首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Internal ribosome entry site (IRES)-mediated translation is an essential replication step for certain viruses. As IRES-mediated translation is regulated differently from cap-dependent translation under various cellular conditions, we sought to investigate whether temperature influences efficiency of viral IRES-mediated translation initiation by using bicistronic reporter constructs containing an IRES element of encephalomyocarditis virus (EMCV), foot-and-mouth disease virus (FMDV), hepatitis C virus (HCV), human rhinovirus (HRV) or poliovirus (PV). Under mild hypothermic conditions (30 and 35°C), we observed increases in the efficiency of translation initiation by HCV and HRV IRES elements compared to translation initiation at 37°C. The promotion of HRV IRES activity was observed as early as 2 hours after exposure to mild hypothermia. We also confirmed the promotion of translation initiation by HRV IRES under mild hypothermia in multiple cell lines. The expression levels and locations of polypyrimidine tract-binding protein (PTB) and upstream of N-Ras (unr), the IRES trans-acting factors (ITAFs) of HCV and HRV IRES elements, were not modulated by the temperature shift from 37°C to 30°C. Taken together, this study demonstrates that efficiency of translation initiation by some viral IRES elements is temperature dependent.  相似文献   

6.
Ray PS  Das S 《Nucleic acids research》2004,32(5):1678-1687
Translation of the hepatitis C virus (HCV) RNA is mediated by the interaction of ribosomes and cellular proteins with an internal ribosome entry site (IRES) located within the 5′-untranslated region (5′-UTR). We have investigated whether small RNA molecules corresponding to the different stem–loop (SL) domains of the HCV IRES, when introduced in trans, can bind to the cellular proteins and antagonize their binding to the viral IRES, thereby inhibiting HCV IRES-mediated translation. We have found that a RNA molecule corresponding to SL III could efficiently inhibit HCV IRES-mediated translation in a dose-dependent manner without affecting cap-dependent translation. The SL III RNA was found to bind to most of the cellular proteins which interacted with the HCV 5′-UTR. A smaller RNA corresponding to SL e+f of domain III also strongly and selectively inhibited HCV IRES-mediated translation. This RNA molecule interacted with the ribosomal S5 protein and prevented the recruitment of the 40S ribosomal subunit. This study reveals valuable insights into the role of the SL structures of the HCV IRES in mediating ribosome entry. Finally, these results provide a basis for developing anti-HCV therapy using small RNA molecules mimicking the SL structures of the 5′-UTR to specifically block viral RNA translation.  相似文献   

7.
8.
Several recent publications have explored cap-independent translation through an internal ribosome entry site (IRES) in the 5′-UTR of the mRNA encoding the cyclin-dependent kinase inhibitor p27. The major experimental tool used in these reports was the use of bicistronic reporter constructs in which the 5′-UTR was inserted between the upstream and downstream cistrons. None of these reports has completely ruled out the possibility that the 5′-UTR has either cryptic promoter activity or a cryptic splice acceptor site. Either of these possibilities could result in expression of a monocistronic mRNA encoding the downstream cistron and false identification of an IRES. Indeed, Liu et al. recently published data suggesting that the p27 5′-UTR harbors cryptic promoter activity which accounts for its putative IRES activity. In this report, we have explored this potential problem further using promoterless bicistronic constructs coupled with RNase protection assays, siRNA knockdown of individual cistrons, RT-PCR to detect mRNA encoded by the bicistronic reporter with high sensitivity, direct transfection of bicistronic mRNAs, and insertion of an iron response element into the bicistronic reporter. The results do not support the conclusion that the p27 5′-UTR has significant functional promoter activity or cryptic splice sites, but rather that it is able to support cap-independent initiation of translation.  相似文献   

9.
La autoantigen enhances translation of BiP mRNA   总被引:8,自引:2,他引:6       下载免费PDF全文
Translational initiation of the human BiP mRNA is directed by an internal ribosomal entry site (IRES) located in the 5′-untranslated region (5′-UTR). In order to understand the mechanism of the IRES-dependent translation of BiP mRNA, cellular proteins interacting with the BiP IRES were investigated. La autoantigen, which augments the translation of polioviral mRNA and hepatitis C viral mRNA, bound specifically to the second half of the 5′-UTR of the BiP IRES and enhanced translation of BiP mRNA in both in vitro and in vivo assays. This finding suggests that cellular and viral IRESs containing very different RNA sequences may share a common mechanism of translation.  相似文献   

10.
11.
12.
In this study, we demonstrate the identification of an internal ribosome entry site (IRES) within the 5′-untranslated region (5′-UTR) of the mouse mammary tumor virus (MMTV). The 5′-UTR of the full-length mRNA derived from the infectious, complete MMTV genome was cloned into a dual luciferase reporter construct containing an upstream Renilla luciferase gene (RLuc) and a downstream firefly luciferase gene (FLuc). In rabbit reticulocyte lysate, the MMTV 5′-UTR was capable of driving translation of the second cistron. In vitro translational activity from the MMTV 5′-UTR was resistant to the addition of m7GpppG cap-analog and cleavage of eIF4G by foot-and-mouth disease virus (FMDV) L-protease. IRES activity was also demonstrated in the Xenopus laevis oocyte by micro-injection of capped and polyadenylated bicistronic RNAs harboring the MMTV-5′-UTR. Finally, transfection assays showed that the MMTV-IRES exhibits cell type-dependent translational activity, suggesting a requirement for as yet unidentified cellular factors for its optimal function.  相似文献   

13.
14.
Although mild hypothermia generally reduces protein synthesis in mammalian cells, the expression of a small number of proteins, including Rbm3, is induced under these conditions. In this study, we identify an Rbm3 mRNA with a complex 5' leader sequence containing multiple upstream open reading frames. Although these are potentially inhibitory to translation, monocistronic reporter mRNAs containing this leader were translated relatively efficiently. In addition, when tested in the intercistronic region of dicistronic mRNAs, this leader dramatically enhanced second cistron translation, both in transfected cells and in cell-free lysates, suggesting that the Rbm3 leader mediates cap-independent translation via an internal ribosome entry site (IRES). Inasmuch as Rbm3 mRNA and protein levels are both increased in cells exposed to mild hypothermia, the activity of this IRES was evaluated at a cooler temperature. Compared to 37 degrees C, IRES activity at 33 degrees C was enhanced up to 5-fold depending on the cell line. Moderate enhancements also occurred with constructs containing other viral and cellular IRESes. These effects of mild hypothermia on translation were not caused by decreased cell growth, as similar effects were not observed when cells were serum starved. The results suggest that cap-independent mechanisms may facilitate the translation of particular mRNAs during mild hypothermia.  相似文献   

15.
Hepatitis C is a major public health concern, with an estimated 170 million people infected worldwide and an urgent need for new drug development. An attractive therapeutic approach is to prevent the ‘cap-independent’ translation initiation of the viral proteins by interfering with both the structure and function of the hepatitis C viral internal ribosomal entry site (HCV IRES). Towards this goal, we report the design, synthesis and purification of novel bi-functional molecules containing DNA or RNA antisenses attached to functional groups performing RNA hydrolysis. These 5′ or 3′-coupled conjugates bind the HCV IRES with affinity and specificity and elicit targeted hydrolysis of the viral genomic RNA after short (1 h) incubation at low (500 nM) concentration at 37°C in vitro. Additional secondary cleavage sites are induced and their mapping within the RNA structure indicates that functional domains IIIb-e are excised from the IRES that, based on cryo-EM studies, becomes incapable of binding the small ribosomal subunit and initiation factor 3 (eIF3). All these molecules inhibit, in a dose-dependent manner, the ‘IRES-dependent’ translation in vitro. The 5′-coupled imidazole conjugate reduces viral protein synthesis by half at a 300 nM concentration (IC50), corresponding to a 4-fold increase of activity when compared to the naked oligonucleotide. These new conjugates are now being tested for activity on infected hepatic cell lines.  相似文献   

16.
17.
Cap-independent translation of the hepatitis C virus (HCV) genomic RNA is mediated by an internal ribosome entry site (IRES) within the 5′ untranslated region (5′UTR) of the virus RNA. To investigate the effects of alterations to the primary sequence of the 5′UTR on IRES activity, a series of HCV genotype 1b (HCV-1b) variant IRES elements was generated and cloned into a bicistronic reporter construct. Changes from the prototypic HCV-1b 5′UTR sequence were identified at various locations throughout the 5′UTR. The translation efficiencies of these IRES elements were examined by an in vivo transient expression assay in transfected BHK-21 cells and were found to range from 0.4 to 95.8% of the activity of the prototype HCV-1b IRES. Further mutational analysis of the three single-point mutants most severely defective in activity, whose mutations were all located in or near stem-loop IIIc, demonstrated that both the primary sequence and the maintenance of base pairing within this stem structure were critical for HCV IRES function. Complementation studies indicated that defective mutants containing either point mutations or major deletions within the IRES elements could not be complemented in trans by a wild-type IRES.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号