux of molecules across themselves and are also responsible for primary signal transduction between cells or within the same cell. Presence of lateral heterogeneity and the ability of reorganization are essential requirements for effective functioning of biomembranes. Lipid rafts are small, heterogeneous, dynamic domains enriched in glycosphingolipids, sphingomyelin and cholesterol, and profoundly influence membrane organization. Glycosphingolipids are inclined towards formation of liquid-ordered phases in membranes, both with and without cholesterol; they are therefore prime players in domain formation. Here, we discuss the role of glycosphingolipids in microdomain formation and their spatial organization within these rafts.  相似文献   

6.
Formerly regarded as small 'bags' of nucleic acids with randomly diffusing enzymes, bacteria are organized by a sophisticated and tightly regulated molecular machinery. Here, we review qualitative and quantitative data on the intracellular organization of bacteria and provide a detailed inventory of macromolecular structures such as the divisome, the degradosome and the bacterial 'nucleolus'. We discuss how these metabolically active structures manage the spatial organization of the cell and how macromolecular crowding influences them. We present for the first time a visualization program, lifeexplorer, that can be used to study the interplay between metabolism and spatial organization of a prokaryotic cell.  相似文献   

7.
Coumaran Egile  Terry Lechler  Rong Li 《Genome biology》2001,2(3):reports4005.1-reports40053
A report on the cytoskeleton sessions of the 40th Annual Meeting of the American Society for Cell Biology, San Francisco, 9-13 December 2000.  相似文献   

8.
The cytoskeleton in endocardial endothelium of rat heart was examined by en face confocal scanning laser microscopy. In the ventricular cavity, endocardial endothelial cells had a polygonal shape and F-actin staining was generally restricted to the peripheral junctional actin band. Central F-actin bundles, or stress fibers, in endocardial endothelial cells were found on the tendon end of papillary muscles, especially in the right ventricle, and frequently in the outflow tract of both ventricles; elsewhere, stress fibers were scarce. Many endocardial endothelial cells were elongated in areas of endothelium with stress fibers, but no correlation was found between cell elongation and the number of stress fibers. An inverse correlation was found between the number of stress fibers and the surface area of endocardial endothelial cells. Shear stress as well as mechanical deformation of the surface of the ventricular wall during the cardiac cycle may affect cell shape and the organization of actin filaments in endocardial endothelial cells. Vimentin in endocardial endothelial cells formed a filamentous network with some distinct cytoplasmic and juxtanuclear vimentin bundles. No perinuclear ring of vimentin filaments was observed in endocardial endothelium. Microtubules in endocardial endothelial cells were, in contrast to endothelial cells of rat aorta, not aligned, less closely packed and originated from randomly distributed centriolar regions. The cytoskeleton has been suggested to play an important role in cellular functions of vascular endothelial cells. Accordingly, differences in the cytoskeletal organization between endocardial and vascular endothelial cells may relate to differences in functional properties.  相似文献   

9.
Based on recent single-molecule imaging results in the living cell plasma membrane, we propose a hierarchical architecture of three-tiered mesoscale (2-300nm) domains to represent the fundamental functional organization of the plasma membrane: (i) membrane compartments of 40-300nm in diameter due to the partitioning of the entire plasma membrane by the actin-based membrane skeleton 'fence' and transmembrane protein 'pickets' anchored to the fence; (ii) raft domains (2-20nm); and (iii) dimers/oligomers and greater complexes of membrane-associated proteins (3-10nm). The basic molecular interactions required for the signal transduction function of the plasma membrane can be fundamentally understood and conveniently summarized as the cooperative actions of these mesoscale domains, where thermal fluctuations/movements of molecules and weak cooperativity play crucial roles.  相似文献   

10.
The translation elongation factor 1 complex (eEF1) plays a central role in protein synthesis, delivering aminoacyl-tRNAs to the elongating ribosome. The eEF1A subunit, a classic G-protein, also performs roles aside from protein synthesis. The overexpression of either eEF1A or eEF1B alpha, the catalytic subunit of the guanine nucleotide exchange factor, in Saccharomyces cerevisiae results in effects on cell growth. Here we demonstrate that overexpression of either factor does not affect the levels of the other subunit or the rate or accuracy of protein synthesis. Instead, the major effects in vivo appear to be at the level of cell morphology and budding. eEF1A overexpression results in dosage-dependent reduced budding and altered actin distribution and cellular morphology. In addition, the effects of excess eEF1A in actin mutant strains show synthetic growth defects, establishing a genetic connection between the two proteins. As the ability of eEF1A to bind and bundle actin is conserved in yeast, these results link the established ability of eEF1A to bind and bundle actin in vitro with nontranslational roles for the protein in vivo.  相似文献   

11.
Developmental organization of the intestinal brush-border cytoskeleton   总被引:1,自引:0,他引:1  
At the terminal web of chicken intestinal epithelial cell, the actin bundles are cross-linked by a fine filamentous network of actin-associated cross-linkers. Myosin, fodrin, and TW 260/240 have been identified as major components of the cross-linkers. We studied the development of the cross-linkers by quick-freeze, deep-etch electron microscopy, and the expression of cross-linker proteins (myosin, fodrin 240, and TW 260) by immunofluorescence and immunoblotting analysis during the embryogenesis. Microvilli start to form at 5-7 days, and the rootlets begin to elongate at 10 days. At an early stage of the development of the terminal web (13 days), fodrin 240 and a small amount of myosin are expressed, and a few actin-associated cross-linkers are present between the rootlets. However, TW 260 is not expressed at this stage. At an intermediate stage (19 days), the amount of myosin increases, and TW 260 begins to be expressed. The number of cross-linkers associated with the unit length of the rootlets is 24/microns. At the final stage of the terminal web formation (2 days after hatching), the amount of fodrin 240, myosin, and TW 260 is similar to the adult level, and the number of the actin-associated cross-linkers per unit length of the rootlet is 27/microns (approximately 85% of the adult). These results suggest that the synthesis of cross-linker proteins may be intricately regulated to achieve the desired density of cross-linkages at each developmental stage: at early and intermediate stages, sufficient and not an excess of cross-linkages are formed; and at a final stage, a higher complexity of cross-linkages is achieved. In addition, there is a differential expression of the components of the actin-associated cross-linkers: myosin and fodrin could be early components of the cross-linkers involved in the basic stabilization of the terminal web structure, whereas TW 260/240 becomes incorporated later, possibly involved in the stabilization preparatory to the rapid elongation of microvilli, which occurs after the formation of the terminal web.  相似文献   

12.
Cell polarity relies on the asymmetric organization of cellular components and structures. Actin and microtubules are well suited to provide the structural basis for cell polarization because of their inherent structural polarity along the polymer lattices and intrinsic dynamics that allow them to respond rapidly to polarity cues. In general, the actin cytoskeleton drives the symmetry-breaking process that enables the establishment of a polarized distribution of regulatory molecules, whereas microtubules build on this asymmetry and maintain the stability of the polarized organization. Crosstalk coordinates the functions of the two cytoskeletal systems.  相似文献   

13.

Background

The evolutionary origin of cooperation among unrelated individuals remains a key unsolved issue across several disciplines. Prominent among the several mechanisms proposed to explain how cooperation can emerge is the existence of a population structure that determines the interactions among individuals. Many models have explored analytically and by simulation the effects of such a structure, particularly in the framework of the Prisoner''s Dilemma, but the results of these models largely depend on details such as the type of spatial structure or the evolutionary dynamics. Therefore, experimental work suitably designed to address this question is needed to probe these issues.

Methods and Findings

We have designed an experiment to test the emergence of cooperation when humans play Prisoner''s Dilemma on a network whose size is comparable to that of simulations. We find that the cooperation level declines to an asymptotic state with low but nonzero cooperation. Regarding players'' behavior, we observe that the population is heterogeneous, consisting of a high percentage of defectors, a smaller one of cooperators, and a large group that shares features of the conditional cooperators of public goods games. We propose an agent-based model based on the coexistence of these different strategies that is in good agreement with all the experimental observations.

Conclusions

In our large experimental setup, cooperation was not promoted by the existence of a lattice beyond a residual level (around 20%) typical of public goods experiments. Our findings also indicate that both heterogeneity and a “moody” conditional cooperation strategy, in which the probability of cooperating also depends on the player''s previous action, are required to understand the outcome of the experiment. These results could impact the way game theory on graphs is used to model human interactions in structured groups.  相似文献   

14.
The dynamics of the actin cytoskeleton spatial organization and transepithelial electric resistance (TEER) in the MDCK1 cell monolayer exposed to arginine–vasopressin (AVP) and forskolin, a protein kinase A (PKA) activator, have been studied. These physiologically active substances are shown to depolymerize filamentous actin in MDCK1 cells (in both the apical and basal cytoplasm) and, concurrently, to considerably decrease the TEER of the cell monolayer. A decrease in TEER suggests an increase in the ion current through the cell monolayer. Correspondingly, the created ion gradient stimulates AVP-sensitive water flow. To clarify the routes of ions and water in MDCK monolayer, the localization of claudin-1 and -2 in tight junctions of ATCC (American Type Culture Collection) MDCK (a low TEER) and MDCK1 (a high TEER) cells was studied by immunofluorescence assay. Claudin-1 and -2 are detectable in the tight junctions of ATCC MDCK cells; however, the tight junctions of MDCK1 cells contain only claudin-1, whereas poreforming claudin-2 is absent. The exposure of MDCK1 cells to forskolin fails to change the distribution of the studied claudins, thereby suggesting that a decrease in TEER caused by forskolin is associated with a change in transcellular, rather than paracellular, permeability of the monolayer  相似文献   

15.
We have examined the effects of ATP and deoxycholate (DOC) on the cytoskeletal organization of Triton-demembranated microvilli (MV) isolated from chicken intestine brush borders. Isolated MV are composed of a core of tightly bundled microfilaments from which arms project laterally to the plasma membrane with a 33-nm periodicity. These lateral arms spiral around the core microfilaments as a helix with a 25 degrees pitch. Demembranated MV consist of four polypeptides with mol wt of 110,000, 95,000, 68,000, and 42,000, present in molar ratios of 1.1:1.6:1.3:10.0. After addition of 50 microM ATP and 0.1 mM Mg++, the cytoskeletons are organized as a tight bundle of microfilaments from which lateral arms are missing. In these ATP-treated cytoskeletons, the 110-kdalton polypeptide is reduced in amount and the 95,000, 68,000, and 42,000 polypeptides are present in a 1.3:1.2:10.0 ratio. In contrast, after incubation with 0.5% DOC, the core microfilaments are no longer tightly bundled yet the lateral arms remain attached with a distinct 33-nm periodicity. These DOC-treated cytoskeletons are depleted of the 95,000 and 68,000 polypeptides and are composed of the 110,000 and 42,000 polypeptides in a 2:10 molar ratio. These results suggest that the microfilaments are associated into a core bundle by the 95- and 68-kdalton polypeptides and from this core bundle project the lateral arms composed of the 110-kdalton polypeptide.  相似文献   

16.
Summary Iodoacetamido-fluorescein-(IAF)-labeled actin was microinjected into normal locomotingAmoeba proteus. Thereafter (30–60 minutes) changes in the cytoplasmic fluorescence distribution pattern and contractile activity were induced by internal and external chemical stimulation. Different agents such as phalloidin, procaine, 2.4-dinitrophenol (DNP), puromycin, ouabain and n-ethyl maleimide (NEM) interfere with the excitation-contraction mechanism involved in ordered pseudopodium formation during ameboid movement and cause various morphogenetic reactions based on actin polymerization-depolymerization cycles. Most frequent changes are (a) local condensation of IAF-actin and formation of a continuous IAF-actin layer at the cytoplasmic surface of the cell membrane and around the pulsating vacuole, (b) immobilization and hyalo-granuloplasm separation by combined contraction and detachment of the IAF-actin layer from the cell membrane, (c) organized and disorganized formation of pseudopodia by local contraction and disintegration of the IAF-actin layer, and (d) alterations in the rheological properties of the protoplasmic matrix by changes in the molecular state of soluble actin not incorporated into the cytoskeleton. The experimental approaches to the function of the actomyosin system in large amebas attainable by the method ofin vivo molecular cytochemistry are discussed in detail with respect to the participation of the cytoskeleton in motive force generation for cytoplasmic streaming and ameboid movement.  相似文献   

17.
18.
《The Journal of cell biology》1983,97(5):1327-1337
A chlorophyll-protein complex of chloroplast membranes, which simultaneously serves as light-harvesting antenna and membrane adhesion factor, undergoes reversible, lateral diffusion between appressed and nonappressed membrane regions under the control of a protein kinase. The phosphorylation-dependent migration process regulates the amount of light energy that is delivered to the reaction centers of photosystems I and II (PS I and PS II), and thereby regulates their rate of turnover. This regulatory mechanism provides a rationale for the finding that the two photosystems are physically separated in chloroplast membranes (PS II in appressed, grana membranes, and PS I in nonappressed, stroma membranes). The feedback system involves the following steps: a membrane-bound kinase senses the rate of PS II vs. PS I turnover via the oxidation-reduction state of the plastoquinone pool, which shuttles electrons from PS II via cytochrome f to PS I. If activated, the kinase adds negative charge (phosphate) to a grana- localized pigment-protein complex. The change in its surface charge at a site critical for promoting membrane adhesion results in increased electrostatic repulsion between the membranes, unstacking, the lateral movement of the complex to adjacent stroma membranes, which differ in their functional composition. The general significance of this type of membrane regulatory mechanism is discussed.  相似文献   

19.
Xu K  Babcock HP  Zhuang X 《Nature methods》2012,9(2):185-188
By combining astigmatism imaging with a dual-objective scheme, we improved the image resolution of stochastic optical reconstruction microscopy (STORM) and obtained <10-nm lateral resolution and <20-nm axial resolution when imaging biological specimens. Using this approach, we resolved individual actin filaments in cells and revealed three-dimensional ultrastructure of the actin cytoskeleton. We observed two vertically separated layers of actin networks with distinct structural organizations in sheet-like cell protrusions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号